ICIMP 2017 : The Twelfth International Conference on Internet Monitoring and Protection

Security Testing Over Encrypted Channels on the ARM Platform

Fatih Kilic
Chair for IT-Security
Technical University of Munich
Garching near Munich, Germany
e-mail: kilic@sec.in.tum.de

Abstract—Security Testing has been applied for many years to
detect vulnerabilities in applications. With the increasing demand
for encryption to protect the confidentiality of network data,
the requirements have changed. When proprietary, closed source
software uses end-to-end encryption, security testing tools which
are fuzzing the application layer over network with plaintext
data will eventually fail. The Intrusion Detection Framework
for Encrypted Network Data (iDeFEND) framework circumvents
this problem without violating the security of the end-to-end
encryption. Unfortunately, the framework cannot be used on
the Advanced RISC Machines (ARM) platform, since it uses
architecture depended features of x86. In this paper, we transfer
iDeFEND to the ARM architecture and thereby, make it suitable
for testing applications on embedded devices. In addition, we
discuss the limitations of the current framework and improve
it with novel methods to provide a more generic approach for
security testing. We present a generic method for inspecting
data on encrypted channels. Our approach does not require any
knowledge of the structure of the wrapper function for receiving
and decrypting like iDeFEND. Furthermore, we present a solution
to test and inspect applications that are using packet queues.
Finally, we evaluate our approach on popular mobile applications.

Keywords—security testing; network security; reverse engineer-
ing; encrypted communication; embedded security.

I. INTRODUCTION

Nowadays, a wide variety of applications use encryption to
protect their confidential data in network communications. En-
crypting the network traffic prevents attackers from accessing
sensitive data, but cannot stop them from exploiting security
flaws in the implementation to achieve crashes, intrusion or
code execution on the system. Security testing is responsible
for detecting these vulnerabilities at an early stage. However,
even powerful testing frameworks are blind when end-to-
end encryption is applied and can only randomly generate
or mutate packets. Additionally, the encryption layer makes
it difficult for security testers to validate the remote program
which increases the risk of missing faults. Solutions to this
issue usually require a high amount of reverse engineering,
since most of the target applications are closed source. Other
solutions add an additional node to the encryption (e.g., a
proxy server) and use it to access the plaintext data. This makes
the communication more insecure. End-to-end encryption is
designed to only terminate at the destination application to
fulfil its required security. As a consequence, the plaintext
can only be accessed by reverse engineering of the encryption
algorithm and key, which is in general highly complex and
time-consuming and thus, not feasible.

Another solution is presented by the generic framework
iDeFEND [1]. The framework sustains the end-to-end en-

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-564-7

Benedikt GeBele
Department Secure Operating Systems
Fraunhofer AISEC
Garching near Munich, Germany
e-mail: benedikt.gessele @aisec.fraunhofer.de

Hasan Ibne Akram
Safety & Security Lab
Matrickz GmbH
Unterscheissheim near Munich, Germany
e-mail: hasan.akram @matrickz.de

cryption and leaves the communication channel untouched by
extracting the plaintext data directly from process memory.
It automates the reverse engineering process of applications
by only relying on the detection and hooking of network and
encryption functions. As a result, even closed source software
can be handled at a much smaller effort. Although the frame-
work has a generic design, it still has limitations. iDeFEND
was implemented and evaluated for the x86 architecture, but
nowadays most of the networking applications are running on
mobile devices like smart phones or tablets whose processors
are primarily designed by ARM. Since the framework uses
hardware dependant features, its concept must be adapted to
the specifics of the new platform.

Additionally, mobile applications tend to buffer network
packets in a queue before sending them. This compensates
bad connectivity, but results in a conflict with the current
approach of iDeFEND. Furthermore, the framework relies on
the presence of a specific wrapper function to inspect the
received, unencrypted network data. In practice, this function
can be more complex than expected by the framework and
requires additional reverse engineering.

We overcome these shortcomings and extend the iDeFEND
system. We provide a framework that allows to use common
security testing tools for encrypted network applications. In
summary, our contributions are the following.

e Security testing over encrypted channels on ARM
We provide the same features of iDeFEND for ARM
as it already does for x86. This means, we enable
security testing on ARM devices when the target
applications are communicating over an encrypted
channel.

e Improving iDeFEND to support applications with
packet queues
We improve the current approach of iDeFEND with a
new feature that makes it capable of handling appli-
cations with packet queues. Our new method allows
to inject plaintext data into the packet queue and thus,
into the encrypted communication channel.

e Improving iDeFEND with a generic method for
data inspection
We extend the concept of iDeFEND by a generic
method for extracting received network data. We
describe how this method enables the inspection of
server responses without reverse engineering the func-
tion in detail.

The remainder of this paper is structured as follows. First,
we present related work in Section II. In Section III, we
summarize and describe the approach of the existing iDeFEND

12

ICIMP 2017 : The Twelfth International Conference on Internet Monitoring and Protection

framework. How the framework is used for security testing
is explained in Section IV. In Section V, we present the
limitations of the current concept and introduce our design
improvements. In Section VI, we discuss the conceptual trans-
fer of iDeFEND from x86 to ARM. The implementation of
iDeFEND on ARM follows in Section VII. In Section VIII,
we evaluate our framework and summarize the paper in Section
IX.

II. RELATED WORK

Many different fuzzing frameworks exist that facilitate
the security testing of network communicating applications.
Gascon et al. [2] present a fuzzing framework for propri-
etary network protocols which uses inference to create a
generative model for message formats. Their approach relies
on unencrypted network traffic, similar to many other smart
automated model-based [3][4][5] and grammar-based [6][7]
fuzzing techniques. Nowadays, there is also a vast amount
of powerful commercial fuzzing and vulnerability scanning
frameworks like Defensics [8], Nessus [9], beSTORM [10],
Peach Fuzzer [11], honggfuzz [12] and american fuzzy lop
[13] on the market available. They provide very complex
and sophisticated algorithms to cover many different areas of
fuzzing and vulnerability testing, but overall also lack proper
support of encrypted network communications.

Biyani et al. [14] address this issue and present a solu-
tion by extending the SPIKE fuzzing framework to support
encrypted protocols. They add a SSL wrapper to the existing
plaintext fuzzer which allows to communicate with the target
test application over an encrypted tunnel. This way, the fuzzer
can inject its plaintext test data into the encrypted channel and
test the target application for vulnerabilities. This approach,
however, is limited to Secure Sockets Layer (SSL) encryptions
which only represent a small part of proprietary software
products. Another drawback is that their implementation is
customized and only applicable for the open source fuzzer
SPIKE. Tsankov et al. [15] introduce a different solution that
allows a more generic fuzzing of encrypted protocols. Their
approach is based on the knowledge of the encryption key and
algorithm which is problematic from a security point of view.

As of yet, there is no good solution to testing of ap-
plications with encrypted network traffic. Our approach is
different. We use the iDeFEND framework [1] to have a layer
between test program and test framework. This additional
layer makes the encryption transparent without violating the
security of end-to-end encrypted communications. This way,
we reduce the problem of testing encrypted protocols to the
testing plaintext protocols and thus, enable the usage of many
already existing testing tools.

III. DESIGN OF IDEFEND

In this section, we summarize the iDeFEND [1] framework
and describe how the framework enables inspection and injec-
tion of plaintext data in encrypted communications. We also
show why the approach is well suited for security testing.

Usually, applications implement encrypted communication
with the help of two wrapper functions. One takes plaintext
data, encrypts it and sends it over the network. This function
is labelled EnCrypt & Send (CaS). The other one, Receive
& DeCrypt (RaD), is responsible for the reversed process.
It receives ciphertext data from the network and decrypts

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-564-7

it afterwards. Together, these functions form the transition
between plaintext and encrypted network data in our target
applications. The iDeFEND framework uses this property to
get access to the unencrypted network data by detecting and
hooking both wrapper functions. This way, the application
itself serves as an abstraction of the encryption implementation
and allows us to inspect the plaintext communication without
knowing the encryption algorithm, key or even source code of
the application.

Controlling the wrapper functions empowers us to inspect,
intercept, modify and inject new plaintext messages into the
encrypted channel. For security testing, especially fuzzing,
the tester primarily wants to send test data to the remote
application and thus, heavily relies on the injection of packets.
Since the CaS wrapper function takes a plaintext data pointer
as argument, encrypts it and sends it over the network, test
data can be injected by passing its pointer to the CaS. This
can be realized in two different ways. Either active by code
injection to the target process and calling CaS directly or
passive by hooking calls to CaS inside the application (e.g.,
with a debugger) and replacing the input plaintext pointer with
a pointer to the test data. In both scenarious, the test data is
sent to the remote application, the response is extracted at the
RaD and the test case can be evaluated.

The functionality of iDeFEND is logically split into three
modules: a detector, a collector and a monitor module. The
detector module is responsible for locating the wrapper func-
tions in memory. Afterwards, the collector module hooks the
located wrapper functions and passes the plaintext data to the
monitor module. The monitor module simply is an interface
for external programs. The detector module is a debugger that
is specifically geared towards the automated reverse engineer-
ing of the wrapper functions. In general, applications with
encrypted network traffic implement the functions crypt, send
and receive. Send and receive are public library functions of the
operating system and thus, getting their addresses is simple.
The crypt function, depending on the underlying algorithm,
can either be one or two functions. In case it is part of a
library, getting the addresses is simple. They can be extracted
by looking at the export table. In case it is not, the paper for
interactive function identification [16] introduces an approach
that facilitates the identification. By definition, the wrapper
functions successively call the pairs encrypt and send, and
receive and decrypt, respectively. iDeFEND uses this property
of CaS and RaD to identify the wrapper functions through
backtracking with a debugger. The backtracking is realized
with breakpoints on send, receive, enrypt and decrypt. When
the debugger notices a break on one of the function pairs,
it can determine the wrapper functions from the call stack.
Sometimes data is only encrypted for internal purposes and
never sent over the network. In order to filter those cases, iDe-
FEND compares the data pointers between the function calls
and validates the data flow. Data for network communication
is detected, for instance, if the output pointer of the encryption
matches the input pointer of the send. Otherwise, the calls of
encrypt and send were independent and did not originate from
the wrapper function, but from an internal encryption.

The collector module hooks the detected wrapper functions
and extracts the network data. It is either part of the debugger
or a module that is injected into the target application.

e Collector Module as a Debugger

13

ICIMP 2017 : The Twelfth International Conference on Internet Monitoring and Protection

Extracting the plain text with a debugger is simply
achieved by inserting breakpoints on the wrapper func-
tions CaS and RaD and extracting the data from their
function arguments and return values, respectively.
Since the debugging procedure is comparably slow, the
target application is slowed down to a certain degree.

e Collector Module as an Injected Module
A faster solution is to directly place code in the
target application with a module injection. An as-
sembly hook that is placed at the function prologue
of the wrapper functions CaS and RaD redirects the
execution to the injected code. The hook consists
of a machine instruction like a jump or a call that
substitutes the first few bytes of the function prologue
and a function stub that is executed by the jump.
The extracted plain text data then is passed via Inter
Process Communication (IPC) to the monitor module.

IV. SECURITY TESTING WITH IDEFEND

In this section, we present an use case of the iDeFEND
framework and explain how it enables security testing of
encrypted network applications.

The iDeFEND framework is designed to support security
testing of proprietary, closed source software. This type of
testing is referred to as black box testing, since we examine the
functionality of the programs under test without knowing de-
tails on the development, program internals or implementation.
Even though the program is a blackbox, security analysts still
can use powerful fuzzing tools to test for commonly known
vulnerabilities. They can, for example, test a server against
blind format string attacks [17]. In this scenario, a security
analyst sends strings to the server application and afterwards
validates the response and thereby, the outcome of the test
case. For applications that use an encrypted communication
channel, this approach of security testing inevitably fails. Since
no information about implementation and design of the target
application are available, also the internals of the encryption
are unknown. As a result, there are only two possible responses
of the target application to plaintext test messages from the
security analyst. Either the test message does not fulfil the
specification of the protocol and thus, the decryption fails and
the test data is rejected. Or the decryption handles the test
data, but changes it arbitrarily and is interpreted differently to
the intentions of the tester. In both cases testing fails. Figure
1 illustrates this scenario with the orange arrow representing
the test string data. The diverging arrow heads symbolize the
misinterpreted test data after decryption that does not trigger
the intended functionality any more.

client app serverapp
9~ — - — — — — eneryptedchannel- — = = > "%n"
“%n” ?
“9%n” y X?
iDeFEND [<1— — — — security analyst

Figure 1. Security testing of encrypted communications.

If the security analyst wants to test the server application
as intended, he can use the iDeFEND framework. Using the
framework for testing circumvents the issue of encryption.

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-564-7

It provides an interface for the security analyst to the client
application and thus, access to the encrypted channel. This
way, the security analyst can pass the plaintext test data to
the framework interface which uses the client application to
encrypt and send the data. The sent data then is decrypted
correctly at the server application and eventually triggers the
intended functionality. Figure 1 shows the flow of the plaintext
test data with the dashed, green arrow. The security analyst
passes the data to iDeFEND which injects it into the encrypted
channel. The test data enters the server application and is
decrypted correctly.

V. IMPROVEMENTS OF IDEFEND

In this section, we discuss the limitations of the current
iDeFEND approach for software testing and present our im-
provements. We put focus on the conceptual weaknesses of
the framework and separately address the transfer to ARM in
the following section VI.

Currently, iDeFEND implements the identification of the
wrapper functions with backtracking. Therefore, the call stacks
at successive calls to the logic function pairs are intersected.
Knowing, for example, that wrapper CaS is responsible for
calling encrypt and send, means that the call stacks of encrypt
and send must have an intersection at the wrapper function.
This approach introduces a weakness. The wrapper functions
can only be detected when they successively call encrypt and
send. For applications that use a message queue in network
communication, this assumption is never met.

Additionally, iDeFEND defined the RaD wrapper function
to return the decrypted plaintext packet. It inspects the plaintext
data by hooking the function at its return instruction. This
requires detailed knowledge about the structure of RaD and
obviously the presence of a RaD.

In the following subsections we propose solutions to those
two problems.

A. Test Data Injection into Packet Queues

Applications that use a packet queue construct the packet,
encrypt it and then append it to the queue. At any other point
in the program the encrypted packet is taken from the queue
and sent over the network. As a result, the call graphs of
encrypt and send do not intersect at the CaS, because there is
no CaS any more. This introduces a weakness of the iDeFEND
framework. Without the detection or presence of the wrapper
function, the framework cannot inspect, intercept or inject data
into the communication. This means, for applications that use
packet queues it is not possible to use iDeFEND for security
testing. We addressed this issue and analysed the program
structure of such applications and came up with a solution.
Even though the applications do not implement a CaS function,
they still have a function that takes the plaintext data, encrypts
it and appends it to the queue. This function can be used in
the same manner as the CaS to inspect, intercept and inject
data to the communication. The only difference is that the
sending is delayed in time, which is irrelevant to our scenario
of testing. Figure 2 illustrates the control flow graph for this
new function type EnCrypt & EnQueue (CaQ). Identifying
the address of this wrapper function requires a new approach.
Usually, programs implement protocols that construct different
packets for many different purposes. This means that for each
packet the wrapper function is called from a different calling

14

ICIMP 2017 : The Twelfth International Conference on Internet Monitoring and Protection

context, but their call stacks always intersect at the CaQ. For
this reason, our solution to the issue of identifying the CaQ
function is to record all call stacks at encrypt and intersect
them to find the wrapper function. In order to validate network
traffic in this scenario, it is also necessary to use a different
procedure to the previous. Since the data is copied to the queue,
the pointers at send and encrypt vary. We handle this problem
by not saving the pointer itself, but the whole buffer. At the
validation of the data flow we simply compare the contents.

The CaQ function can be identified as soon as at least two
call stacks from different calling contexts are collected. The
intersection of the collected call stacks identifies the wrapper.

This proposed method extends iDeFEND to support appli-
cations that implement packet queues.

Application
r=—=—A
I I
eventl| 'event2!
| S — |
r _l_ il
(—.
I I
, CaQ |T
| I —— |
o—— e
crypt queue send
Detector """ Collector Debugger

Figure 2. Control Flow Graph (CFG) for wrapper function CaQ.

B. Generic Approach for Data Inspection

The second problem of iDeFEND is that the current
approach assumes the existence of a specially structured RaD
function which in general is not the case. The RaD is assumed
to return the decrypted plaintext data. iDeFEND hooks the RaD
at the return and extracts the plaintext data. However, many
applications do not implement this type of wrapper function.
In general, the receiving wrapper function is a loop that never
returns. It calls receive and passes the data to a parsing unit
that finally decrypts the data. Furthermore, without knowing
the structure of the RaD, the current iDeFEND cannot inspect
the plaintext data. The correct offset and the information about
the correct register or data pointer have to be known at this
point.

We analysed this issue and came up with generic solution.
Our approach is based on the assumption that data that is
received over network is always decrypted at any later point
in the program. Therefore, we store all incoming data at the
function receive and wait for it to be decrypted. When the
decryption function is accessing the data, we can extract the
plaintext after the decryption has completed. This way, we
do not need the presence of wrapper functions or knowledge
about the function structure, but only require the presence of
the the basic functions decrypt and receive. Additionally, our
improved approach does not even rely on frame pointers.

Similar to the original approach, we also break on receive
and decrypt. However, we identify data that is received from
the network not by comparing the pointers of data, but by

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-564-7

comparing the content of input and output buffer between
receive and decrypt. The idea is the same as it was for
validating data that is going to be send over the network for the
CaQ. When the decrypt function returns and we validated that
the encrypted data was received from the network previously,
we extract the plaintext data from the returned buffer. The
extracted data then can be passed to the tester for inspection.

With this method we extended iDeFEND to allow the
inspection of unencrypted server responses, even though the
application does not implement a wrapper function and use
frame pointers.

VI. TRANSFER TO THE ARM ARCHITECTURE

In this section, we discuss the transfer of iDeFEND to
the ARM platform. We present the key differences between
x86 and ARM with respect to debugging with hardware
breakpoints, data extraction at function calls, call stack recon-
struction from the stack and hooking of functions on machine
code level.

A. Using Hardware Breakpoints for Debugging

Both architectures x86 and ARM implement both hardware
and software breakpoints. Hardware breakpoints offer a better
performance, do not require modification of the executable
code and thus, are less obvious to detect. This makes them
perfectly suited for implementing the detector module of
iDeFEND.

In general, only a few hardware breakpoints are available
per processor, but this is no limitation, since the specification of
x86 offers up to four and ARM up to 16 hardware breakpoints.
Implementing the detector requires at most four breakpoints.
On x86, each debug register represents a breakpoint and
holds the target address. A shared control register holds flags
to enable, disable and configure each breakpoint. On ARM,
hardware breakpoints consist of two registers: a control and a
value register [18]. The value register stores the address of the
breakpoint and the control register contains breakpoint options
that allow, for example, to link different breakpoints, enable
or disable them, specify the privilege and exception level the
breakpoint debug event is generated on.

B. Extracting Data from Procedure Calls

The collector has to extract data from the function param-
eters on breaks. Since we break on function prologues, which
means on the first instruction of the routine, we can access
the passed parameters as specified by the underlying calling
convention.

ARM, in contrast to x86, specified its own procedure call
standard [19]. On ARM, the first four parameters are always
passed in the first four registers RO to R3. Every additional
parameter is pushed to the stack. Since the Stack Pointer
register always holds the address of the top of the stack, the
arguments five and higher can be accessed with help of the
stack pointer register and the argument offset.

In case the output buffer is passed through the return value
of a function, the Link Register can be used to access it. The
Link Register is dedicated to hold the return address of the
current function. The return value is passed through register
RO.

15

ICIMP 2017 : The Twelfth International Conference on Internet Monitoring and Protection

TABLE I. PRESENCE OF STACK POINTERS WITH DIFFERENT
COMPILER SETTINGS

Optimization [Offset to next

GCC Flag l

[O0 T OI T O2] 03 | frame pointer (FP)
no flags v FP - 4
-mapcs-frame v v v v FP - 12
-fno-omit-frame-pointer v v v v FP - 4
-mapes-frame lvi|v|v FP - 12
fno-omit-frame-pointer

C. Call Stack Reconstruction

In order to identify the wrapper functions CaS and RaD,
we want to intersect the call stacks and therefore, have to
reconstruct them from the program stack. In a program every
function call pushes a frame to the stack and pops it on return.
The call stack can be reconstructed by unwinding the stack
frame by frame. On ARM, unwinding the stack is complex.
In general, the architecture does not provide a dedicated frame
pointer register for the address of the first frame. Depending on
the optimization level of the underlying compiler, frame point-
ers might not even be present on the stack. This is problematic,
since it is highly complex to reconstruct stack frames without
having frame pointers, as it requires a sophisticated analysis of
the stack. Table I illustrates the effects of different settings on
the generation of stack frames for the GCC compiler. The flags
mapcs-frame and fno-omit-frame-pointer force the compiler to
preserve stack pointers throughout all optimization levels. The
only difference is that the pointer offsets vary. Without them,
the compiler only generates stack pointers for optimization
level O0, which means no optimization. In the default case,
without any particular flag specified, frames are properly build
by the compiler.

D. Hooking Functions

Injecting the collector module into the target process
requires a redirection of the control flow from the original
code to the injected module. Therefore, a hook is placed in
the executable code at the prologue of the target function.
Generally speaking, this means substituting the first bytes of
the function prologue with a branch instruction. The replaced
code must be backed up and executed later on, before jumping
back to the original function.

On ARM, instructions have a fixed length of four bytes,
which makes substitution of instructions simple. However,
multiple types of prologues exist. This is problematic when
the first instruction is program counter dependant and thus,
cannot be moved. This happens on ARM, for example, when
compilers use constant pools. Otherwise, when the instruction
is independent of the program counter, the instruction can be
moved and a hook is possible.

The actual branch can be implemented with a memory load
that allows to target the full 32 bit address space. Since it
modifies the program counter directly, the hook consists of
only one instruction plus memory space that is holding the
target address. Since compilers use multiple bytes of padding
between two procedures in memory, this padding is a suitable
location to place the address.

VII. IMPLEMENTATION

We implemented the improved iDeFEND framework on
an ARM device that is running a Linux operating system. We

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-564-7

chose Linux, as most of the target ARM devices like smart
phones, tablets or embedded boards are either running Linux
or Android, which is also based on the Linux Kernel. We
used a Raspberry Pi 2 embedded board that is equipped with
a 900MHz quad core ARM Cortex-A7 processor and 1GB
RAM. It was running a Linux distribution Raspbian 4.1.13-
v7 as operating system. For the sake of efficiency, portability
to Windows and independence of other programs and their
implementations, we decided to write our prototype as a stand
alone C program.

The implementation consists of two parts. First we present
the detector module, followed by the implementation of the
collector module.

A. The Detector Module - a Debugger based on ptrace

We implemented the detector on top of the ptrace debug-
ging API by setting four hardware breakpoints for each of the
target functions.

1) Finding addresses of Send and Receive: Since Linux
maps the whole binary object to memory, the virtual addresses
of send and receive can be calculated by adding the offsets in
the binary to the base address of the module process space.
We retrieve the base address and path to the binary on disk
from the directory /proc. We then use the utility nm to find the
offsets inside the binary.

2) Detecting Successive Calls to Function Pairs and Lo-
cating the Wrapper Functions: In order to locate the wrap-
per functions, we identify successive calls by extracting the
function arguments at encrypt and at receive, and see if they
match the input pointers at send and decrypt. For the special
CaQ case, we copy the whole buffer instead of only pointers.
We track the data per thread, together with a time stamp.
A 15 seconds time out prevents internal encryptions to stay
infinitely long in memory. We implemented stack unwinding
for applications compiled with -mapcs-frame. As described in
Table I, each frame pointer minus twelve then points to the
previous pointer. After reconstruction, we intersect two call
stacks by searching for the first frame that appears in both call
stacks.

B. The Collector Module - Speed Up with Module Injection

We implemented the collector in both variants debugger
and injected module. For injection, we implemented a call to
dlopen that uses the dynamic loader of Linux to load objects at
runtime. Finally, we placed the hooks at the wrapper functions
and detoured the execution to the injected module.

VIII. EVALUATION

We have evaluated our improved iDeFEND framework for
five applications. Beside the required criterion of encrypted
network communication, we wanted to have at least one
messenger, one file transfer and one secure shell application.
These types implement different network protocols which
handle text messages, binary files and customized commands.
Furthermore, we wanted to have at least one test application
that is single-threaded, multi-threaded, uses the console for
user interaction and implements an own Graphical User Inter-
face (GUI). In order to have ground-truth information of the
wrapper functions, we used open source applications. Table
II gives an overview of the selected applications telegram-
cli (vl1.4.1), uTox (v0.7.1), PLINK (v0.67), PSFTP (v0.67)

16

ICIMP 2017 : The Twelfth International Conference on Internet Monitoring and Protection

TABLE II. DESCRIPTION OF THE OPEN SOURCE TEST
APPLICATIONS THAT RUN ON A RASPBERRY PI 2

[Name [Type [Data Category [UI [Threading |
telegram-cli Messenger Text Console | Multi
uTox Messenger Text GUI Multi
PLINK Secure Shell Commands Console Single
PSFTP File Transfer | Files Console | Single
PSCP File Transfer | Files Console Single

TABLE III. EVALUATED APPLICATIONS
[Name [Send [Receive [Wrapper Type |
telegram-cli Write Read CaQ
uTox SendTo RecvFrom CaS
PLINK Send Recv CaS
PSFTP Send Recv CaS
PSCP Send Recv CaS

and PSCP (v0.67). The second column states the type of the
application. The third column shows the type of data that is
primarily transferred by the protocol. The last two columns
indicate whether the application implements a GUI or is multi
or single threaded, respectively.

Table III summarizes the results of our evaluation. The
first column contains the names of the applications. The
columns send and receive state the system library functions
the application used to communicate over the network. The
column Wrapper-Type states whether a CaS or CaQ function
is implemented. Briefly summarized, we were able to inspect,
intercept and inject data for all five applications. Except
for Telegram, all applications implement the CaS function.
Telegram implements a message queue and therefore, uses
the CaQ. With the improved approach we were able to detect
it and use it for packet injection. We were also able to use
code injection and hooking of the wrapper functions on all
five applications.

IX. CONCLUSION

With the rising demand for confidentiality and thus, en-
cryption in consumer level and commercial software, security
testing faces new challenges. Currently, existing testing tools
only have poor or no support at all for encrypted network
communications. That is precisely the reason why we proposed
a generic solution to this issue by using the iDeFEND frame-
work. The framework makes the encryption transparent and
thereby, does not violate the security of end-to-end encryption.
Since iDeFEND cannot be used on the ARM platform and
nowadays many network applications are from the mobile
sector and thus, use ARM processors, we transferred it to the
this architecture. Additionally, we pointed out the limitations of
the current framework and introduced improvements to it. Our
novel methods provide a more generic approach for security
testing. We introduced a method that allows to inject test
data into network applications that use message queues. Our
solution detects and hooks the function that is responsible for
encrypting and enqueuing packets.

Furthermore, we introduced a generic method to inspect
the incoming unencrypted network data. Our method does not
rely on the presence of a receive and decrypt wrapper function
or even frame pointers.

With the extended iDeFEND framework we provide an
interface to the encrypted channel of an application that allows

Copyright (c) IARIA, 2017. ISBN: 978-1-61208-564-7

already existing testing tools to work as intended, also on the
ARM platform. Our improved framework decouples the testing
of software from the actual encryption.

REFERENCES

[1] F Kilic and C. Eckert, “idefend: Intrusion detection framework for
encrypted network data,” in Proceedings of the 14th International
Conference on Cryptology and Network Security (CANS 2015), ser.
Lecture Notes in Computer Science. Springer International Publishing,
2015, vol. 9476, pp. 111-118.

[2] H. Gascon, C. Wressnegger, F. Yamaguchi, D. Arp, and K. Rieck,
Pulsar: Stateful Black-Box Fuzzing of Proprietary Network Protocols.
Cham: Springer International Publishing, 2015, pp. 330-347.

[3] T. Kitagawa, M. Hanaoka, and K. Kono, “Aspfuzz: A state-aware
protocol fuzzer based on application-layer protocols,” in Computers and
Communications (ISCC), 2010 IEEE Symposium on, June 2010, pp.
202-208.

[4] G. Banks et al., SNOOZE: Toward a Stateful NetwOrk prOtocol fuzZEr.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 343-358.

[5] S. Gorbunov and A. Rosenbloom, “Autofuzz: Automated network
protocol fuzzing framework,” IICSNS, vol. 10, no. 8, 2010, p. 239.

[6] D. Yang, Y. Zhang, and Q. Liu, “Blendfuzz: A model-based framework
for fuzz testing programs with grammatical inputs,” in 2012 IEEE 11th
International Conference on Trust, Security and Privacy in Computing
and Communications, June 2012, pp. 1070-1076.

[7] P. Godefroid, A. Kiezun, and M. Y. Levin, “Grammar-based whitebox
fuzzing,” in Proceedings of the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’08.
New York, NY, USA: ACM, 2008, pp. 206-215.

[8] Codenomicon. Defensics. [Online].
www.codenomicon.com/defensics/ 2016.04.26

Available:

[9] T.N. Security. Nessus. [Online]. Available: www.tenable.com/de/nessus
2016.04.26

[10] B. Security. bestorm software security testing tool. [Online]. Available:
http://www.beyondsecurity.com/bestorm.html 2016.04.26

[11] Peach fuzzer. [Online]. Available:
2016.04.26

[12] honggfuzz: A general-purpose, easy-to-use fuzzer with interesting anal-
ysis options. [Online]. Available: https://github.com/google/honggfuzz
2016.04.26

[13] M. Zalewski. American fuzzy lop: a security-oriented fuzzer. [Online].
Available: http://lcamtuf.coredump.cx/afl/ 2016.04.26

[14] A. Biyani et al., “Extension of spike for encrypted protocol fuzzing,”
in 2011 Third International Conference on Multimedia Information
Networking and Security, Nov 2011, pp. 343-347.

[15] P. Tsankov, M. T. Dashti, and D. Basin, “Secfuzz: Fuzz-testing security
protocols,” in Automation of Software Test (AST), 2012 7th Interna-
tional Workshop on, June 2012, pp. 1-7.

[16] F. Kilic, H. Laner, and C. Eckert, “Interactive function identification
decreasing the effort of reverse engineering,” in Proceedings of the
11th International Conference on Information Security and Cryptology
(Inscrypt 2015). Springer International Publishing, 2016, pp. 468-487.

[17] FE Kilic, T. Kittel, and C. Eckert, “Blind format string attacks,” in
Proceedings of the 10th International Conference on Security and
Privacy in Communication Networks (SecureComm 2014), ser. Lecture
Notes of the Institute for Computer Sciences, Social Informatics and
Telecommunications Engineering. ~ Springer International Publishing,
2015, vol. 153, pp. 301-314.

[18] ARM Architecture Reference Manual - ARMvS8, for ARMv8-A archi-
tecture profile. ARM Limited, Jun. 2016.

[19] Procedure Call Standard for the ARM Architecture. ARM Limited,
Nov. 2015, document Version: ARM IHI 0042F, current through ABI
release 2.1.

http://www.peachfuzzer.com/

17

