

A Performance Analysis of Snort and Suricata Network Intrusion Detection and

Prevention Engines

David J. Day Benjamin M. Burns

 School of Computing and Mathematics School of Computing and Mathematics

 University of Derby University of Derby

 Derby, UK Derby, UK

 d.day@derby.ac.uk benburns01@googlemail.com

Abstract - Recently, there has been shift to multi-core

processors and consequently multithreaded application

design. Multithreaded Network Intrusion Detection and

Prevention Systems (NIDPS) are now being considered.

Suricata is a multithreaded open source NIDPS, being

developed via the Open Information Security Forum

(OISF). It is increasing in popularity, as it free to use

under the General Public Licence (GPL), with open

source code. This paper describes an experiment,

comprising of a series of innovative tests to establish

whether Suricata shows an increase in accuracy and

system performance over the de facto standard, single

threaded NIDPS Snort. Results indicate that Snort has a

lower system overhead than Suricata and this translates

to fewer false negatives utilising a single core, stressed

environment. However, Suricata is shown to be more

accurate in environments where multi-cores are

available. Suricata is shown to be scalable through

increased performance when running on four cores;

however, even when running on four cores its ability to

process a 2Mb pcap file is still less than Snort. In this

regard, there is no benefit to utilising multi-cores when

running a single instance of Snort.

Keywords – snort; suricata; performance; NIDS; NIDPS;

multithreaded; multi-core; comparison; experiment

I. INTRODUCTION

Nielsen’s Law states that the bandwidth available to

users increases by 50% annually [1]. This exponential

growth perpetrates design challenges for developers of

Network Intrusion Detection and Prevention Systems

(NIDPS). Once traffic levels exceed operational boundaries,

packets are dropped and the system becomes ineffective.

With pattern matching taking up to 70% of the total

processing time [2];[3], copious research is focused on

reducing the pattern matching overhead with inventive

algorithms. Alternatively, some NIDPSs utilise specialist

hardware such as Application Specific Integrated Circuits

(ASICS) and Field Programmable Gateway Arrays (FPGA)

providing parallelism to increase throughput [4]. However,

these systems are costly, leaving some organisations

restricted to using single threaded PC-based freeware, such

as Snort.

With Internet bandwidth accelerating and Central

Processing Unit (CPU) core speeds reaching a plateau, it is

unlikely that a single threaded solution will remain

effective. The relative influence of Moore’s Law [5] on

single threaded application performance is reducing and this

is responsible for a developmental shift toward increasing

power-density for multithreaded processing [6].

Consequently, almost all PC CPUs are now multi-core.

However, multi-core processors are only as valuable as the

multithreading software utilising them and Snort is not

multithreaded.

 To address this, Suricata has been released by the Open

Information Security Foundation (OISF). It is an open

source NIDS promising multi-threading and graphics card

acceleration in the form of CUDA (Computer Unified

Device Architecture) and OpenCL [7]. Other feature

benefits include: Gzip Decompression, Automatic Protocol

Detection, Flow Variables, Independent HTP library and

Fast IP (Internet Protocol) Matching [8]. If Suricata delivers

on the promises of the OISF it may meet the demands

caused through exponential increases in network traffic.

 This paper describes an evaluation of Suricata through

critical comparison of both Suricata and Snort NIDPSs. The

remainder of this paper is organised as follows: Section II

describes the experiment design including empirical metrics,

test-bed development, system stressing, traffic generation

and attack methods. In Section III, the experiments are

described and the results are reported. In Section IV, we

present an analysis of the results, and finally, in Section V,

we offer our conclusions.

II. EXPERIMENT DESIGN

A. Metrics

 Antonatos et al. [3] suggest that the metrics to be used

for measuring the performance of an NIDPS should be the

attack detection rate, false positives and capacity.

Limitations in capacity imply false negatives; once a NIDPS

exceeds its capacity, packets will be dropped and

subsequently any malicious content within them will not be

detected. Mell et al. [9] define the quantitative metrics used

for evaluating NIDPS accuracy as follows: coverage

(amount of attacks possible to detect), probability of false

alarm, probability of detection, attack resistance, ability to

handle high bandwidth traffic and capacity. With regard to

187

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

capacity, it has a number of constituent components and

thus, it is not a single metric. Table 1, informed by Hall &

Wiley [10], illustrates some of the metrics that constitute

capacity.

 The above research informed that the following capacity

metrics should be recorded: Bytes per second, packets per

second and quantity of network attacks. In addition, for each

NIDPS, the number of packets dropped, true positives, true

negatives, false negatives, and the total amount of alarms

were also recorded. Finally, the host resources monitored

were, CPU and memory utilisation, persistent storage,

network interface bandwidth and page file statistics.

TABLE 1 METRICS OF CAPACITY

B. Test-bed

 The test-bed was setup in a virtual environment,

facilitating experiment portability and security. It also

allowed for faster experiment initialisation. This was

necessary for frequent repetition and re-configuration of the

experiment tests.

 Vmware workstation 6.5 was used as the virtualisation

platform, largely due to superior IO and disk performance

over competitors Virtual Box and Virtual PC [11]. Ubuntu

10.4 TLS 32 bit was chosen as the operating system.

Ubuntu is frequently updated and has a good community

base. Further it is the most popular Linux operating system

[12]

 The default NIDPS hardware configuration was a

2.8GHz (E5462) Quad-Core Intel Xeon, running with 1-4

cores and 3GB of DDR2 800MHz fully-buffered memory.

Each system also had a maximum hard-drive capacity of

20GB. The network traffic was replayed for each system

separately. The system used to replay the network traffic

utilises a single core, as well as 1 GB of memory. The

VMware host operating system utilised 2GB of memory and

1 core preventing the host from having any performance

impacts on the test-bed.

 Snort and Suricata were configured to run using identical

rule-sets. Suricata uses a different classification

configuration to Snort, which uses 134 decoder and 174 pre-

processor rules. Both NIDPSs were using identical logging

methods, namely, Barnyard, MYSQL and AcidBase. The

versions of Snort and Suricata used were v2.8.5.2 and v1.0.2

respectively. Both systems used the Snort v2.8.5.2 VRT rule

set, combined with the Emerging Threats rule set. After all

rules were loaded, Suricata had 11039 detection rules loaded

against Snorts 11065. This discrepancy was due to

Suricata’s failure to parse certain VRT rules.

C. Traffic

 There are a number of considerations when choosing

network traffic for NIDPS testing. Firstly, attack traffic can

be used, either on its own, or, with the added context of

background traffic. When using background traffic, this can

either be real or simulated. If it is real, it could be left intact

or alternatively, sanitised [9] i.e. payload and ip address

information removed.

 For the test to be useful, it is deemed desirable to use

real network background traffic. However, repetition of the

experiments, using real-time network traffic, would be

unpredictable due to its dynamic nature. Our solution was

to use traffic that had been captured to a pcap (packet

capture) file. This facilitated their processing by the

NIDPSs in offline mode, allowing for replay on the network

at different speeds, using TCPReplay [13]. Further, any risk

to mission critical networks was removed.

 There are numerous test traffic sources available online

for download, unfortunately, these are often sanitised. This

renders them useless for evaluating content matching

NIDPS, which perform deep packet inspection. Tools do

exist which can add random payloads into sanitised data,

e.g., TCPdump Randomiser [14], however, the realism of

such modified data becomes questionable. Hacking contests

also offer sources of traffic capture, although the traffic

content is not documented, hence this must be

predetermined prior to use, e.g., which attacks were used

and which were successful. As a result of these issues, it

was decided to capture background traffic from a busy

universities web and application server. This was then

merged with exploit traffic, created using the Metasploit

Framework [15]. The Metasploit Framework contains a

total of 587 exploit modules [15], allowing attack data to be

easily generated in quantity.

 The exploit traffic was captured by performing attacks

via Metasploit to a Microsoft Windows 2000 machine.

Windows 2000 was chosen as there are more Metasploit

exploits for this operating system than any other. Numerous

services and discontinued applications where installed to

facilitate as many of these attacks as possible. Regrettably,

they could not all be obtained. The attacks perpetrated are

Test Metrics Resources Used

Packets per

Second

CPU Cycles, network interface

bandwidth, memory bus

bandwidth.

Bytes per second

(average packet

size)

CPU Cycles, network interface

bandwidth, memory bus

bandwidth.

Protocol Mix CPU cycles and memory bus

bandwidth.

Number of unique

hosts

Memory size, CPU cycles,

memory bus bandwidth.

Number of new

connections per

second

CPU cycles and memory bus

bandwidth.

Number of

concurrent

connections

Memory size, CPU cycles,

memory bus bandwidth.

Alarms per second Memory size, CPU cycles,

memory bus bandwidth.

188

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

shown in Table 2, captured using Wireshark [16]. With the

background and attack traffic captured, the two were

combined. Part of the Wireshark application, Edicap, was

used to modify the timestamp of the exploit traffic, to

correlate with the background traffic. With this done, the

two were merged together in chronological order, such that

the attack traffic was distributed within the background

traffic.

D. Stressing the system

 The capacity of a NIDPS is closely connected to the

CPU capacity of the system [2]. Thus, Snort and Suricata

should be subjected to CPU impairment, to evaluate their

efficacy under stressful conditions.

TABLE 2 EXPLOITS PERFORMED

Code Name Description

ms03_0

26_dco

m

Microsoft RPC

DCOM

Interface

Overflow

Module exploits a stack buffer

overflow in the RPCSS

service

ms05_0

39_pnp

Microsoft Plug

and Play

Service

Overflow

Stack buffer overflow in the

Windows Plug and Play

service

ms05_0

47_pnp

Microsoft Plug

and Play

Service

Registry

Overflow

Stack buffer overflow in

Windows PnP services.

Causes Reboot

ms06_0

40_neta

pi

Microsoft

Server Service

NetpwPathCan

onicalize

Overflow

Stack buffer overflow in the

NetApi32

CanonicalizePathName()

function using the

NetpwPathCanonicalize RPC

call in the Server Service

ms05_0

17_ms

mq

Microsoft

Message

Queueing

Service Path

Overflow

Exploits a stack buffer

overflow in the RPC interface

to the Microsoft Message

Queueing service

ms01_0

33_idq

Microsoft IIS

5.0 IDQ Path

Overflow

exploits a stack buffer

overflow in the IDQ ISAPI

handler for Microsoft Index

Server

 VMware was used to allow the number of logical and

physical cores to be reduced. The cores themselves were

stressed by generating threads, causing an adjustable and

measureable workload. This was performed using the

application cpulimit [17], which generates configurable

workloads across the processor, allowing for the total

amount of stress applied by each thread, to be limited by a

percentage of the CPU capacity.

 Snort and Suricata both provide the ability to replay

pcap files internally. This is done at the maximum speed

possible for the NIDPS, providing a good metric as to the

performance of a system. Yet, using this method the

maximum loss free rate (MLFR) cannot be accounted for.

Therefore, TCPReplay [13] was used to control the traffic

replay rate, thereby allowing for stress testing under

network load.

E. System Monitoring

 The following resources were monitored: CPU

utilisation, memory utilisation, persistent storage

bandwidth and network interface bandwidth. This was

performed using the Linux command line utility dstat.

F. Experiment protocol

 Throughput speeds are increasing [18], and the MLFR of

NIDPSs is affected by both the utilisation of the CPU and

the throughput of the traffic [10]; [3]. Thus, the experiment

was designed to provide data regarding how each system

performs, with increased throughput and under increased

CPU stress.

 Attack traffic was played to both NIDPSs, with varying

CPU configurations. These were: core configuration of 2

processing cores, 1 core, 50% and 75% load. The ability

for the NIDPSs to read the packets, along with the accuracy

of alerts, was measured, with special attention being paid to

the false negative rate. The test traffic was replayed into

the environment through TCPReplay, at a multiplier of 40,

i.e., replayed 40 times faster than it was captured. This

results in a reported playback throughput of 3.1 Mbps, and

a packet drop rate of under 2%. This ensured the

experiments could be completed in a timely fashion, on the

threshold of packet loss.

 Each time a test was run, the start and end times of the

NIDPS start-up and traffic replay were recorded. This

provided a good reference point when analysing the alerts

and system statistics. For each test run, the alert output

information was recorded using acidbase, as well as the

unified2 alert output file being archived for future

reference. Statistics produced on NIDPS close down,

reported, the number of generated alerts, how many packets

were processed, and what ratio of network protocols were

handled. Any traffic travelling from hosts 192.168.16.2 and

192.168.16.128 was known to be malicious traffic.

III. RESULTS

 This section reports and analyses the results for each

NIDPS, for accuracy, dropped packet rate, system utilisation

and offline speed. Each of these is now discussed in turn.

A. Accuracy

 To determine accuracy, control alerts were used. These

are alerts generated without system stress, used as a

189

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

baseline. Deviation from the baseline under stress is an

indication of a change in detection accuracy.

 Table 3 shows the number of alert types generated when

the attacks were performed against each NIDPS. Figure 1

shows Suricata alerted on every exploit, under all

configurations, yet some alerts types were lost, resulting in a

reduction of detection breadth [19].

TABLE 3 ALERTS GENERATED BY SNORT AND SURICATA

Alert Snort Suricata

ms05_040_pnp 4 4

ms05_047_pnp 1 1

ms05_039_pnp 1 6

ms03_026_dcom 1 2

ms01_033_1dq 2 4

ms05_017_msmq 2 3

Figure 1 Suricata Alerts

Figure 2 Snort Alerts

Figure 2 shows Snort fails to alert on ms01_033_idq.

This is a false negative caused by excessive load.

Figure 3 Attack accuracy measurements

 Figure 3 shows the number of false positives (fp) and

true positives (tp) for both NIDPSs, relative to the number

of missed alerts by each system.

B. Dropped Rate

 False negatives (fn) can be caused by dropped packets.

Figure 4 plots the amount of packets dropped by Snort and

Suricata as the CPU availability drops. While Snorts

percentage drop is largely linear, Suricata’s performance

diminishes significantly once the CPU availability reduces

below one core. Figure 5 shows how reducing the number

of cores, and stressing the CPU, effects false negatives on

both systems.

Figure 4 Packet loss at 3.2 MBps

C. System utilisation

 Figure 6 shows the relationship between CPU utilisation,

and network throughput, on both Suricata and Snort. It

depicts how CPU load increases relative to network

throughput. This behaviour is more prominent whilst

running Suricata, with Snort exhibited similar behaviour on

much smaller scale.

190

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

Figure 5 False Negatives (dropped alerts)

 With dual-cores available, Suricata has a lower drop rate

than Snort. To investigate why, both systems were

evaluated for their ability to utilise both cores. Figures 7

and 8 show how Snort and Suricata (respectively), utilise

dual core processors.

CPU %

Figure 6 Network throughput and CPU utilisation for the

Single Core Configuration

Figure 7 Suricata utilising dual cores

 Figure 7 shows that Suricata utilises the 2 cores

uniformly, compared to Snorts more erratic load balancing,

Figure 8. This is consistent with expectations due to

Suricata’s multithreaded design.

Figure 8 Snort utilising dual cores

 Both NIDPSs have the ability to process traffic in offline

mode by receiving a pcap file and processing it at maximum

capacity. This was performed to identify the speed in which

both systems can process traffic. The test was performed for

both NIDPSs, using the same pcap file. The time each

system took to process the file is displayed in Figure 12.

Figure 9 Pcap processing time (offline mode)

 Additional cores did not improve Snorts processing time,

although Suicata’s performance increased by 220%, when

using four cores, compared to one. Again this is expected,

considering Suricata’s multithreaded design.

IV RESULT ANALYSIS
 Arguably the most important metric to evaluate NIDPSs,

is accuracy. This has been described as the system’s attack

coverage, false positives, false negatives, capacity, and

ability to handle high bandwidth traffic [9]. The

experiments outlined provided details regarding all of these.

 The developers of Suricata have stated that their primary

focus is improving NIDPS accuracy [20]. With Suricata

having a higher accuracy than Snort, our experiments show

that they have had some success. This is evident in Figures

1,2 and 3, including data showing that Snort failed to alert

on the ms01_033_idq exploit with the processor loaded at

50% or above. A partial reason is Snort having less control

alerts triggered by the attack than Suricata (two compared

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2

P
e

rc
e

n
ta

g
e

 D
ro

p
p

e
d

 A
le

rt
s

CPU Availability

Suricata Snort

5
9

:4
0

0
0

:3
0

0
1

:2
0

0
2

:1
0

0
3

:0
0

0
3

:5
0

0
4

:4
0

0
5

:3
0

0
6

:2
0

0
7

:1
0

0
8

:0
0

0
8

:5
0

0
9

:4
0

1
0

:3
0

1
1

:2
0

1
2

:1
0

1
3

:0
0

Core 0 Core 1

80

60

40

20

0

191

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

with four). Snort failed to alert on ms01_033_idq using two

rules from the VRT rules set, i.e., ID 1245 and 1244.

Suricata succeeded in that these same alerts were triggered.

 Larger processing requirements demanded by Suricata

caused it to reach its operational capacity quicker than

Snort, explaining the greater number of dropped packets

under stress. By comparison, Snort places less demand on

the system, enabling it to have a reduced packet drop rate at

peak system loads. Figure 4 shows the percentage of

dropped packets increasing steeply, once CPU availability is

reduced to a single stressed core. The proportional

relationship between dropped packets, and false negatives,

is demonstrated for both systems in Figure 5.

 When Suricata is run on a multi-core configuration it has

a lower packet loss rate than Snort. Figures 7 and 8 show

that Suricata uses available cores, on a dual core system, in

a more uniform fashion. Offline tests show that Suricata

was considerably slower than Snort. Alhough multiple

cores relates to a more marked improvement with Suricata,

than Snort, see Figures 4,5 and 9. In this sense, it could be

argued that, Suricata possesses an improved ability to

provide scalability. Nevertheless, in circumstances when

the bandwidth received is greater than Snort can handle, the

recommendation is to run multiple instances of Snort on

multiple processor cores [21]. This could provide scalability

similar to that of Suricata, albeit with added cost of

processing a single threaded application over multiple cores.

V. Conclusions

 The analysis of the results has shown that Suricata has a

higher accuracy rate than Snort, although this comes at the

cost of putting an increased relative demand on the CPU.

The results show that, due to utilising multiple cores more

uniformly, Suricata has the potential to be a more scalable

and efficient, where multiple cores are available. However,

due to the higher resource demands of Suricata, the

accuracy would be expected to diminish, when used in low

commodity, single core, deployment.

 This research has endeavoured to classify the

performance benefits of the innovative Suricata engine.

Whilst the potential of Suricata is significant, at present, its

development is incomplete. Since acceptable performance

is not guaranteed, trial implementations of the engine would

be advised. This would provide an opportunity for

feedback; accelerating the developmental process of this

pivotal detection and prevention engine. In addition to this,

future research should pay attention to documenting

Suricata’s performance, whilst utilising even larger numbers

of cores.

REFERENCES
 [1] J. Nielsen, “Nielsen's Law of Internet Bandwidth,” useit.com: Jakon

Nielsen's Website, [Online] 5 April 1998, [Cited: 4 January 2011.]

http://www.useit.com/alertbox/980405.html.

 [2] J.B.D. Cabrera, J.Gosar, and R.K. Mehra, “On the statistical

distribution of processing times in network intrusion detection,” 43rd

IEEE Conference on Decision and Control, vol. 1, IEEE Press, 2004,

pp. 75-80, doi: 10.1109/CDC.2004.1428609.

[3] S.Antonatos, K.Anagnostakis, and E. Markatos, “Generating

realistic workloads for network intrusion detection systems,”

Proceedings of the 4th ACM workshop on software and performance,

ACM, 2004, pp. 207-215, doi: 10.1145/974043.974078

[4] M. Abishek, W. Najjar, and L.Bhuyan, “Compiling PCRE to FPGA

for accelerating SNORT IDS,” ACM, 2007, Proceedings of the 3rd

ACM/IEEE Symposium on Architecture for networking and

communications systems , pp. 127-136. doi:

10.1145/1323548.1323571.

[5] G. Moore, “Cramming more components onto integrated circuits,”

Electronics, McGraw Hill, Vol. 38, Num. 8, 19 April 1965

[6] A. Ghuloum, “Face the inevitable, embrace parallelism,”

Communications, vol. 52, ACM, September 2009, pp. 36-38. doi:

10.1145/1562164.1562179.

[7] M. Jonkman, “Suricata IDS Available for Download,” Seclists.org,

[Online] 2009, [Cited: 12 May 2010.]

http://seclists.org/snort/2009/q4/599.

[8] OISF, “The open information security foundation,” [Online] 2010,

[Cited: 4 October 2010.]

http://www.openinfosecfoundation.org/index.php?start=15.

[9] P. Mell, V. Hu, R. Lippmann, J. Haines, and M. Zissman, “An

Overview of Issues in Testing Intrusion Detection Systems,”

[Online], [Cited: 16 September 2010.]

http://csrc.nist.gov/publications/nistir/nistir-7007.pdf.

[10] M. Hall, and K. Wiley, “Capacity Verification for High Speed

Network Intrusion Detection Systems,” Lecture notes in computer

science, Springer, 2002, vol. 2516, pp.239-251. doi: 10.1007/3-540-

36084-0_13.

[11] P. Domingues, F. Araujo, and L. Silva, “Evaluating the Performance

and Intrusiveness of Virtual Machines for Desktop Grid Computing,”

Proceedings of the 2009 IEEE International Symposium on

Parallel&Distributed Processing, IEEE, 2009, pp. 1-8. doi:

10.1109/IPDPS.2009.5161134.

[12] L. Bodnar, “Page hit ranking,” DistroWatch.com, [Online] 2010,

[Cited: 20 April 2010.] http://distrowatch.com/.

[13] A. Turner, “TCPReplay pcap editing & replay tools for *NIX,”

TCPRepla, [Online] 23 August 2010, [Cited: 13 December 2010.]

http://tcpreplay.synfin.net/.

[14] Institure of Computer Science, “Network monitoring for security:

intrusion detection systems” Institure of Computer Science, [Online]

6 August 2007, [Cited: 12 December 2010.],

http://dcs.ics.forth.gr/dcs/Activities/Projects/ids.html.

[15] Rapid 7, “Metasploit – penetration testing resources,” Metasploit,

[Online] 2010, [Cited: 1 October 2010.] http://www.metasploit.com/.

[16] Wireshark.org.uk, “Wireshark,” Wireshark.org.uk, [Online] [Cited:

14 April 2010.] http://www.wireshark.org/.

[17] A. Marletta, “CPU usage limiter for Linux,” Sourceforge.net,

[Online] 29 November 2010, [Cited: 13 December 2010.]

http://cpulimit.sourceforge.net/.

[18] M. Cloppert, “Detection, Bandwidth, and Moore's Law,” SANS

Computer Forensic Investigations and Incident Response Blog,

[Online] 05 Jan 2010, [Cited: 05 May 2010.]

https://blogs.sans.org/computer-forensics/2010/01/05/.

[19] C. Jordan, “Writing detection signatures,” USENIX, December

2005, ;login, vol. 30, pp. 55-61.

[20] V. Julien, “On Suricata Performance,” Inliniac [Online] 2010, [Cited:

06 October 2010.] http://www.inliniac.net/blog/2010/07/22/on-

suricata-performance.html.

[21] N. Houghton, “Single Threaded Data Processing Pipelines and Intel

Achitectures,” VRT, [Online] Vulnerability Research Team, 7 June

2010, [Cited: 2010 12 17.],

http://vrt-sourcefire.blogspot.com/2010/06/single-threaded-data-

processing.html.

192

ICDS 2011 : The Fifth International Conference on Digital Society

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-116-8

