
On the Use of Remote GPUs and
Low-Power Processors for the

Acceleration of Scientific Applications
A. Castelló∗, J. Duato∗, R. Mayo†, A. J. Peña‡, E. S. Quintana-Ortı́†, V. Roca†, F. Silla∗

∗Universitat Politècnica de València, València, Spain.
Emails: {adcasgi,jduato,fsilla}@gap.upv.es

†Depto. de Ingenierı́a y Ciencia de Computadores, Universitat Jaume I, Castellón, Spain.
Emails: {mayo,quintana,vroca}@uji.es

‡Mathematics and Computer Science Division, Argonne National Laboratory
Argonne (IL), USA. Email: apenya@anl.gov

Abstract—Many current high-performance clusters include
one or more GPUs per node in order to dramatically reduce
application execution time, but the utilization of these acceler-
ators is usually far below 100%. In this context, remote GPU
virtualization can help to reduce acquisition costs as well as the
overall energy consumption.

In this paper, we investigate the potential overhead and bot-
tlenecks of several “heterogeneous” scenarios consisting of client
GPU-less nodes running CUDA applications and remote GPU-
equipped server nodes providing access to NVIDIA hardware
accelerators. The experimental evaluation is performed using
three general-purpose multicore processors (Intel Xeon, Intel
Atom and ARM Cortex A9), two graphics accelerators (NVIDIA
GeForce GTX480 and NVIDIA Quadro M1000), and two relevant
scientific applications (CUDASW++ and LAMMPS) arising in
bioinformatics and molecular dynamics simulations.

Index Terms—High Performance Computing; Graphic Process-
ing Units (GPUs); CUDA; Virtualization; Scientific Computing;
Energy-Aware Computing;

I. INTRODUCTION

In the quest for the enormous benefits that Exascale ap-
plications promise [1]–[4], the Top500 ranking [5] and its
greener counterpart, the Green500 list [6], show an impressive
6× improvement in the performance-power ratio of large-scale
high performance computing (HPC) facilities over the last five
years. Furthermore, a trend clearly visible in these two lists is
the adoption of hardware accelerators to attain unprecedented
levels of raw performance with reasonable energy costs, which
hints that future Exaflop systems will most likely leverage
some sort of specialized hardware.

Many supercomputers in the first positions of these two
lists currently accommodate mainstream x86 based processors
along with top-of-the-line accelerator technologies. The alter-
native proposed by the Mont-Blanc project [7] investigates
how to aggregate a large number of low-power components
(specifically ARM processors and accelerators with small
numbers of cores) to build a Petascale general-purpose HPC
cluster. In any of these cases though, it is unlikely that the
accelerators that integrate the system are used 100% of the
time. Therefore, for practical purposes, a cluster with one or

more accelerators per node surely leads to a waste of energy
and money, due to the underutilization of these devices. In
contrast to that configuration, a cluster where only a few of
the nodes are equipped with hardware accelerators is a more
cost-effective approach in terms of energy usage, maintenance
and acquisition costs.

In order to render such a reduced amount of accelerators
accessible from any node in the cluster, we have heavily
invested in the development of rCUDA[8]–[11]with seam-
less access to an NVIDIA GPU residing in a remote node.
Although based on a simple remote procedure call (RPC)
mechanism, as of today rCUDA is the only CUDA 5.0-
compatible solution. Furthermore, compared with many of the
other remote GPU virtualization solutions [12]–[17], rCUDA
is not only compatible with CUDA 5.0, but it is also publicly
available and it supports several interconnects, including the
last FDR InfiniBand fabric.

In this paper we analyze the possibilities of leveraging
rCUDA in a “heterogeneous” environment, with clients and
servers running in nodes with very different capabilities. In
particular, this paper makes the following original contribu-
tions:

• We provide an experimental analysis that identifies the
potential and, to some extent, the overhead sources that
affect the performance of distinct CPU-GPU configura-
tions. In particular, our hardware setup includes a variety
of scenarios, with the rCUDA client and server running,
respectively, on nodes equipped with three different types
of general-purpose multicore processors and two types of
GPUs

• For the evaluation we select two complex CUDA-enabled
applications: CUDASW++ [18] and LAMMPS [19].

• Finally, our experimental analysis focuses on the execu-
tion time, but also considers average power dissipation
and energy consumption.

The rest of the paper is structured as follows. In Section II,
we provide a brief overview of the rCUDA software solution.

57Copyright (c) IARIA, 2014. ISBN: 978-1-61208-332-2

ENERGY 2014 : The Fourth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

In Section III, we describe the applications and setup employed
for the experimental study that follows next, in Section IV.
We close the paper with a few concluding remarks and a
discussion of future work in Section V.

II. OVERVIEW OF rCUDA

rCUDA is structured following a client-server distributed
architecture, where the client middleware runs in the same
cluster node as the application demanding GPU acceleration
services, while the server middleware runs in the cluster node
where the physical GPU resides.

In rCUDA, the client middleware offers the exact same
interface as the regular NVIDIA CUDA Runtime API so that
the application is not aware that it is interacting with rCUDA
instead of a real GPU. To support a concurrent scenario
where GPUs are shared and this sequence of events occurs
concurrently with analogous interactions initiated by other
applications, rCUDA manages independent GPU contexts for
each application.
rCUDA accommodates several underlying client-server

communication technologies [11] thanks to its modular lay-
ered architecture, which supports runtime-loadable network-
specific communication libraries. rCUDA currently provides
communication modules tailored for Ethernet- and InfiniBand-
based networks and takes advantage of the increased perfor-
mance of the last FDR InfiniBand fabric [11].

Furthermore, regardless of the specific communication tech-
nology, data transfers between rCUDA clients and servers are
pipelined for performance, using preallocated buffers of pinned
memory.

III. EXPERIMENTAL SETUP

In this section, we describe the applications and hardware
platforms involved in the experimental study.

A. Applications

CUDASW++ [18] is a bioinformatics software for
Smith-Waterman protein database searches that exploits
the massively parallel CUDA architecture of NVIDIA
Tesla GPUs to perform sequence searches. In our study,
we use release 2.0 of the package, with the follow-
ing execution parameters -query P010008.fasta -db
uniprot_sprot.fasta -use_single 0

LAMMPS [19] is a classic molecular dynamics simula-
tor that can be used to model atoms or, more generically,
as a parallel particle simulator at the atomic, mesoscopic,
or continuum scale. For the tests in the next section, we
used release 3Jan13 of the software, and benchmark lj
included in the release. The specific parameter list employed
in the experimentation with this application was -sf cuda
-v g 1 -v x 76 -v y 76 -v z 76 -v t 2000 <
in.lj.cuda

B. Systems

Our general-purpose platforms included the following three
testbeds:

• KAYLA: A SECO mITX board consisting of an NVIDIA
Tegra 3 ARM Cortex A9 quad-core CPU (1.4 GHz), 2 GB
of DDR3 RAM, and an Intel 82574L Gigabit Ethernet
controller.

• ATOM: A board with an Intel Atom quad-core CPU S1260
(2.0 GHz), 8 GB of DDR3 RAM, and an Intel I350
Gigabit Ethernet controller.

• XEON: A server with an Intel Xeon X3440 quad-core
processor (2.4 GHz), 8 GB of DDR3 RAM, and an Intel
82574L Gigabit Ethernet controller. When this platform
acted as an rCUDA server, three of these cores remained
disabled via BIOS to reduce the power dissipation.

All three systems operated under Linux Ubuntu 12.04 with the
compiler GNU gcc/g++ version 4.6.3.

On the other hand, two types of accelerator-equipped sys-
tems were involved in the experiments:

• CARMA: A SECO development kit, with an NVIDIA
Tegra 3 ARM Cortex A9 quad-core CPU (1.4 GHz) plus
an NVIDIA Quadro 1000 M GPU (96 CUDA cores),
2 GB of DDR3 RAM for the ARM and 2 GB of DDR5
RAM for the GPU. These two components communicate
via a PCIe ×4 Gen 1 link and the network controller
was an Intel 82574L Gigabit Ethernet. This system is
operated under Linux Ubuntu 12.04 with the compiler
GNU gcc/g++ version 4.6.3.

• FERMI: An NVIDIA GeForce GTX480 “Fermi” GPU
(448 cores), with 1,280 MB of DDR3/GDDR5 RAM.
This graphics card was connected to either XEON, through
a PCIe ×16 Gen 1 link, or to KAYLA, via a slower PCIe
×4 Gen 1 link.

The CUDA Tool Kit 5.0 was employed for both accelerators.
As these systems offered us a large variety of combinations

to evaluate (specifically, 4 clients × 3 servers), we made a
preliminary selection based on some initial tests and consid-
erations:

• A few initial experiments determined that, to attain rele-
vant acceleration factors for these two applications with
respect to a parallel execution using a multicore GPU-less
platform, the 448-core FERMI GPU had to be involved.
We therefore discarded those configurations with CARMA
as a server, due to its poweless 96-core GPU.

• When acting as a client, there is no difference between
CARMA and KAYLA, as the two systems include the
same type of general-purpose processor. From the points
of view of power and energy, when the GPU in the
CARMA system is not used, it contributes little to these
two factors. Therefore, we only considered the former
system for the client side in our scenarios.

Table I illustrates the different hardware configurations se-
lected for the evaluation.

Finally, the node interconnect was a CISCO SLM2009
Gigabit Ethernet switch. We note here that only the XEON-

58Copyright (c) IARIA, 2014. ISBN: 978-1-61208-332-2

ENERGY 2014 : The Fourth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

TABLE I: DIFFERENT SCENARIOS INVOLVED IN THE EXPERIMENTAL EVALUATION.

Scenario Client Server Configuration

A CARMA KAYLA+FERMI Low-power ARM-based client; low-power server

B ATOM KAYLA+FERMI Low-power Atom-based client; low-power server

C XEON KAYLA+FERMI Power-hungry client; low-power server

D CARMA XEON+FERMI Low-power ARM-based client; power-hungry server

E ATOM XEON+FERMI Low-power Atom-based client; power-hungry server

F XEON XEON+FERMI Power-hungry client; power-hungry server

based system can be connected to a faster InfiniBand switch.
Thus, for the comparison, we restrict the study to use the
Gigabit Ethernet network.

C. Power and time measurement

All power data was collected using a WATTSUP?PRO
wattmeter, connected to the line from the electric socket to
the power supply unit (PSU), which reports instantaneous
power with an accuracy of ±1.5% at a rate of 1 sample/s.
The measures were recorded in a separate server so that the
sampling process did not interfere with the accuracy of the
results. In the tests, we initially ran the application under
evaluation for an initial warm-up period (about 60 s); then,
the execution is repeated 5 times or until enough power
samples were available, the slowest and fastest repetitions
are discarded, and the result was averaged and multiplied
by the corresponding run time in order to obtain the energy
consumption.

IV. EXPERIMENTAL EVALUATION

In this section, we present the results obtained from the
execution of the two applications chosen in this study. In order
to serve as a reference, we first evaluate the performance of
the codes with a local GPU (the traditional scenario), and
next compare these data with the performance achieved when
accessing remote GPUs.

A. Acceleration via a local GPU

We open this section with an initial evaluation of the perfor-
mance of the two applications, CUDASW++ and LAMMPS,
when accelerated on a system equipped with a local GPU.
Therefore, the only platforms that can be included in this eval-
uation are CARMA, KAYLA+FERMI, and XEON+FERMI. We
summarize the main results from this evaluation in Table II.

CUDASW++: From the point of view of run time, the clear
winner for this application is XEON+FERMI, with an execution
time of 4.81 s, which is 4.79× and 7.35× faster than those
observed for KAYLA+FERMI and CARMA, respectively. On the
other hand, from the perspective of power (important, e.g., for
a power capped environment), CARMA exhibits a much lower
average power draw, roughly by factor around 5× with respect
to the other two alternatives. Nevertheless, when execution
time and average power are combined into a single figure-of-
merit such as energy, the high-performance XEON+FERMI is

again clearly superior to the other two counterparts, by factors
of 1.36× and 4.28×.

LAMMPS: The behavior of the CUDA-accelerated version
of this application is quite different. Now the execution
times for KAYLA+FERMI and XEON+FERMI are much closer
(217.94 s and 157.91 s, respectively), and they both outperform
CARMA by a wide margin (1,208.29 s). This is indicative that
this application makes a much more intensive use of the GPU
than CUDASW++. However, for this particular application,
the average power is also significantly increased for the former
two platforms so that, interestingly, the total energy usage of
the three systems is very similar.

To close this initial analysis, a direct comparison between
the performances of KAYLA+FERMI and XEON+FERMI for
the two applications in Table II illustrates the cost of the
reduced PCIe bandwidth for the former platform, as both
systems leverage the same type of high-performance GPU
(GeForce GTX480) and the bulk of the computation is off-
loaded to the accelerator. Additionally, the comparison be-
tween KAYLA+FERMI and CARMA shows the negative impact
caused by the reduced number of cores in the GPU featured
by the latter (96 cores vs 448 in the GTX480). That results
caused partially our decision of discarding this system for the
server side.

B. Acceleration via a remote GPU
In the following, we experimentally analyze the potential

and overheads of the different hardware scenarios listed in
Table I. In all cases the application runs in a single rCUDA
client/node that accesses the GPU connected to a single
remote rCUDA server/node using our software middleware.
No changes were made to the original GPU-accelerated CU-
DASW++ and LAMMPS codes other than those already nec-
essary to install and run these packages in the platforms with
the local GPU. The only change was during the compilation
phase, where the applications were linked to the current release
of rCUDA, which replaces the usual CUDA library.

Note that possible sources of overhead (bottlenecks) are
the rCUDA middleware; the interface to the Gigabit Ethernet
interconnect in the client and/or the server; (the bandwidth of)
the Gigabit Ethernet; and (the bandwidth of) the PCIe interface
in the server. However, the cost of this last factor was already
exposed in the previous study for the local GPU case.

59Copyright (c) IARIA, 2014. ISBN: 978-1-61208-332-2

ENERGY 2014 : The Fourth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

TABLE II: PERFORMANCE OF THE SELECTED APPLICATIONS WHEN RUNNING ON A SINGLE PLATFORM ACCESSING THE LOCAL GPU.

System CUDASW++ LAMMPS
Time (s) Avg. power (W) Energy (J) Time (s) Avg. power (W) Energy (J)

CARMA 35.40 24.88 880.92 1, 208.29 34.14 43, 663.34

KAYLA+FERMI 23.07 120.30 2, 775.48 217.94 203.31 44, 309.17

XEON+FERMI 4.81 134.56 647.27 157.91 268.43 42, 388.21

TABLE III: PERFORMANCE, AVERAGE POWER AND CONSUMPTION OF THE TWO SELECTED APPLICATIONS WHEN RUNNING ON AN
rCUDA CLIENT ACCESSING THE REMOTE GPU IN THE rCUDA SERVER.

Application Scenario System Time (s) Avg. power (W) Energy (J)

Client Server Client Server Total Client Server Total

CUDASW++

A CARMA KAYLA+FERMI 73.87 11.11 123.82 134.93 820.65 9, 146.69 9, 967.35

B ATOM KAYLA+FERMI 61.85 44.23 120.62 164.85 2, 735.98 7, 460.27 10, 196.26

C XEON KAYLA+FERMI 61.54 58.68 117.55 176.23 3, 610.90 7, 234.02 10, 844.92

D CARMA XEON+FERMI 13.72 11.10 138.45 149.56 152.26 1, 898.96 2, 051.22

E ATOM XEON+FERMI 11.38 42.65 143.09 185.74 485.11 1, 627.65 2, 112.77

F XEON XEON+FERMI 6.33 58.68 138.51 197.18 371.26 876.38 1, 247.65

LAMMPS

A CARMA KAYLA+FERMI 2, 124.78 10.97 134.28 145.25 23, 305.79 285, 314.39 308, 620.19

D CARMA XEON+FERMI 482.59 12.45 191.86 204.31 6, 006.23 92, 589.15 98, 595.38

E ATOM XEON+FERMI 268.92 44.29 226.48 270.77 11, 910.81 60, 903.28 72, 814.09

F XEON XEON+FERMI 236.91 68.38 251.83 320.21 16, 199.09 59, 661.11 75, 860.21

CUDASW++: The first aspect that is manifest in Table III
and the left-hand side plots of Figures 1 and 2 is the much
higher execution time of the scenarios that use the KAYLA-
based accelerator as a server, even though the GPU is the
same as in their XEON-based counterparts (a “Fermi” GPU).
Clearly, the source of this much inferior performance must
be the interface to the Gigabit interconnect for KAYLA, as
the results in Table II already revealed that the slow PCIe of
KAYLA, while constraining the performance to a certain extent,
does not justify the large gap between the configurations that
leverage this type of equipment and those based on the XEON
server. Actually, in the previous section, we saw a 4.79×
speed up between the KAYLA and XEON platforms, whereas
in Table III speed up between both platforms, when using
XEON-based client increases up to 9.72×. To confirm that
the interface to the Gigabit interconnect is the cause of the
higher execution time, we carried out a separate test using
iperf [20]. The results from these independent experiments,
collected in Table IV, show that the network interface for
KAYLA delivers much less than the 1 Gbps bandwidth that
could be expected from a Gigabit Ethernet, and confirm this as
the origin of the bottleneck. On the other hand, from the point
of view of average power, the configurations with a KAYLA-
based server do not show significant advantages over the
XEON-based ones (considering the server only, approximately
between 14 and 22 W, or 10 to 15%), which in combination
with the time differences explain why the configurations that

involve the latter type of server lead to a much more energy-
efficient solution.

Let us focus now on the behavior of CUDASW++ when
running on the three configurations with the XEON-based
server, which should help to identify the source of overheads
in the client. The much shorter execution time of the con-
figuration when the XEON acts as a client (6.33 s) compared
with the CARMA-client and ATOM-client (13.72 s and 11.38 s,
respectively), and the smaller differences in the combined
average power from the two systems (149.56 W for CARMA,
185.74 W for ATOM, and 197.18 W for XEON), render the
superiority of the XEON-client solution, which is almost twice
more efficient in terms of energy than the two alternative
configurations. In this case, as all other factors remain the
same, the source of the overhead for the CARMA-based client
must be the low bandwidth of the interface to the Gigabit
Ethernet in the client (see Table IV). On the other hand, for
the ATOM-based client, we place responsibility for the low
performance in the client CPU itself.

LAMMPS: Although the results for the previous case al-
ready identified the serious bottleneck that the interface to
the Gigabit Ethernet poses for the KAYLA+FERMI server, for
illustrative purposes only, we still evaluate one such type
of configuration. Again, this scenario exhibits a much worse
performance which, combined with the limited improvement
of the average power, render a much higher energy costs for
the KAYLA-based server; see Table III and the right-hand side

60Copyright (c) IARIA, 2014. ISBN: 978-1-61208-332-2

ENERGY 2014 : The Fourth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

A B C D E F
0

50

100

150

200

250

0

2

4

6

8

10

12
CUDASW++

Power Energy

Po
we

r (
W

)

En
er

gy
 (K

W
h)

A B C D E F
0

10

20

30

40

50

60

70

80
CUDASW++

Ti
m

e
(s

ec
on

ds
)

A B C D
0

500

1000

1500

2000

2500
LAMMPS

Ti
m

e
(s

ec
on

ds
)

Fig. 1: Performance of CUDASW++ (rigth) and LAMMPS (left) when running on an rCUDA client accessing the remote GPU in the rCUDA server. See
Table I for a description of the scenarios.

A B C D E F
0

50

100

150

200

250

0

2

4

6

8

10

12
CUDASW++

Power Energy

Po
we

r (
W

)

En
er

gy
 (K

W
h)

A B C D
0

50

100

150

200

250

300

350

0

50

100

150

200

250

300

350
LAMMPS

Power Energy

Po
we

r (
W

)

En
er

gy
 (K

W
h)

Fig. 2: Average power and energy consumption of CUDASW++ (rigth) and LAMMPS (left) when running on an rCUDA client accessing the remote GPU
in the rCUDA server. See Table I for a description of the scenarios.

plots in Figures 1 and 2.
From the perspective of execution time, using the XEON

equipment in both the client and server sides offers the best
solution (236.91 s, compared to 482.59 s and 268.82 s in
the configurations with CARMA and ATOM as clients, respec-
tively). However, in exchange for this increase of the execution
time, the ATOM-server client offers a slight but non-negligible
advantage in terms of energy efficiency over the XEON-based
one, of about 4.13%.

C. Overhead with respect to the local GPU

Before we perform this final analysis, it is important to
realize that, from the point of view of time, the execution
of an application that interacts with a remote GPU can
never outperform the same application running on a platform
equipped with a local GPU (provided both systems feature
same type of GPU and PCIe connection). Actually, the best
we can expect is that the remote access yields a low overhead,
so that the execution times between the two cases (local and
remote GPU) are close. From the perspective of energy, the
single-client single-server configuration also works in favor of
the local GPU, as we are now comparing configurations with
one system (local GPU) versus two (rCUDA client and GPU-
equipped rCUDA server). Nevertheless, the use of the rCUDA
middleware allows to build a cluster with a reduced number

of GPUs, even adapted for a specific purpose, which can be
expected to decrease the total energy (as well as acquisition)
costs with respect to a configuration where all cluster nodes
are equipped with at least one GPU, that will likely remain
idle a significant fraction of the time. In summary, the purpose
of rCUDA is to reduce the energy costs for the cluster as a
whole while introducing a low overhead in terms of run time.

For simplicity, let us consider only the best configurations
in terms of performance, which correspond to the XEON-based
client and server. Comparing this with the XEON system with
a local GPU, we observe that the overhead introduced by
the remote access for these two applications is rather visi-
ble, of 24.01% for CUDASW++ and 33.34% for LAMMPS.
However, notice that this overhead is mainly due to the use
of a slow interconnect, and the use of an FDR InfiniBand
network turns them mostly negligible [11]. On the other hand,
the potential benefits that a system with a moderate number
of GPUs offers can be hinted by comparing the differences
in the average power of the platforms when acting as clients
or servers. In the same line, the power dissipated by an idle
GPU can provide a more accurate estimation. In particular, the
data in Table V indicate that the power dissipated by an idle
FERMI GPU is between 36.4 W (compare the idle power rate
of the XEON with and without the GPU) and 31.2 W (compare
the figures for KAYLA –that has been included only for this

61Copyright (c) IARIA, 2014. ISBN: 978-1-61208-332-2

ENERGY 2014 : The Fourth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

TABLE IV: BANDWIDTH BETWEEN TWO NODES, USING THE
iperf TEST EXECUTED DURING 10 s.

Client Bandwidth (Mbs)

KAYLA server XEON server

CARMA 392 895

ATOM 439 940

XEON 435 943

TABLE V: POWER DISSIPATED BY THE EQUIPMENT WHILE IDLE.

Client Systems Server Systems
System Power (W) System Power (W)

CARMA 10.4 KAYLA 41.3

ATOM 42.5 KAYLA+FERMI 72.5

XEON 54.4 XEON+FERMI 90.8

comparison– and KAYLA+FERMI), which is quite significant
when contrasted to the power costs of a GPU-less node.

V. REMARKS AND FUTURE WORK

The tendencies captured by the Top500 and Green500 list
portray a landscape for HPC consisting of heterogeneous
facilities, with nodes of different types, specifically tailored for
certain classes of applications. In this future, we envision that
hardware accelerators, either in the form of data-parallel GPUs
or more general-purpose architectures like the Intel Xeon Phi,
will play a relevant role to build the first Exascale system.
Furthermore, independently of whether the Exaflop barrier is
reached using a “fat”-node approach (i.e., a large number
of highly-multithreaded nodes) or a “thin”-node alternative
(i.e., a huge number of low-core nodes), we believe that not
all nodes/processes/threads in these systems will have direct
access to an accelerator, and therefore some sort of remote
access needs to be granted.

The main contribution of this paper is an experimental
evaluation of the possibilities that state-of-the-art technology
offers in today’s HPC facilities, as well as low-power alterna-
tives offer for the acceleration of scientific applications using
remote graphics processors. In particular, we have assessed
the potential of distinct hardware configurations, including
three general-purpose multicore processors (Intel Xeon, Intel
Atom and ARM Cortex A9) for the client side, and two
types of graphics accelerators (NVIDIA GeForce GTX480 and
NVIDIA Quadro M1000) for the server side. Our experiments
with two key scientific applications in bioinformatics and
molecular dynamics simulations, CUDASW++ and LAMMPS
respectively, reveal an important bottleneck in the access to
the network for the ARM-based client/server, with significant
negative consequences on both the execution time and energy
consumption. While the performance of the Xeon-based con-
figuration is much better, the overhead when compared to the

access to a local GPU is quite relevant, and clearly asks for
the use of a faster interconnect.

In the future we plan to investigate some of the bottlenecks
detected in this work, while monitoring new technology that
may appear in principle solving the problem in the access to
the network. We also plan to act on the applications to improve
their performance (as described in the previous paragraph).

ACKNOWLEDGMENT

The researchers at UPV were supported by the the Gener-
alitat Valenciana under Grant PROMETEOII/2013/009 of the
PROMETEO program phase II. Researchers at UJI were sup-
ported by MINECO, by FEDER funds under Grant TIN2011-
23283, and by the Fundacion Caixa-Castell Bancaixa (Grant
P11B2013-21). This work was partially supported by the U.
S. Department of Energy, Office of Science, under Contract
No. DE-AC02-06CH11357. The authors are also grateful for
the generous support provided by Mellanox Technologies.

REFERENCES

[1] S. Ashby et al, “The opportunities and challenges of Exascale comput-
ing,” Summary Report of the Advanced Scientific Computing Advisory
Committee (ASCAC) Subcommittee, November 2010.

[2] K. Bergman et al, “Exascale computing study: Technology challenges in
achieving exascale systems,” DARPA IPTO ExaScale Computing Study,
2008.

[3] J. Dongarra et al, “The international ExaScale software project
roadmap,” Int. J. of High Performance Computing & Applications,
vol. 25, no. 1, pp. 3–60, 2011.

[4] M. Duranton et al, “The HiPEAC vision for advanced computing in
horizon 2020,” pp. 1–48, 2013.

[5] “The top500 list,” Nov.,2013, available at http://www.top500.org.
[6] “The Green500 list,” Nov., 2013, available at http://www.green500.org.
[7] “The Mont Blanc project,” http://montblanc-project.eu, Feb.,2014.
[8] J. Duato, F. D. Igual, R. Mayo, A. J. Peña, E. S. Quintana-Ortı́, and

F. Silla, “An efficient implementation of GPU virtualization in high
performance clusters,” Euro-Par 2009, Parallel Processing – Workshops,
vol. 6043, pp. 385–394, 2010.

[9] J. Duato, A. J. Peña, F. Silla, R. Mayo, and E. S. Quintana-Ortı́,
“Performance of CUDA virtualized remote GPUs in high performance
clusters,” in Proceedings of the 2011 International Conference on
Parallel Processing (ICPP 2011), Sep. 2011, pp. 365–374.

[10] J. Duato, A. J. Peña, F. Silla, J. C. Fernández, R. Mayo, and E. S.
Quintana-Ortı́, “Enabling CUDA acceleration within virtual machines
using rCUDA,” in Proceedings of the 2011 International Conference on
High Performance Computins (HiPC 2011), Dec. 2011, pp. 1–10.

[11] C. Reaño, R. Mayo, E. S. Quintana-Ortı́, F. Silla, J. Duato, and A. J.
Peña, “Influence of Infiniband FDR on the performance of remote GPU
virtualization,” in IEEE Cluster 2013, 2013, pp. 1–8.

[12] M. Oikawa et al., “DS-CUDA: a middleware to use many GPUs in the
cloud environment,” in SC, 2012, pp. 1207–1214.

[13] G. Giunta et al., “A GPGPU transparent virtualization component for
high performance computing clouds,” in Euro-Par, 2010, pp. 379–391.

[14] T.-Y. Liang et al., “GridCuda: a grid-enabled CUDA programming
toolkit,” in WAINA, 2011, pp. 141–146.

[15] V. Gupta et al., “GViM: GPU-accelerated virtual machines,” in HPCVirt,
2009, pp. 17–24.

[16] Zillians, Inc. (Feb.,2014) V-GPU: GPU virtualization.
[17] L. Shi, H. Chen, and J. Sun, “vCUDA: GPU accelerated high perfor-

mance computing in virtual machines,” in IEEE International Sympo-
sium on Parallel & Distributed Processing (IPDPS’09), 2009, pp. 1–11.

[18] Y. Liu, A. Wirawan, and B. Schmidt, “CUDASW++ 3.0: accelerating
Smith-Waterman protein database search by coupling CPU and GPU
SIMD instructions,” BMC Bioinformatics, vol. 14, no. 1, p. 117, 2013.

[19] S. Plimpton, “Fast parallel algorithms for short-range molecular dynam-
ics,” Journal of Computational Physics, vol. 117, pp. 1–19, 1995.

[20] “TCP and UDP bandwidth performance measurement tool,” Feb.,2014,
https://code.google.com/p/iperf/.

62Copyright (c) IARIA, 2014. ISBN: 978-1-61208-332-2

ENERGY 2014 : The Fourth International Conference on Smart Grids, Green Communications and IT Energy-aware Technologies

