
An Algorithm for Combinatorial Entropy Coding

Stephan Bärwolf

Integrated Communication Systems Group
Ilmenau University of Technology

Ilmenau, Germany
stephan.baerwolf@tu-ilmenau.de

Abstract—Entropy coding (esp. order-0) was one of the first
techniques for lossless data compression, dating back to the
invention of modern information theory. Over such a long period
of time different schemes were invented and entropy coding
has experienced various improvements: Huffman published its
minimal tree structured codes and then Witten, Neal and Cleary
presented a scheme leading to even better results.
While entropy compression is still used today in most of recent
compression schemes, it has not lost its significance. This paper
presents an encoding and its corresponding decoding algorithm
not using trees or intervals to do entropy compression. Instead it
derives permutations from the input which are mapped to natural
numbers. Furthermore this paper gives an impression about the
compression performance by comparing some first results with
well known entropy compression schemes.

Keywords- entropy; coding; data compression

I. INTRODUCTION

Today, nearly all lossless and even lossy compression
schemes are using at least a build-in order-0 entropy coder.
Because normally entropy coding is very easy to understand
and very effective in compressing non uniform distributed
inputs, it is a preferred “last-stage” compression technique
in such schemes. Since Shannon posted his first ideas about
compression, known as Shannon-Fano, in his famous paper
[3], different concepts for entropy compression have emerged:
Some years after Shannon, David Huffman [4] improved
Shannons scheme. Still using the same concept of binary
trees, Huffman changed the way of constructing the tree
structure and proved it to be optimal. Finally, in 1987 a paper
[5] was published, which clearified an algorithm leading to
nearly always better compression results than Huffman. This
breakthrough was done by using successive bisection of an
interval instead of trees to generate code words.

As already mentioned, even if today’s compression schemes
use more advanced algorithms, one of the previous mentioned
entropy coders (often Huffman) is still part of them. For
example, the Microsoft LZX [7] extends the idea of LZ77
[6] by utilizing entropy compression for match-lengths and -
positions via Huffman codes.
An extreme example of entropy compression used today
are the Burrows-Wheeler transform (BWT) [8], its bijective
version BWTS [9], and other sort transforming modifications
[11]. Since the BWTs are only “transformations”, the whole

compression effect is done (after some intermediate processing
stages) in one final entropy compression stage [10].

This paper presents a different concept for order-0 entropy
compression by mappings of permutations to enumerations and
vice versa. Instead of using trees or intervals, the compression
results of the presented technique therefore should never be
worse than the one compared to arithmetical coding.

The paper is structured as following. A simple algorithm for
encoding is presented and discussed in the first section. After
this section the same is done for the decoding. In section 4,
some first results are presented by using the usual compression
corpora ([14],[15],[16]). Finally, the paper will be closed with
a conclusion/future work chapter.

II. ENCODING

The idea of encoding an input word “I” over the finite,
non-empty alphabet “A” (I ∈ A∗, (a0, a1, . . . , ad−1) ∈
A, a0 < a1 < · · · < ad−1), is to enumerate its
represented permutation under its given symbol frequencies
α ([α[a0], α[a1], . . . , α[ad−1]] = α ∈ (N ∪ {0})k , α[ai] =
|I|ai , n = |I| =

∑d−1
k=0 α[ak]).

Furthermore ak will be synonymous with k.

Because such an enumeration would be bounded by a
multinomial coefficient (1), the enumeration could be stored
with only log2(

(
n
α[]

)
) instead of n · log2(d) bits.

(
∑d−1
k=0 α[k])!∏d−1
k=0 α[k]!

=
n!∏d−1

k=0 α[k]!
=

(
n

α[]

)
< dn (1)

For example, the word “mississippi” leads to enumera-
tion 32592 (out of 11!

4!·1!·2!·4! = 34650), where α[”i”] =
4, α[”m”] = 1, α[”p”] = 2, α[”s”] = 4, see table I.
A different word may produce the same result, if its permuta-
tion is the same and just its symbol frequencies α are different:
The word “MISSISSIPPI” leads to same enumeration 32592.

19Copyright (c) IARIA, 2014. ISBN: 978-1-61208-322-3

CTRQ 2014 : The Seventh International Conference on Communication Theory, Reliability, and Quality of Service

TABLE I. ENUMERATIONS FOR A GIVEN α

enumeration word
0 iiiimppssss
1 iiimippssss
. . .

99 mppiisisiss
100 imppsiisiss

. . .
1999 iippisisssm

. . .
32591 imssissippi
32592 mississippi
32593 msisissippi

. . .
34649 ssssppmiiii

Algorithm 1 shows a way to efficiently calculate such an
enumeration.

First for every symbol a = ai (see line 5) a separate, partial
enumeration (“codea”) is generated by just taking symbols
larger or equal to ai into account.
Because permutations of smaller symbols aj , aj < ai have
already been processed, they are ignored in further iterations.
Therefore, codea is a sum of binomial coefficients

(
n
m

)
for

every position where “a” occurs in “I”. Therefore, “n” is
the number of symbols (till the current processed position)
greater or equal to “a” and “m”, the count of already processed
occurrences of “a”.
This “outer” loop is done backwards in order to enable forward
decoding.

The final output result, “code”, is the combined value of all
“codea”.

basea =

a−1∏
i=0

(
n−

∑i−1
l=0 α[l]

α[i]

)
, base0 = 1 (2)

code = code0 +

d−1∑
a=1

codea ·
a−1∏
i=0

(
n−

∑i−1
l=0 α[l]

α[i]

)

=

d−1∑
a=0

codea · basea (3)

III. DECODING

In order to decode a given enumeration, first the original
symbol frequencies α must be known to the decoder. In a
practical application, this is either already known (due to
special constructions), or has to be transmitted to the decoder
separately.
Within the further text it is assumed to know the correct α
before decode.

If α is known, then n = |I| can be retrieved efficiently, because
n =

∑d−1
k=0 α[k], d = |α|.

Knowing α also enables the decoder to calculate each basea
using (2) and therefore each codea using (3). Resolving the
equation (3) for codea leads to (4).

codea =

⌊
code mod (

∏a
i=0 basei)∏a−1

i=0 basei

⌋
(4)

Algorithm 1 Derive an enumeration (code) from an (input)
word
Require: msg ⇐ to be encoded message (msg = I)
Require: α ⇐ frequency of each character (byte) in the

message
Require: n⇐ size of decoded message (n =

∑255
a=0 α[a])

1: // initialize output:
2: code⇐ 0
3: bytesdone ⇐ 0
4: // process position of every value “a” individually
5: for a = 255 down to 0 do
6: bytesdone ⇐ bytesdone + α[a]
7: bytesrelevant ⇐ 0
8: bytesprocessed ⇐ 0
9: codea ⇐ 0

10: code⇐ code ∗
(
bytesdone

α[a]

)
11: // loop over message, track positions of value “a”,

ignore smaller values
12: for msgposition = 0 to (n− 1) do
13: if msg[msgposition] = a then
14: if msg[msgposition] = a then
15: bytesprocessed ⇐ bytesprocessed + 1
16: codea ⇐ codea +

(
bytesrelevant

bytesprocessed

)
17: end if
18: bytesrelevant ⇐ bytesrelevant + 1
19: end if
20: end for
21: code⇐ code+ codea
22: end for
23: return code

To retrieve a position for symbol “a” from codea, the biggest
position possible (with a binomial coefficient still fitting into
codea) has to be successively substracted, as indicated in line
17 of algorithm 2. Thanks to α[a] the decoder already knows
the right count of positions to decode.
Because such decoded positions were positions in the set of
unprocessed symbols (symbols greater or equal) they have to
be transformed into a global array index (lines 19 to 26).

Finally, all indices of the “msg” array have been processed
and msg contains the decoded “I”.

20Copyright (c) IARIA, 2014. ISBN: 978-1-61208-322-3

CTRQ 2014 : The Seventh International Conference on Communication Theory, Reliability, and Quality of Service

Algorithm 2 Retrieve word from its enumeration
Require: code⇐ to be decoded number
Require: α⇐ frequency of each character (byte) in decoded

message
Require: n⇐ size of decoded message (n =

∑255
a=0 α[a])

1: // initialize output:
2: msg ⇐ each byte filled with value 255, |msg| = n
3: bytesleft⇐ n
4: // process permutation of every char individually:
5: for a = 0 to 255 do
6: // retrieve permutation code for positions of value a
7: codea ⇐ code mod

(
bytesleft
α[a]

)
8: // update code for succeeding permutations
9: code⇐ code div

(
bytesleft
α[a]

)
10: position⇐ bytesleft
11: // to track the unprocessed indices within msg:
12: msgposition ⇐ n
13: msgunprocessed ⇐ bytesleft
14: // start decoding positions where value “a” occurs in

message
15: for k = α[a]− 1 down to 0 do
16: maxpos⇐ position
17: position ⇐ find biggest m with k 5 m < maxpos

and
(
m
k+1

)
5 codea

18: codea ⇐ codea −
(
m
k+1

)
19: // place value “a” into msg at unprocessd position

“position”
20: while msgunprocessed > maxpos do
21: msgposition ⇐ msgposition − 1
22: if msg[msgposition] = 255 then
23: msgunprocessed ⇐ msgunprocessed − 1
24: end if
25: end while
26: msg[msgposition]⇐ a
27: end for
28: bytesleft⇐ bytesleft− α[a]
29: end for
30: return msg

IV. FIRST RESULTS

The results in table II (resp. table III) show the compressed
size and the percentage to the original size of the Huffman-,
arithmetical- and the presented scheme.
In order to use a set of representative files, the Canterbury [16]
(resp. Calgary [15]) corpus was used.
There were no other preprocessings than the direct entropy
compression with the mentioned schemes.
In all schemes it was assumed that decoders will have full
apriori information about α and used this apriori information
at the beginning of encoding.

For generating Huffman compressed files, the open source
“libhuffman” [17] was used. This encoder operates in two
phases, the first one scans the input in order to construct an
optimal tree. The second phase uses this tree to compress the
input byte by byte. For “libhuffman” the function storing the
extra information about α (from phase one) was commented
out in order to preserve comparability.

For generating arithmetical compressed files, the algorithm

from Witten et al. [5] was used. It was slightly adapted
to avoid using END-symbols and to work in two phases
like “libhuffman” does. As in “libhuffman”, the arithmetical
encoding used the knowledge about α from the beginning, but
also did not store any information about α to the output.

The algorithm of the presented scheme always stored
log2(

(
original size

α[]

)
) bit (ceiled up to the next full byte) as

output. Again no information about α was put to the output.

From both tables it can be seen, that the presented scheme
always is the best compressing one.

V. CONCLUSION

This paper presented a different concept for order-0
entropy compression, where mappings from permutations to
enumerations are used. The paper presented also an algorithm
for encoding and for decoding. First compression results
were compared to two well established encoders, indicating
promising compression performance since the presented
scheme always is the most performant one.
Since it can be shown, that at most (n + d) · log2(n + d) −
n · log2(n) − d · log2(d) additional bits (n = |I|, d = |α|)
are required to be transmitted to the decoder for decoding
the correct α, the presented coding scheme seems to have no
issues affecting decodability.

The presented technique also offers promising possibilities
for future work on this field:
Since binomial coefficients can be precalculated into some
kind of cache or table, the scheme nearly hasn’t any slow
multiplication. Because the last remaining multiplication in
line 10 of algorithm 1 could be replaced by much faster
logical left-shifting - no multiplications or even divisions are
necessary at all.
Furthermore and because of commutative multiplica-
tion/addition, the algorithms outer- and inner loops are good
candidates for parallelization with nearly no synchronization
needs and therefore nearly full speedup.

ACKNOWLEDGMENTS

The author would like to thank the “Deutsche Telekom
Stiftung” Germany [18] for its funding and for its ongoing
efforts, actions and activities to support education and thus
research and science. Furthermore the author also would like
to thank the team of the Integrated Communication Systems
Group at TU-Ilmenau for its general support at all times.

21Copyright (c) IARIA, 2014. ISBN: 978-1-61208-322-3

CTRQ 2014 : The Seventh International Conference on Communication Theory, Reliability, and Quality of Service

TABLE II. THE CANTERBURY CORPUS [16] COMPRESSION PERFORMANCE

org. size huffman arithmetical presented
filename (bytes) size % size % size %

alice29.txt 152089 87688 57.66 86837 57.10 86788 57.06
asyoulik.txt 125179 75806 60.56 75235 60.10 75187 60.06
cp.html 24603 16199 65.84 16082 65.37 16035 65.17
fields.c 11150 7026 63.01 6980 62.60 6936 62.21
grammar.lsp 3721 2170 58.32 2155 57.91 2126 57.14
kennedy.xls 1029744 462532 44.92 459971 44.67 459779 44.65
lcet10.txt 426754 250565 58.71 249071 58.36 249008 58.35
plrabn12.txt 481861 275585 57.19 272936 56.64 272880 56.63
ptt5 513216 106551 20.76 77636 15.13 77563 15.11
sum 38240 25645 67.06 25473 66.61 25353 66.30
xargs.1 4227 2602 61.56 2589 61.25 2559 60.54

TABLE III. THE CALGARY CORPUS [15] COMPRESSION PERFORMANCE

org. size huffman arithmetical presented
filename (bytes) size % size % size %

README 2479 1492 60.19 1483 59.82 1457 58.77
bib 111261 72761 65.40 72330 65.01 72273 64.96
book1 768771 438374 57.02 435043 56.59 434981 56.58
book2 610856 368300 60.29 365952 59.91 365877 59.90
geo 102400 72556 70.86 72274 70.58 72117 70.43
news 377109 246394 65.34 244633 64.87 244555 64.85
obj1 21504 16051 74.64 15989 74.35 15868 73.79
obj2 246814 194096 78.64 193144 78.25 192971 78.18
paper1 53161 33337 62.71 33113 62.29 33058 62.18
paper2 82199 47615 57.93 47280 57.52 47228 57.46
paper3 46526 27275 58.62 27132 58.32 27084 58.21
paper4 13286 7860 59.16 7806 58.75 7768 58.47
paper5 11954 7431 62.16 7376 61.70 7334 61.35
paper6 38105 24023 63.04 23861 62.62 23808 62.48
pic 513216 106551 20.76 77636 15.13 77563 15.11
progc 39611 25914 65.42 25743 64.99 25687 64.85
progl 71646 42982 59.99 42720 59.63 42668 59.55
progp 49379 30214 61.19 30052 60.86 30000 60.75
trans 93695 65218 69.61 64800 69.16 64734 69.09

REFERENCES

[1] D. Salomon, “Data Compression The Complete Reference,” 4th ed.
London: Springer, 2007.

[2] D. J. C. MacKay, “Information Theory, Inference, and Learning Al-
gorithms,” version 6.0 Cambridge University Press, June 2003, pp.
32.

[3] C. E. Shannon, “A Matematical Theory of Communication,” Reprinted
with corrections from The Bell System Technical Journal, vol. 27,
October 1948, pp. 379–423, 623–656.

[4] D. A. Huffman, “A method for construction of minimum-redundancy
codes,” Proceedings of the I.R.E., September 1958, pp. 1098–1101.

[5] I. Witten, R. Neal, and J. Cleary, “Arithmetic Coding for Data Com-
pression,” Communications of the ACM, vol. 30, no. 6, June 1987, pp.
520–540.

[6] A. Lempel and J. Ziv, “A Universal Algorithm for Sequential Data
Compression,” IEEE transactions on information theory, May 1977, pp.
337–343.

[7] Microsoft, “Microsoft LZX Data Compression Format,” version
4.71.410.0 Microsoft Cabinet SDK, , March 1997.

[8] M. Burrows and D. J. Wheeler, “A block-soring Lossless Data Com-
pression Algorithm,” System Research Center, Palo Alto, USA, research
report, May 1994.

[9] J. Gil and D. A. Scott, “A Bijective String Sorting Transform,” Is-
rael/USA, July 2009.

[10] J. Abel, “Improvements to the Burrows-Wheeler Compression Algo-
rithm: After BWT Stages,” preprint Düsburg-Essen, Germany, March
2003.

[11] M. Kufleitner, “On Bijective Variants of the Burrows-Wheeler Trans-
form.” Prague, Czech Republic: Proceedings of PSC 2009, pp. 65–79.

[12] A. Salomaa, “Public-Key Cryptography,” 2nd ed. Finland: Springer,
1990.

[13] M. Lothaire, “Combinatorics on words,” Reading, Massachusetts:
Addison-Wesley, 1983.

[14] R. Arnolds and T. Bell, “A corpus for the evaluation of lossless
compression algorithms.” Christchurch, NZ: University of Canterbury.

[15] T. C. Bell and I. Witten, “Calgary compression corpus,” [retrieved:
December, 2013]. [Online]. Available: ftp://ftp.cpsc.ucalgary.ca/pub/
projects/text.compression.corpus/

[16] M. Powell and T. Bell, “The Canterbury corpus,” [retrieved: December,
2013]. [Online]. Available: http://corpus.canterbury.ac.nz/

[17] D. R. Richardson, “libhuffman - An Open Source Huffman Coding
Library in C,” [retrieved: December, 2013]. [Online]. Available:
http://huffman.sourceforge.net/

[18] http://www.telekom-stiftung.de

22Copyright (c) IARIA, 2014. ISBN: 978-1-61208-322-3

CTRQ 2014 : The Seventh International Conference on Communication Theory, Reliability, and Quality of Service

