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Abstract - Recently, there has been shift to multi-core 

processors and consequently multithreaded application 

design. Multithreaded Network Intrusion Detection and 

Prevention Systems (NIDPS) are now being considered. 

Suricata is a multithreaded open source NIDPS, being 

developed via the Open Information Security Forum 

(OISF).  It is increasing in popularity, as it free to use 

under the General Public Licence (GPL), with open 

source code.  This paper describes an experiment, 

comprising of a series of innovative tests to establish 

whether Suricata shows an increase in accuracy and 

system performance over the de facto standard, single 

threaded NIDPS Snort.  Results indicate that Snort has a 

lower system overhead than Suricata and this translates 

to fewer false negatives utilising a single core, stressed 

environment.   However, Suricata is shown to be more 

accurate in environments where multi-cores are 

available.  Suricata is shown to be scalable through 

increased performance when running on four cores; 

however, even when running on four cores its ability to 

process a 2Mb pcap file is still less than Snort.  In this 

regard, there is no benefit to utilising multi-cores when 

running a single instance of Snort.    
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I. INTRODUCTION 

Nielsen’s Law states that the bandwidth available to 

users increases by 50% annually [1]. This exponential 

growth perpetrates design challenges for developers of 

Network Intrusion Detection and Prevention Systems 

(NIDPS). Once traffic levels exceed operational boundaries, 

packets are dropped and the system becomes ineffective. 

With pattern matching taking up to 70% of the total 

processing time [2];[3], copious research is focused on 

reducing the pattern matching overhead with inventive 

algorithms. Alternatively, some NIDPSs utilise specialist 

hardware such as Application Specific Integrated Circuits 

(ASICS) and Field Programmable Gateway Arrays (FPGA) 

providing parallelism to increase throughput [4]. However, 

these systems are costly, leaving some organisations 

restricted to using single threaded PC-based freeware, such 

as Snort.   

With Internet bandwidth accelerating and Central 

Processing Unit (CPU) core speeds reaching a plateau, it is 

unlikely that a single threaded solution will remain 

effective. The relative influence of Moore’s Law [5] on 

single threaded application performance is reducing and this 

is responsible for a developmental shift toward increasing 

power-density for multithreaded processing [6].  

Consequently, almost all PC CPUs are now multi-core.  

However, multi-core processors are only as valuable as the 

multithreading software utilising them and Snort is not 

multithreaded. 

 To address this, Suricata has been released by the Open 

Information Security Foundation (OISF). It is an open 

source NIDS promising multi-threading and graphics card 

acceleration in the form of CUDA (Computer Unified 

Device Architecture) and OpenCL [7]. Other feature 

benefits include: Gzip Decompression, Automatic Protocol 

Detection, Flow Variables, Independent HTP library and 

Fast IP (Internet Protocol) Matching [8]. If Suricata delivers 

on the promises of the OISF it may meet the demands 

caused through exponential increases in network traffic.  

 This paper describes an evaluation of Suricata through 

critical comparison of both Suricata and Snort NIDPSs.  The 

remainder of this paper is organised as follows: Section II 

describes the experiment design including empirical metrics, 

test-bed development, system stressing, traffic generation 

and attack methods.  In Section III, the experiments are 

described and the results are reported. In Section IV, we 

present an analysis of the results, and finally, in Section V, 

we offer our conclusions. 

 

II. EXPERIMENT DESIGN 

A. Metrics 

 Antonatos et al. [3] suggest that the metrics to be used 

for measuring the performance of an NIDPS should be the 

attack detection rate, false positives and capacity.  

Limitations in capacity imply false negatives; once a NIDPS 

exceeds its capacity, packets will be dropped and 

subsequently any malicious content within them will not be 

detected.  Mell et al. [9] define the quantitative metrics used 

for evaluating NIDPS accuracy as follows: coverage 

(amount of attacks possible to detect), probability of false 

alarm, probability of detection, attack resistance, ability to 

handle high bandwidth traffic and capacity.  With regard to 
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capacity, it has a number of constituent components and 

thus, it is not a single metric.  Table 1, informed by Hall & 

Wiley [10], illustrates some of the metrics that constitute 

capacity.   

 The above research informed that the following capacity 

metrics should be recorded: Bytes per second, packets per 

second and quantity of network attacks. In addition, for each 

NIDPS, the number of packets dropped, true positives, true 

negatives, false negatives, and the total amount of alarms 

were also recorded. Finally, the host resources monitored 

were, CPU and memory utilisation, persistent storage,  

network interface bandwidth and page file statistics.  

 
TABLE 1  METRICS OF CAPACITY 

 

 

B. Test-bed 

 The test-bed was setup in a virtual environment, 

facilitating experiment portability and security. It also 

allowed for faster experiment initialisation. This was 

necessary for frequent repetition and re-configuration of the 

experiment tests.   

 Vmware workstation 6.5 was used as the virtualisation 

platform, largely due to superior IO and disk performance 

over competitors Virtual Box and Virtual PC [11].  Ubuntu 

10.4 TLS 32 bit was chosen as the operating system.  

Ubuntu is frequently updated and has a good community 

base.  Further it is the most popular Linux operating system 

[12]     

 The default NIDPS hardware configuration was a 

2.8GHz (E5462) Quad-Core Intel Xeon, running with 1-4 

cores and 3GB of DDR2 800MHz fully-buffered memory. 

Each system also had a maximum hard-drive capacity of 

20GB. The network traffic was replayed for each system 

separately. The system used to replay the network traffic 

utilises a single core, as well as 1 GB of memory. The 

VMware host operating system utilised 2GB of memory and 

1 core preventing the host from having any performance 

impacts on the test-bed. 

 Snort and Suricata were configured to run using identical 

rule-sets. Suricata uses a different classification 

configuration to Snort, which uses 134 decoder and 174 pre-

processor rules. Both NIDPSs were using identical logging 

methods, namely, Barnyard, MYSQL and AcidBase.  The 

versions of Snort and Suricata used were v2.8.5.2 and v1.0.2 

respectively. Both systems used the Snort v2.8.5.2 VRT rule 

set, combined with the Emerging Threats rule set. After all 

rules were loaded, Suricata had 11039 detection rules loaded 

against Snorts 11065. This discrepancy was due to 

Suricata’s failure to parse certain VRT rules.  

 

C. Traffic 

 There are a number of considerations when choosing 

network traffic for NIDPS testing.  Firstly, attack traffic can 

be used, either on its own, or, with the added context of 

background traffic.  When using background traffic, this can 

either be real or simulated.  If it is real, it could be left intact 

or alternatively, sanitised [9] i.e. payload and ip address 

information removed.   

 For the test to be useful, it is deemed desirable to use 

real network background traffic.  However, repetition of the 

experiments, using real-time network traffic, would be 

unpredictable due to its dynamic nature.  Our solution was 

to use traffic that had been captured to a pcap (packet 

capture) file.  This facilitated their processing by the 

NIDPSs in offline mode, allowing for replay on the network 

at different speeds, using TCPReplay [13].  Further, any risk 

to mission critical networks was removed.   

 There are numerous test traffic sources available online 

for download, unfortunately, these are often sanitised.  This 

renders them useless for evaluating content matching 

NIDPS, which perform deep packet inspection.  Tools do 

exist which can add random payloads into sanitised data, 

e.g., TCPdump Randomiser [14], however, the realism of 

such modified data becomes questionable.  Hacking contests 

also offer sources of traffic capture, although the traffic 

content is not documented, hence this must be 

predetermined prior to use, e.g., which attacks were used 

and which were successful.  As a result of these issues, it 

was decided to capture background traffic from a busy 

universities web and application server.  This was then 

merged with exploit traffic, created using the Metasploit 

Framework [15].  The Metasploit Framework contains a 

total of 587 exploit modules [15], allowing attack data to be 

easily generated in quantity.  

 The exploit traffic was captured by performing attacks 

via Metasploit to a Microsoft Windows 2000 machine.  

Windows 2000 was chosen as there are more Metasploit 

exploits for this operating system than any other.  Numerous 

services and discontinued applications where installed to 

facilitate as many of these attacks as possible.  Regrettably, 

they could not all be obtained. The attacks perpetrated are 

Test Metrics Resources Used 

Packets per 

Second 

CPU Cycles, network interface 

bandwidth, memory bus 

bandwidth. 

Bytes per second 

(average packet 

size) 

CPU Cycles, network interface 

bandwidth, memory bus 

bandwidth. 

Protocol Mix CPU cycles and memory bus 

bandwidth. 

Number of unique 

hosts 

Memory size, CPU cycles, 

memory bus bandwidth. 

Number of new 

connections per 

second 

CPU cycles and memory bus 

bandwidth. 

Number of 

concurrent 

connections 

Memory size, CPU cycles, 

memory bus bandwidth. 

Alarms per second Memory size, CPU cycles, 

memory bus bandwidth. 
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shown in Table 2, captured using Wireshark [16]. With the 

background and attack traffic captured, the two were 

combined.  Part of the Wireshark application, Edicap, was 

used to modify the timestamp of the exploit traffic, to 

correlate with the background traffic.  With this done, the 

two were merged together in chronological order, such that 

the attack traffic was distributed within the background 

traffic. 

 

D. Stressing the system 

 The capacity of a NIDPS is closely connected to the 

CPU capacity of the system [2].  Thus, Snort and Suricata 

should be subjected to CPU impairment, to evaluate their 

efficacy under stressful conditions.   

 
TABLE 2  EXPLOITS PERFORMED 

 

Code Name Description 

ms03_0

26_dco

m 

Microsoft RPC 

DCOM 

Interface 

Overflow 

Module exploits a stack buffer 

overflow in the RPCSS 

service 

ms05_0

39_pnp 

Microsoft Plug 

and Play 

Service 

Overflow 

Stack buffer overflow in the 

Windows Plug and Play 

service 

ms05_0

47_pnp 

Microsoft Plug 

and Play 

Service 

Registry 

Overflow 

Stack buffer overflow in 

Windows PnP services. 

Causes Reboot 

ms06_0

40_neta

pi  

Microsoft 

Server Service 

NetpwPathCan

onicalize 

Overflow 

Stack buffer overflow in the 

NetApi32 

CanonicalizePathName() 

function using the 

NetpwPathCanonicalize RPC 

call in the Server Service 

ms05_0

17_ms

mq 

Microsoft 

Message 

Queueing 

Service Path 

Overflow 

Exploits a stack buffer 

overflow in the RPC interface 

to the Microsoft Message 

Queueing service 

ms01_0

33_idq 

Microsoft IIS 

5.0 IDQ Path 

Overflow 

exploits a stack buffer 

overflow in the IDQ ISAPI 

handler for Microsoft Index 

Server 

 

 VMware was used to allow the number of logical and 

physical cores to be reduced.  The cores themselves were 

stressed by generating threads, causing an adjustable and 

measureable workload. This was performed using the 

application cpulimit [17], which generates configurable 

workloads across the processor, allowing for the total 

amount of stress applied by each thread, to be limited by a 

percentage of the CPU capacity. 

 Snort and Suricata both provide the ability to replay 

pcap files internally. This is done at the maximum speed 

possible for the NIDPS, providing a good metric as to the 

performance of a system. Yet, using this method the 

maximum loss free rate (MLFR) cannot be accounted for.  

Therefore, TCPReplay [13] was used to control the traffic 

replay rate, thereby allowing for stress testing under 

network load.   

 

E. System Monitoring 

 The following resources were monitored: CPU 

utilisation, memory utilisation, persistent storage 

bandwidth and network interface bandwidth.  This was 

performed using the Linux command line utility dstat. 

 

F. Experiment protocol 

 Throughput speeds are increasing [18], and the MLFR of 

NIDPSs is affected by both the utilisation of the CPU and 

the throughput of the traffic [10]; [3]. Thus, the experiment 

was designed to provide data regarding how each system 

performs, with increased throughput and under increased 

CPU stress. 

 Attack traffic was played to both NIDPSs, with varying 

CPU configurations.  These were: core configuration of 2 

processing cores, 1 core, 50% and 75% load.  The ability 

for the NIDPSs to read the packets, along with the accuracy 

of alerts, was measured, with special attention being paid to 

the false negative rate.  The test traffic was replayed into 

the environment through TCPReplay, at a multiplier of 40,      

i.e., replayed 40 times faster than it was captured.  This 

results in a reported playback throughput of 3.1 Mbps, and 

a packet drop rate of under 2%. This ensured the 

experiments could be completed in a timely fashion, on the 

threshold of packet loss.  

 Each time a test was run, the start and end times of the 

NIDPS start-up and traffic replay were recorded. This 

provided a good reference point when analysing the alerts 

and system statistics. For each test run, the alert output 

information was recorded using acidbase, as well as the 

unified2 alert output file being archived for future 

reference. Statistics produced on NIDPS close down, 

reported, the number of generated alerts, how many packets 

were processed, and what ratio of network protocols were 

handled. Any traffic travelling from hosts 192.168.16.2 and 

192.168.16.128 was known to be malicious traffic. 

 

III. RESULTS 

 This section reports and analyses the results for each 

NIDPS, for accuracy, dropped packet rate, system utilisation 

and offline speed.  Each of these is now discussed in turn. 

 

A. Accuracy 

 To determine accuracy, control alerts were used.  These 

are alerts generated without system stress, used as a 

189

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011.     ISBN: 978-1-61208-116-8



baseline.  Deviation from the baseline under stress is an 

indication of a change in detection accuracy.   

 Table 3 shows the number of alert types generated when 

the attacks were performed against each NIDPS.  Figure 1 

shows Suricata alerted on every exploit, under all 

configurations, yet some alerts types were lost, resulting in a 

reduction of detection breadth [19].   

 
TABLE 3  ALERTS GENERATED BY SNORT AND SURICATA 

 

Alert Snort  Suricata 

ms05_040_pnp 4 4 

ms05_047_pnp 1 1 

ms05_039_pnp 1 6 

ms03_026_dcom 1 2 

ms01_033_1dq 2 4 

ms05_017_msmq 2 3 

 

 
Figure 1 Suricata Alerts 

 

Figure 2 Snort Alerts 

 

Figure 2 shows Snort fails to alert on ms01_033_idq. 

This is a false negative caused by excessive load. 

 

 
Figure 3 Attack accuracy measurements 

 

 Figure 3 shows the number of false positives (fp) and 

true positives (tp) for both NIDPSs, relative to the number 

of missed alerts by each system. 

 

B. Dropped Rate 

 False negatives (fn) can be caused by dropped packets. 

Figure 4 plots the amount of packets dropped by Snort and 

Suricata as the CPU availability drops. While Snorts 

percentage drop is largely linear, Suricata’s performance 

diminishes significantly once the CPU availability reduces 

below one core.  Figure 5 shows how reducing the number 

of cores, and stressing the CPU, effects false negatives on 

both systems. 

 

 
Figure 4 Packet loss at 3.2 MBps 

 

C. System utilisation 

 Figure 6 shows the relationship between CPU utilisation, 

and network throughput, on both Suricata and Snort.  It 

depicts how CPU load increases relative to network 

throughput. This behaviour is more prominent whilst 

running Suricata, with Snort exhibited similar behaviour on 

much smaller scale. 
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Figure 5 False Negatives (dropped alerts) 

 

 With dual-cores available, Suricata has a lower drop rate 

than Snort.  To investigate why, both systems were 

evaluated for their ability to utilise both cores.  Figures 7 

and 8 show how Snort and Suricata (respectively), utilise 

dual core processors. 

CPU % 

 
Figure 6 Network throughput and CPU utilisation for the 

Single Core Configuration 

 
Figure 7 Suricata utilising dual cores 

 

 Figure 7 shows that Suricata utilises the 2 cores 

uniformly, compared to Snorts more erratic load balancing, 

Figure 8.  This is consistent with expectations due to 

Suricata’s multithreaded design.  

 

 
Figure 8 Snort utilising dual cores  

 

 Both NIDPSs have the ability to process traffic in offline 

mode by receiving a pcap file and processing it at maximum 

capacity. This was performed to identify the speed in which 

both systems can process traffic. The test was performed for 

both NIDPSs, using the same pcap file.  The time each 

system took to process the file is displayed in Figure 12.  

 
Figure 9 Pcap processing time (offline mode) 

 

 Additional cores did not improve Snorts processing time, 

although Suicata’s performance increased by 220%, when 

using four cores, compared to one. Again this is expected, 

considering Suricata’s multithreaded design. 

 

IV RESULT ANALYSIS 
 Arguably the most important metric to evaluate NIDPSs, 

is accuracy.  This has been described as the system’s attack 

coverage, false positives, false negatives, capacity, and 

ability to handle high bandwidth traffic [9]. The 

experiments outlined provided details regarding all of these. 

 The developers of Suricata have stated that their primary 

focus is improving NIDPS accuracy [20]. With Suricata 

having a higher accuracy than Snort, our experiments show 

that they have had some success. This is evident in Figures 

1,2 and 3, including data showing that Snort failed to alert 

on the ms01_033_idq exploit with the processor loaded at 

50% or above.  A partial reason is Snort having less control 

alerts triggered by the attack than Suricata (two compared 
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with four).  Snort failed to alert on ms01_033_idq using two 

rules from the VRT rules set, i.e., ID 1245 and 1244.  

Suricata succeeded in that these same alerts were triggered. 

 Larger processing requirements demanded by Suricata 

caused it to reach its operational capacity quicker than 

Snort, explaining the greater number of dropped packets 

under stress. By comparison, Snort places less demand on 

the system, enabling it to have a reduced packet drop rate at 

peak system loads.  Figure 4 shows the percentage of 

dropped packets increasing steeply, once CPU availability is 

reduced to a single stressed core.  The proportional 

relationship between dropped packets, and false negatives, 

is demonstrated for both systems in Figure 5. 

 When Suricata is run on a multi-core configuration it has 

a lower packet loss rate than Snort. Figures 7 and 8 show 

that Suricata uses available cores, on a dual core system, in 

a more uniform fashion.  Offline tests show that Suricata 

was considerably slower than Snort.  Alhough multiple 

cores relates to a more marked improvement with Suricata, 

than Snort, see Figures 4,5 and 9.  In this sense, it could be 

argued that, Suricata possesses an improved ability to 

provide scalability.  Nevertheless, in circumstances when 

the bandwidth received is greater than Snort can handle, the 

recommendation is to run multiple instances of Snort on 

multiple processor cores [21]. This could provide scalability 

similar to that of Suricata, albeit with added cost of 

processing a single threaded application over multiple cores. 

 

V. Conclusions 

 The analysis of the results has shown that Suricata has a 

higher accuracy rate than Snort, although this comes at the 

cost of putting an increased relative demand on the CPU. 

The results show that, due to utilising multiple cores more 

uniformly, Suricata has the potential to be a more scalable 

and efficient, where multiple cores are available. However, 

due to the higher resource demands of Suricata, the 

accuracy would be expected to diminish, when used in low 

commodity, single core, deployment.  

 This research has endeavoured to classify the 

performance benefits of the innovative Suricata engine.  

Whilst the potential of Suricata is significant, at present, its 

development is incomplete.  Since acceptable performance 

is not guaranteed, trial implementations of the engine would 

be advised.  This would provide an opportunity for 

feedback; accelerating the developmental process of this 

pivotal detection and prevention engine.  In addition to this, 

future research should pay attention to documenting 

Suricata’s performance, whilst utilising even larger numbers 

of cores.  
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