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Abstract—Big data applications have become one of the non-
negligible applications in recent years. These big data applications
are supposed to investigate gigantic amount of data from various
data sources from several points of view, uncover new findings,
and then deliver totally new values. As big data applications
handle extremely huge amount of data compared with conven-
tional applications, there is a high, and increasing demand for
the computational environment, which accelerates and scales out
big data applications. The serious problem here, however, is
that the behaviors, or characteristics of big data applications
are not clearly defined yet. The appropriate modeling, and
benchmarking are indispensable for the development, or design
of the adequate computational environment targeting on big
data applications. This paper primarily intends to provide a
comprehensive survey on modeling, and benchmarking big data
applications. We overview, and compare HiBench Benchmark
Suite, CloudSuite, and BigDataBench as existing benchmarks for
big data applications. We also introduce a couple of projects on
modeling big data applications as well.
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I. INTRODUCTION

Big data applications have become one of the non-
negligible applications in recent years. These big data appli-
cations are supposed to investigate gigantic amount of data
from various data sources from several points of view, uncover
new findings, and then deliver totally new values. As big data
applications handle extremely huge amount of data compared
with conventional applications, there is a high, and increasing
demand for the computational environment, which accelerates
and scales out big data applications. The serious problem here,
however, is that the behaviors, or characteristics of big data
applications are not clearly defined yet. There is no established
model for big data applications right now.

High performance computing community has been investi-
gating data intensive applications, which analyze huge amount
of data as well. Raicu et al. pointed out that data intensive
applications, and big data applications are fundamentally dif-
ferent from the viewpoint of data access patterns [1]. There-
fore, the strategies for speed-up of data intensive applications,
and big data applications have to be radically different. Many
data intensive applications often reuse input data, and the
primary strategy of the speed-up is locating the data close to
the target CPUs. Big data applications, however, rarely reuse
input data, and this strategy for data intensive applications does
not work in many cases. Modern computational environment
has been and is evolving mainly for speed-up of benchmarks,
such as LINPACK [2], or SPEC [3]. These benchmarks are
relatively scalable according to the number of CPUs. Big data
applications are not scalable to the contrary, and the current
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computational environment is not necessarily ideal for big data
applications.

This paper primarily intends to provide a comprehensive
survey on modeling, and benchmarking big data applications.
The appropriate modeling, and benchmarking are indispens-
able for the development, or design of the adequate computa-
tional environment targeting on big data applications. The rest
of this paper is organized as follows. Section 2 introduces
major benchmark suites for big data applications. Section
3 provides brief review on modeling of a stream mining
application, which is one kind of the big data applications.
In Section 4, we discuss the current status, and possible
future directions on modeling, and benchmarking for big data
applications. Section 5 concludes this paper.

II. BENCHMARK SUITE

This section reviews big data benchmark suites in chrono-
logical order according to publication dates of the correspond-
ing benchmark suites.

A. HiBench Benchmark Suite

Huang et al. proposed HiBench benchmark suite in
2010 [4]. Huang et al. designed HiBench as a realistic, and
comprehensive benchmark suite for Hadoop [5], which is one
of the most popular implementations of MapReduce model [6].
HiBench includes both synthetic micro benchmarks, and real-
world applications. Before HiBench, GridMix [7], Hive per-
formance benchmarks [8], TeraSort [9], or DFSIO, which is
contained in Hadoop source code for benchmarking Hadoop
file systems, is the primary option for Hadoop benchmark.
Although a benchmark suite is supposed to cover diverse
characteristics of target applications, however, Huang et al.
pointed out that none of the benchmark suites before HiBench
fulfills the requirement for the three reasons;

1) Those benchmark suites require less computations
compared to real world Hadoop applications.

2)  The data access patterns modeled by those benchmark
suites do not assume data access outside MapReduce,
such as temporary files on local disks.

3) Some of those benchmark suites focus on more
traditional data analysis containing random access
using index, or join using partitioning key.

HiBench consists of three micro benchmarks, two Web
search related tasks, two machine learning implementations,
and one benchmark for Hadoop filesystem (HDFS Bench-
mark). Table I lists names of the benchmarks. Here, the three
micro benchmarks, which are Sort, WordCount, and TeraSort,
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TABLE 1. CONTENTS OF HIBENCH
Micro Benchmarks Sort
‘WordCount
TeraSort
Web Search Nutch Indexing
PageRank

Machine Learning Bayesian Classification
K-means Clustering

EnhancedDFSIO

HDFS Benchmark

TABLE II. CONTENTS OF CLOUDSUITE

Scale-out Workloads

Data Serving Cassandra

MapReduce Bayesian Classification

Media Streaming | Darwin Streaming Server

SAT Solver Klee SAT Solver

Web Frontend a frontend of a web-based social event calendar

Web Search Nutch
Tradisional Workloads

CPU PARSEC, SPEC CINT2006

memory PARSEC, SPEC CINT2006

Web Frontend SPECweb09

DBMS TPC-C, TPC-E

Web Backend MySQL

are from Hadoop distribution, and these micro benchmarks
are widely used for years. In Web search workloads, Nutch
Indexing is from Nutch open source search engine [10], and
PageRank is a PageRank algorithm implementation [11] from
SmartFrog [12]. Two of machine learning workloads are from
Mahout [13], which is an open source machine learning library
for Hadoop. Bayesian Classification is an implementation of
the trainer of Nave Bayes [14]. K-means Clustering is an
implementation of K-means clustering algorithm [15]. En-
hancedDFSIO captures fine-grained transitions of throughputs
of Hadoop file system, while the original DFSIO provides only
average numbers.

B. CloudSuite

Ferdman et al. proposed CloudSuite, which is a benchmark
suite for big data applications [16]. Table II lists names of
workloads included in CloudSuite.

CloudSuite consists of scale-out workloads, and traditional
workloads. The scale-out workloads consists of workloads
assuming big data applications; Data Serving, MapReduce,
Media Streaming, SAT Solver, Web Frontend, and Web Search.
Data Serving workload is for NoSQL systems, which is
widely utilized popular web applications as the backing store.
Cassandra [17] is one of the major implementations of NoSQL.
MapReduce workload is for MapReduce model applications,
and the implementation is from Bayesian classification from
Mahout, which is the same for Bayesian Classification work-
load in HiBench. Media Streaming workload intends streaming
services such as YouTube. Darwin Streaming Server is one of
the open media streaming servers [18]. SAT Solver workload
represents SAT solvers, which is one of the major supercom-
puting applications. Klee SAT Solver is a major component
of the Cloud9 parallel symbolic execution engine [19]. Web
Frontend workload intends the frontend of web applications,
which often share the basic functionalities. Web Frontend
workload benchmarks the frontend of a web-based social event
calendar, and the workload runs Nginx [20] with a built-in PHP
module, and APC PHP opcode cache. Web Search workload
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assumes indexing task of web search engines. CloudSuite
includes Nutch as Web Search workload, and this is the
same to HiBench Web Search workload. Traditional workloads
in CloudSuite consists of well-known benchmarks in each
domain, such as PARSEC [21], SPEC [3], and TPC [22].

Ferdman et al. found common characteristics among their
workloads;

1)  Workloads are scattered across a large number of
machines, and each split portion with its data in
charge typically fits into the local memory.

2)  One workload often consists of a large number of
completely independent requests, and these requests
do not share any state.

3) Each workload has some special design for cloud
computing environment, such as provision for dis-
appearing computational nodes.

4)  Inter-machine connectivity is utilized mainly for
high-level task management, or coordination.

Through these observations with CloudSuite, Ferd-
man et al. conjectured that there is a large mismatch between
the requirements of big data applications, and predominant
processors. They also conjectured that the gap between the
requirements, and processor architecture is widening. Here are
the conclusions from their study;

1) Big data applications on modern processors suffer
from high instruction-cache miss rates.

2)  Big data applications have less instruction-level, and
memory-level parallelism, and modern out-of-order
cores do not provide enough benefits to big data
applications.

3) Big data applications handle too huge input data to
exceed the capacity of on-chip caches.

4) Big data applications do not require on-chip, and
off-chip high bandwidth, which modern processors
provide.

Although Ferdman et al. pointed out big data applications
behave differently from traditional applications, they did not
reveal the reasons for this difference in their work. Therefore,
Yasin et al. gave the detailed analysis in [23], and they
concluded that big data applications suffer from overheads
related to managing the data rather than accessing the data.

Yasin et al. focused on Bayesian Classification from Cloud-
Suite, and they ran the code on Hadoop. Then, they investi-
gated the process from the system level, the application level,
and the architecture level (threefold analysis). Their findings
are as follows.

1)  JVM has a major impact at the system level.

2)  There is much room for code optimization at the
application level.

3) Hash index lookup is a key limiter, and the opti-
mization at microarchitecture implementation level
improves overall performance significantly.

4)  Bottlenecks in big data applications are fairly dis-
tributed compared to the bottlenecks in traditional
applications.

Here, 1) and 2) are notable findings. That is, 1) indicates
that careful choice of JVM has a possibility of direct speedup
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TABLE III. THE DATASETS BIGDATABENCH INCLUDES.

Data Structures
unstructured
semi-structured
unstructured
(directed graph)
unstructured
(undirected graph)
structured
semi-structured

Datasets

Wikipedia Entries
Amazon Movie Reviews
Google Web Graph

Facebook Social Graph

E-commerce Transaction Data
ProfSearch Person Resumes

for big data applications. Additionally, 2) represents elimina-
tion of inefficient application code in big data applications
simply gives a speed up. Actually, [23] demonstrated that one
optimization in the main loop gave 50% speedup. Yasin et al.
also pointed out that the programming style of big data
applications is another obstacle for JVM and CPU exploitation.

C. BigDataBench

Wang et al. proposed BigDataBench in 2014 [24].
Wang et al. advocated BigDataBench provides the better
coverage on benchmarking big data applications compared to
traditional benchmarks including HiBench, and CloudSuite for
the four reasons as follows.

1)  BigDataBenchmark includes not only broad applica-
tion scenarios, but also diverse real-world datasets.

2)  BigDataBenchmark is more data centric, and needs to
fulfill 4V” (Volume, Variety, Velocity, and Veracity).

3)  Workloads in BigDataBenchmark reflect diversity of
the real-world big data applications.

4)  BigDataBenchmark covers major infrastructures for
big data applications including Hadoop, and Hive.

Table III lists real-world datasets, which BigDataBench-
mark includes. (Table III is taken from [24], and the latest
version has more datasets [25].) Wang et al. argue that these
datasets cover diverse of data types, data sources, and appli-
cation domains. As shown on Table III, While HiBench, and
CloudSuite contains one unstructured text dataset respectively,
BigDataBench includes one unstructured text dataset, one
semi-structured text dataset, two unstructured graph datasets,
one structured table dataset, and one semi-structured table
dataset. Besides these datasets, BigDataBench also provides
Big Data Generator Suite (BDGS), which generates synthetic
structured, semi-structured, or unstructured texts, graphs, or
tables.

Table IV lists workloads included in BigDataBench. (Ta-
ble IV is taken from [24], and the latest version has more
workloads [25].) BigDataBench workloads are chosen con-
sidering combinations of application scenarios (micro bench-
marks, basic store operations, relational query, search engine,
social network, and e-commerce), application types (online
service, real-time analytics, and offline analytics), data types
(structured, semi-structured, unstructured), data sources (text,
graph, and table), and big data software stacks (Hadoop, Spark,
MPI, Cassandra, and more). HiBench targets only on Hadoop,
MapReduce, and Hive for big data software stacks. Wang et al.
pointed out CloudSuite failed to fulfill the diversity in both
datasets, and workloads.

Through experiments with BigDataBench, Wang et al.
obtained the three major conclusions as follows.
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1)  The intensity of Flowting point instructions in Big-
DataBench is two orders of magnitude lower than
the intensity in the traditional benchmarks such as
PARSEC, or SPEC. On the other hand, the aver-
age ratio of integer instructions to floating point
instructions in big data Applications is around two
orders of magnitude higher than the average ratio in
traditional benchmarks, with the similar intensities of
integer instructions in both big data applications, and
traditional benchmarks.

2)  The volume of input data has significant impact over
performance of big data applications.

3) L1 cache MPKI of big data applications are higher
than those of traditional applications as pointed
out in experiments with CloudSuite (in Section-
sec:CloudSuite), while Wang et al. found that L3
caches are effective for the big data applications listed
in BigDataBench.

Jia et al. conducted more detailed characterizations with
BigDataBench [26]. The summary of their findings is as
follows.

1)  Software stack, such as Hadoop, Spark, and Cassan-
dra, have much significant impact over the perfor-
mance of big data applications than the difference of
algorithms does. Therefore, software stacks should
be included in benchmark suites for big data appli-
cations.

2) L3 cache miss rate, instruction fetch stalls, data
TLB behaviors, and snoop responses are the four
major microarchitectural level metrics to differentiate
behaviors of Hadoop-based applications from those
of Spark-based applications.

3) Jia et al. employed clustring technique to categorize
workloads in BigDataBench, and proposed ways to
extract seven workloads as the projection of the
original workloads.

III. MODELING B1G DATA APPLICATIONS

We have reviewed major benchmarks for big data appli-
cations in Section II. Here, we point out workloads in those
benchmarks always require any data storage, no matter tra-
ditional database systems, or NoSQL style systems. Actually,
there are two kinds of applications in big data applications.
One kind is the applications we reviewed in Section II. The
other kind is stream mining, which analyzes data in a lined
chronological order on the fly (without saving, or revisiting
the original data). There is no major benchmark specific for
stream minings, and no characteristics of stream minings is
unveiled yet. In this section, we briefly overview researches
on modeling stream mining algorithms as a first step for the
establishment of benchmark suites.

A. Data Access Pattern Analysis

Akioka et al. proposed a stream mining model with the
special focus on data dependencies [27]. The figures in this
section are borrowed from [27]. Figure 1 illustrates the overall
model of stream mining algorithms. In Figure 1, a stream
mining algorithm consists of two parts, stream processing
part, and query processing part. While the query processing
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TABLE IV. THE WORKLOADS BIGDATABENCH INCLUDES.
Application Scenarios | Application Type Workloads Data Types Data Source | Software Stacks
Micro Benchmarks offline analytics Sort unstructured text Hadoop, Spark, MPI
Grep
WordCount
BEFS graph
Basic Datastore online service Read semi-structured table Hbase, Cassandra,
Operations Write MongoDB, MySQL
Scan
Relational Query realtime analytics | Select QUery structured table Impala, MySQL,
Aggregate Query Hive, Shark
Join Query
Search Engine online services Nutch Server unstructured text Hadoop
offline analytics Index
PageRank graph Hadoop, Spark, MPI
Social Network online services Olio Server unstructured graph Apache+MySQL
offline analytics Kmeans Hadoop, Spark, MPI
Connected Components (CC)
E-commerce online services Rubis Server structured table Apache+JBoss+MySQL

offline analytics

Collaborative Filtering (CF)

semi-structured | text Hadoop, Spark, MPI

Naive Bayes

n-th arrival data packet

Data Stream (e.g. a timeline of Twitter) (e.g. n-th arrival tweet)

i
— i
]

d(n+1)| d(n) T

d(n+5) d(n+2)

d(n+4) | d(n+3)

* fetch one data packet

Stream Processing (e morpht.)loglcal
analysis)

A

(e.g. noun extraction) ﬂ
read sketch(es) y update sketch(es)

Analysis
Module — Sketch
> ry

A (e.g. frequent pattern analysis,
Ouel L hot topic extraction, etc.)

Quéry
Processing
Module

A model of stream mining algorithms [27].

I

’ Stream Processing Part

P —

Query Processing Part

Fig. 1.

part is offline analysis, the stream processing part has a huge
impact over the performance of the corresponding stream
mining application. Once the stream processing part failed to
process incoming data on the fly (before the next data unit
arrives), the analysis keep losing subsequent data until the
stream processing part catches up as there is no buffering space
for incoming data in stream mining. In the stream processing
part, a sketch is a small memory space similar to a cache. The
stream processing module writes the results of preprocessing
into the sketch(es), and the analysis module reads from the
sketch(es) for the further processing.

Therefore, focusing on stream processing part in Figure 1,
Figure 2 illustrates data dependencies between two processes
analyzing data units in line, and data dependencies inside the
process. The left top flow represents the stream processing part
of the precending process, and the right bottom flow represents
the stream processing part of the successive process. Each flow
consists of six stages; read from sketches, read from input,
stream processing, update sketches, read from sketches, and
analysis. An arrow represents a control flow, and a dashed
arrow represents a data dependencies. In Figure 2, there are
three data dependencies in total.
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B. Three Layer Model and its Extension

Junghans et al. proposed a three-layer model, which is
another model for stream mining algorithm [28]. The figure
in this section is borrowed from [28]. The shaded part in
Figure 3 illustrates the original three-layer model. The whole
picture of Figure 3 illustrates the extended version of three-
layer model. The extended part in the model is to optimize
the influential parameters in stream mining algorithms for the
relaxed resource requirements, or the better quality of the
mining results.

The flow of the whole process in the original three-layer
model is as follows. First, the filter component filters incoming
data stream by sampling, or load shedding. Secondly, the
online mining component analyzes the original incoming data
stream, or the filtered substream. Thirdly, the results of the
online mining component will be stored in the synopsis, which
is the second layer of the three-layer model. Here, synopsis
indicates sketches, windows, or other dedicated data structures
such as a pattern tree. Finally, the offline mining component
answers user queries by accessing information stored in the
synopsis. Therefore, the offline mining component does not
need to fulfill the one pass requirement of stream mining.

The flow in the extension of the three-layer model is as fol-
lows. The resource monitoring, and the observation assessment
component collect information about the current system state.
Based on the monitoring by the resource monitoring, and the
observation assessment, the parameters are decided whether
they should be updated, or not. Then, the new parameters are
set, and the stream mining algorithm run with the updated
parameters.

C. Multiple Data Streams

Wu et al. advocated that the existing studies on stream
mining assume only one data stream, and proposed formal
definition of mining multiple data streams for the better
practicality [29]. Wu et al. defined multiple data streams as
a set of data flows generated by corresponding sources, and
satisfy the following properties:

e  continuous, one-pass, sequential, and self-functional,

e  distributed, asynchronous, and non-blocking, and
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Fig. 3. Extended three-layer model [28].

e diversified, and autonomous.

According to [29], multiple data stream mining should be
approached in a separate way from the way for single data
stream mining for the following three reasons.

1) Multiple data streams are from many local data
sources independently, and these data sources are not
be able to process more than simple data precondi-
tioning, or to save all the generated data either.
Multiple data stream mining is supposed to analyze
across more than one data stream, instead of one
single data stream.

Multiple data streams are not appropriate to be mod-
eled as one single huge data stream with different
attributes as each data is not under uniform timestamp

cariteria, sampling rate, or privacy control policy.

2)

3)

In the multiple data stream model, a quadruple of the form
(s,t, f,v) represents each data in a data flow, where s is the
identification of the place, ¢ is the time, or sequence number
identifying the event, f is a function over the data, and v is
a value vector of the output. An event refers whether data
generation, or any other data processing. Each flow is a set of
the quadruples, and fulfills the following properties.

e  Each source specifies a single function to generate a
single flow.

e If any pair of events, e; and ey, occur at the same
source, these two events have the same function in-
vocation, and then the value t of e; is smaller than
the value t of es, e; is identified as the event which
occured before e2.
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e For any pair of events, e; and eq, that occur at the
different sources, there is no function, or rule between
e1, and e2.

Similarly, flows can have some additional properties as
follows.

e Homogeneous or heterogeneous: a pair of flows is
said to be homegeneous (or heterogeneous) if the
respective sources at which the two flows generate
specify the same (or different) function(s), which are
checked in terms of initial conditions, and output
domain.

e Relational: a pair of flows, indicated by f;, and fs,
is said to be relational if the value vectors of f; and
value vectors of fo satisfy some relationship r.

IV. DISCUSSION

Primarily, the motivation for this paper is to get a quick
overview of the current status of benchmarking, and modeling
of big data applications. We reviewed several benchmark suites
for a certain type of big data applications, and then we also
overviewed several studies on modeling of another type of big
data applications, which those current benchmark suites do not
cover yet. Here are some points we have learned through the
survey:

e  No single project succeeded to establish a solid model,
or solid models for big data applications yet. No single
domain of big data applications is clearly character-
ized, either.

e  Although each project has different findings for the
details, the common finding is that the current CPU
architecture is not suitable for acceleration of big data
applications. The speed-up of big data applications
seems likely to end up challenging the architecture
community.

e Some projects pointed out that some methodologies
of software implementations, or some coding styles
block speed-up of big data applications. Of course,
the way of software development changes according
to the trend, or CPU architectures of the moment.
The clear thing here is, however, the way of software
development, and what CPU architecture community
looks at are not meeting well.
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The software layer of big data applications is in-
dispensable, and fat, and then this software layer is
another obstacle for clarification of the behaviors of
big data applications.

V. CONCLUSIONS

This paper surveyed the major benchmark suites for big

data applications, and some projects on modeling of stream
mining applications. Although there are several benchmark
suites for big data applications as we reviewed, the community
have not got the established benchmark suite(s), or model(s)
yet. For the serious speed-up of big data applications, CPU
artchitecture community, and big data application community
move closer to share what each community is looking at.
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