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Abstract— Cloud computing has changed the way commonly 

used data is stored. Before the adoption of the cloud, most data 

was preserved in proprietary relational databases.  Cloud 

services provide native storage for several complex data types 

including contacts, calendar events, tasks and form responses.  

Along with the cloud services the user is delivered mobile 

application synchronization, web application interfaces and 

guarantees of availability.  Unfortunately, along with all the 

benefits of the native cloud data types comes complexity that 

leads to several difficulties.  One difficulty is data queries that 

relate data from different heterogeneous data sources.  In this 

paper, we develop a relational algebra that operates on two-

dimensional data stored in many heterogeneous cloud formats.  

The relation algebra is exposed via web-services and allows a 

user to combine data from different data types and across 

domains. 

Keywords-Relational Algebra; Cloud Computing; Heterogeneous 

Data  

I. INTRODUCTION  

Relational algebra is a mathematical notation used for 
modeling the data stored in two-dimensional tables.  Edgar F. 
Codd [1] created relational algebra to express the operations 
and operators used with relational databases to query data.  
Since its original inception, relational algebra has been 
extended to model query operations on many different data 
source structures from the original relational model. Two 
examples of extensions to the original relational algebra 
specification is an extension that allows operations on 
hierarchical data [2] and an extension that allows operations 
on semantic data [3]. 

In the same work [1], Codd also developed algorithms for 
reducing redundancy in the data model to ensure that data 
was kept correct and not lost from the update and deletion 
anomalies. At the time of Codd’s work, access to computers 
to store databases was rare, and access to applications that 
manage data was even rarer.  In today’s world, most 
individuals carry at least one device with several databases 
on it.  The same data is often stored on different machines in 
their office and their home.  The redundant copies of the data 
lead to problems Codd could not have anticipated with his 
single data store where he applied his relational algebra 
operations. 

Keeping the distributed data updated across all the diverse 
devices has been improved by the cloud.  Often the data is 
stored in the cloud and changes made on mobile devices or 
desktops are bi-directionally synchronized with the cloud.  
Unfortunately, the data tends to be stored in different 
heterogeneous databases that are specialized for the type of 
data the application handles.  An example of the diverse data 

source problem in the cloud is seen when looking at the three 
major cloud productivity app providers.  Google G Suite [4], 
Microsoft Office 365 [5], and Zoho Docs [6] each have 
different data formats and application programmer interfaces 
(API) for emails, form data, calendar data.  Each of these 
cloud office suites also provides the ability to store diverse 
two-dimensional data in spreadsheet files. 

The organization of the paper is as follows. Section II 
describes the related work and the limitations of current 
methods. In Section III, we describe the relational algebra 
operators, we implemented for the cloud data sources.  
Section IV describes the different data sources we allowed as 
operands in our work. Section V describes some motivating 
examples of queries we developed using our relational 
algebra. Section VI drills into some specific details on how 
we programmed the relational algebra query engine and how 
data can be returned from the engine. In section VII, we talk 
about using the relational algebra to enforce consistency in 
the distributed data source. We conclude and discuss future 
work in Section VIII. 

II. RELATED WORK  

Garcia-Molina, Ullman, and Widom [6] spend several 
chapters in their database textbook discussing algebra on 
relations.  The authors build upon the work originally 
developed by Codd [1].  They contribute several expressive 
additions to Relational Algebra in their book. One addition 
allows for a linear sequence of operations.  The second 
addition utilizes relation algebra to express constraints on 
relations.  We utilize their work to develop our cloud 
heterogeneous data source constraints. 

Agrawal [2] extended relational algebra to handle 
hierarchical data.  In Codd's original work and our work, we 
assume the data sources are two-dimensional tables where a 
column, or set of columns, of the table, relates to a column or 
set of columns, in a different two-dimensional table. 
Agrawal’s work adds an operator to express hierarchical 
relationships and query the transitive closure of those 
relationships. 

Cyganiak [3] took relation algebra and applied the 
operators to Resource Description Framework (RDF) triples.  
An RDF triple is a 3 part notation for expressing the subject 
object and predicate.  An interesting piece of Cyganiak work 
is in a subsection of the paper that looks at extensions to 
relational algebra that would allow the operators to work on 
full RDF datasets.  RDF datasets are collections of RDF 
graphs that would be distributed across the internet.  Our 
work uses distributed data sources but does not limit the 
format to the same data structure as he did with RDF graphs. 
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III. CLOUD RELATIONAL ALGEBRA OPERATORS 

Relational algebra is a set based mathematical model that 
provides a notation for performing operations on sets and 
producing sets as results of the operations.  In this work, our 
cloud-based relational algebra includes the same operators as 
traditional relational algebra, but instead of operating on sets, 
our algebra operates on bags or multisets.  A bag or multiset 
is a generalization of a set that allows duplicate instances of 
elements in the bag.  We choose to work with bags for 
performance reasons as we do not have control of the data 
sources in the cloud and they may contain duplicate elements.  
We also use bag operations for performance reason.  The 
deduplication process of a bag is at best a Nlog2N operation. 

Table I shows our relational cloud algebra operators 
mapped from the original relational algebra.  Our 
implementation was developed as functions in Google App 
Script.  The signature of each function contained the same 
number of arguments as the original relational algebra but 
implemented as parameters to the function.  Each function 
also returns a two-dimensional relational structure that can be 
passed into any of the other cloud relational functions as an 
input for the relation.  The consistent return type allows the 
operators to be combined to produce complicated queries. 

A. Selection 

The cloud selection function is called by passing in a 
condition as a string and a relation.  The algorithm iterates 
over the tuples in the relation and returns all the tuples where 
the condition evaluates to true. 

B. Projection 

The cloud projection function is called by passing in a 
comma-delimited list of columns in the first argument as a 
string.  The second argument is the original relation data 
source that holds the data columns.  The result is a new table 

with just the columns specified. 

C. Product 

The cloud production function takes the two arguments 
passed in and creates a cartesian product of the tuples in the 
first argument and the tuples in the second argument.  The 
result is a new two-dimensional multiset with the schema 
made up of the combination of the columns from the two 
input datasets.  The multiplicity of the result relation is the 
number of tuples in the first argument data source multiplied 
by the number of tuples in the second argument data source. 

D. Theta Join 

The cloud theta join function is invoked by passing in 
three arguments.  A new data source is passed out of the 
function with the same schema as if the first and third 
arguments were passed to the product function.  The 
multiplicity is reduced by applying a filter to the product.  The 
filter condition is specified in the second argument to the 
function.   

E. Natural Join 

The cloud natural join function is similar to the theta join 
function except no condition is specified.  The caller specifies 
the two input sources and the data is joined based on equal 
column names between the two sources. 

F. Rename 

The cloud rename function is used to change the names 
of the columns in the data source.  The primary purpose of 
the operator is to ensure as a predecessor to a natural join or 
an intersection, union or difference operation. 

G. Intersection 

The intersection cloud function takes two data sources as 
arguments and finds the tuples that exist in both data sources.  
The schema of both data sources needs to match so that the 
tuples can be compared.  The result relation has the columns 
of one of the input data sources and the tuples that were in 
common between the two data sources.  Often in bag 
relational operations, the intersection operator produces a set.  
Our implementation produces a bag for the performance 
reasons given earlier. 

H. Union 

The union cloud function takes two data sources as 
arguments and combines the dataset.  The schema of both 
data sources needs to be identical so that the tuples can be 
combined.  The result relation has the schema of one of the 
input data sources and all the tuples that were in both of the 
two input data sources. Often in bag relational operations, the 
union operator produces a set.  Our implementation produces 
a bag for the performance reasons given earlier. 

TABLE I 
 RA CLOUD OPERATORS 

Relational 
 Operator 

Example  Name Cloud 
Function 

Σ R1 := σC 

(R2) 
selection R1 = 

ra_select(c,R2) 

Π R1 := πL 

(R2) 
projection R1 = 

ra_project(L,R2) 

⋈ R3 := R1 
⋈C R2 

theta join R3 = 
ra_theta(R1,c,R2) 

⋈ R3 := R1 
⋈ R2 

natural join R3 = 
ra_natural(R1,R2) 

Ρ R1 := ρL 
(R2) 

rename R1 = 
ra_rename(L,R2) 

Χ R3 := R1 
Χ R2 

product R3 = 
ra_product(R1,R2) 

∩ R3 := R1 
∩ R2 

intersection R3 = 
ra_intersect(R1,R2) 

∪ R3 := R1 
∪ R2 

union R3 = 
ra_union(R1,R2) 

— R3 := R1 
—R2 

difference R3 = 
ra_diff(R1,R2) 
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I. Difference 

The cloud difference function takes two data sources as 
arguments and finds the tuples that exist in the first data 
source but not in the second data source.  The schema of both 
data sources needs to be identical so that the tuples can be 
compared.  The result relation has the columns of one of the 
input data sources and the tuples that were in the first data 
sources but not the second data source.  Often in 
implementations of relational operations on bags, the 
difference operator produces a set.  Our implementation 
produces a bag for the performance reasons given earlier. 

IV. CLOUD HETEROGENEOUS DATA SOURCES  

Cloud service providers offer native storage for many 
different sources of data a user may want to query.  In our 
implementation, we supported several different types of data 
sources.  The data sources either had a fixed static schema or 
the schema was dynamic based on the configuration of the 
data source.  Some examples of fixed static schemas are Rich 
Site Summary (RSS) feeds, events and contacts. With other 
data sources, the schema varies based on the specific relation 
queried.  These sources include spreadsheet data, form data, 
and web services.  Table II shows the breakdown of the 
schema types for the different cloud data sources. 

Some of the schemas for the different data types are fixed 
while others are pulled from the metadata of the data.  The 

data sources that cross domains require the unique address of 
the data source. RSS Feeds are a data source that can cross 
domains and have a fixed schema.  When an RSS data source 
is used as the operand of an operation, we prepend a string of 
“rss=” followed by the feed URL.  An example operand of 
type RSS would be expressed as 
“rss=http://today.cofc.edu/category/news-briefs/feed/.” 
Table III shows the fixed schema for all tuples in a relation of 
type RSS.  Each RSS tuple has a title, date of publication and 
description, which are the typically displayed by an RSS 
reader.  There is also a link field returned by an RSS feed.  We 
parse the link into four parts: scheme, host, the path and query 
string.  The scheme is the protocol that is used to reference 
the link.  The host is the website where the link is hosted.  The 
path identifies a specific resource at the website, and the 
query string is a set of key-value pairs that are sent as 
parameters to the resource.  We parse URL into the separate 
components so that each component can be easily joined to 
other data sources in relational algebra queries. 

The Calendar datasource is a fixed schema source that 
reads data that is stored in the Google GSuite. The calendar 
data source is broken into two different relations.  The first 
relation has the primary event details for events on the 
calendar.  The second relation has the guests that are linked 
to the event.  Table IV displays the schema for the event 
component of the data source, and TABLE V shows the 
schema for the event guest data. We separated the calendar 
data into two sources to normalize the guest email addresses.  
The email address is often a unique identifier in cloud data 
sources.  Having the email addresses in a normalized relation 
will allow for easy joining to other data sources. When a 
calendar data source is used as an operand, the operand is 
passed as a string with a prefix of “calendar=” followed by 

TABLE II 
RA CLOUD DATA SOURCES 

Data Source schema Ownership 

Spreadsheets Dynamic Distributed 

Forms Dynamic Personal 

Contacts Static Personal 

Events Static Distributed 

RSS Feeds Static Distributed 

RESTful 
data 

Dynamic Distributed 

 

TABLE III 
RSS SCHEMA 

Field Data Type 

Title String 

LinkScheme String 

LinkHost String 

LinkPath String 

LinkQueryString String 

PubDate String 

Description String 

GUID String 

 

TABLE IV 
EVENTS SCHEMA 

Field Data Type 

Id String 

Title String 

Description String 

StartTime Date 

EndTime Date 

AllDay Boolean 

Recurring Boolean 

Location String 

 

TABLE V 
EVENT GUEST SCHEMA 

Field Data Type 

EventId String 

Name String 

Email String 
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the name of the calendar.  The events data source allows data 
to come from different ownership.  To access a calendar 
owned by a different user B, user A would need to share the 
calendar with user B. An example operand of type event 
would be expressed as “calendar=US Holidays.”  To query 
the guests of an event, you would prefix the relation with 
“calendarguests=.”  An example operand of type event would 
be expressed as “calendarguests=US Holidays.” 

The contacts data source is a large schema with many de-
normalized columns.   We chose to leave the table mostly de-
normalized except pulling out the contact emails into their 
own relation. Table VI shows the schema for the contact 
relation.  In the schema, addresses and phone number types 
are represented by distinct attributes.  The phone and address 
fields were not used in any of our test cases that involved join 
operations.  For simplicity, we left the phone and address 
fields de-normalized.  A future version may add additional 
cloud data sources where the address or phone number is a 

primary key, and we will want to normalize this data. Table 
VII shows the schema for the contact emails. When a 
reference to a contacts data source is used as an operand in a 
relational algebra operation, the operand is expressed with a 
fixed string of “contacts.”  The primary cloud providers of 
contact services do not support distributed contacts, so there 
is one single relation that holds the contacts. If the relational 
algebra operation should operate on  the contact emails, then 
the operand is expressed as the fixed string of 
“contactemails.” 

The spreadsheets data source use the first row of the data 
range to specify the schema to be used.  In our experimental 
implementation, we assume the data range starts in cell A1 on 
the first tab of the spreadsheet.  Future implementations could 
enhance the spreadsheet functionality to specify specific tabs 
and specific cell ranges.  As you will see in our example 
distributed queries our primary goal with spreadsheet queries 
was to allow queries across ownership.  So in the relational 
algebra operations, the operand can specify wildcards to 
include many spreadsheets stored in the same folder.  With 
the Google GSuite, each spreadsheet can be owned by a 
different user.  The user executing the relational algebra can 
locate the shared files into their own folder. 

Form data behaves almost identically to spreadsheet data 
in our implementation.  The Google GSuite stores form data 
as spreadsheet data so when a form is queried in a relational 
algebra operation the first row in the spreadsheet is the form 
questions.  Again our implementation assumes all questions 
are included in the data set by starting the data from cell A1 
in the backend spreadsheet. 

TABLE VI 
CONTACTS SCHEMA 

Field Data Type 

Id String 

FullName String 

GivenName String 

MiddleName String 

FamilyName String 

Initials String 

Prefix String 

Suffix String 

MaddenName String 

NickName String 

ShortName String 

HomeAddress String 

HomeAddressIsPrimary Boolean 

WorkAddress String 

WorkAddressIsPrimary Boolean 

Company String 

JobTitle String 

AssistantPhone String 

CallBackPhone String 

HomePhone String 

WorkPhone String 

MobilePhone String 

Page String 

HomeFax String 

WorkFax String 

HomePage String 

 

TABLE VII 
CONTACT EMAILS SCHEMA 

Field Data Type 

ContactId String 

Type String 

Email String 

Primary Boolean 

 

[  { country: 'China',         population: 1379510000 }, 
  { country: 'India',         population: 1330780000 }, 

  { country: 'United States', population:  324788000 }, 
  { country: 'Indonesia',     population:  260581000 }, 
  { country: 'Brazil',        population:  206855000 }] 

]; 

Figure 1. Example REST data  
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Our implementation of restful web-services made some 
simple assumptions to ensure success in the first version.  The 
first assumption is that there is no authentication.  The second 
assumption was that data is returned in JavaScript Object 
Notation (JSON) format.  The data returned from the web-
service must be an array of JavaScript objects, each with the 
same properties. In the industrial world, these restrictions are 
too high to successfully include data from many 3rd party 
vendors, but it was good enough for our implementation to 
prove that web-service data could be included in the 
relational algebra operations. Figure 1 shows a sample JSON 
array of countries along with its population that can be 
processed by our relational algebra. 

 

V. EXAMPLE DISTRIBUTED QUERIES 

The first example query we tested with our cloud 
relational algebra was querying of graduate student program 
of study (POS) plans that were stored in individually owned 
spreadsheets in the cloud.  Each student in the graduate 
program keeps a spreadsheet they have shared with the 
program director.  The MS degree requires each student to 
take eleven classes to complete their degree.  Four of the 
classes are core classes, so all students are required to take 

these classes.  There are some additional four classes to 
represent the focus area, so students choose a focus area and 
have a set of classes to choose from to meet the focus 
requirement.  The final three courses are electives that can be 
taken as a thesis option. Table VIII shows a sample POS for 
a typical student with a focus on cybersecurity. The shared 
links are stored in a single cloud directory named 
“GradSchool.”  Each spreadsheet is given a name that starts 
with the student's name followed by the letters “POS.” The 
spreadsheets have three columns.  The semester a student 
plans to take a course is the first column. The course they plan 
to take is the second column.  The third column holds the POS 
category the course is fulfilling. 

To determine the demand for a specific course, we can 
write a relational algebra expression that uses a combination 
of the selection and projection operations.  Figure 2 shows 
the cloud relation algebra that will return a two-dimensional 
array of the student's email address and the class they want to 
take in the “Summer 18” semester.  Once the result data is 
returned to a cloud spreadsheet, a pivot table can be used to 
display the course demand. 

Figure 3 extends this example by performing a theta join 
operation on the students taking summer classes with their 
contact information.  For the implementation, two theta joins 
are applied.  The first join is done by the owner of the 
spreadsheet to the email of the contacts.  The second join is 
completed from the contact email id to the contact id.  This 
query is only possible because the normalization that was 
performed on the contact data described earlier.  A student 
may have both a home and work email address, and it is not 
known which email is the owner of the spreadsheet data. 

The second example query we wanted to handle with our 
cloud relational algebra was also related to student data.  In 
this example, we want to combine the results from a student 
survey on happiness in the program with the events the 
student attended and the classes they took during the 
semester.  Figure 4 shows a part of our final query.  We start 
by extracting the classes from the program of study 
spreadsheets with the selection operation on the semester = 
“Fall 17”.  We apply a theta join to the results of the selection 
operation with the cloud form named 
“SpringStudentSurvey.”  The results of the join operation are 
then theta joined to the event guests in the “studentevents” 
calendar.  In the final step, the guest is theta joined with the 
event they attended.  Normally, the attributes would be 

TABLE VIII 
SAMPLE POS 

Semester Class Area 

Fall 17 CSIS602 Core 

Fall 17 CSIS603 Core 

Fall 17 CSIS614 Cybersecurity 

Spring 17 CSIS601 Core 

Spring 17 CSIS604 Core 

Spring 17 CSIS631 Cybersecurity 

Summer 18 CSIS638 Elective 

Summer 18 CSIS649 Elective 

Fall 18 CSIS632 Cybersecurity 

Fall 18 CSIS641 Cybersecurity 

Fall 18 CSIS618 Elective 

 

ra_project(“owner, class”,ra_select(“semester=Summer  18”,”Spreadsheet=GradSchool/*POS”)) 
 

Figure 2. RA to retrieve students taking summer classes 

ra_theta(ra_theta(ra_project(“owner, class”,ra_select(“semester=Summer  
18”,”Spreadsheet=GradSchool/*POS”)),”owner=email”,contactemails),”contact_id=id”,contacts) 

 
Figure 3. RA to retrieve student summer contact info 

ra_theta(ra_theta(ra_select(“semester=Fall 17”,”Spreadsheet=GradSchool/*POS”),”owner=username”, ra_project(“opinion”, 
”Form=SpringStudentSurvey”)),“email=username”,”calendarguests=studentevents”),“eventid=id”,”calendar= 

studentevents”) 
 

Figure 4. RA to retrieve student survey and student data 
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minimized with another projection operation, but for 
simplicity, we left projection out of Figure 4. 

The three queries presented in this section are just a small 
representation of the types of queries that can be performed 
with the heterogeneous data. 

VI. IMPLEMENTATION 

As discussed in the earlier sections we developed our 
solution using Google Application Script (GAS) [7].  The 
GAS environment was designed to allow a developer to 
extend G Suite [4], Google’s suite of cloud office 
applications.  The programming environment concepts are 
similar to the Microsoft VBA programming functionality 
included in Microsoft Office [8].  At the time of our 
experimentation, Microsoft did not offer a similar 
programming environment for their cloud office suite Office 
365 [5]. 

We felt the best storage location for the result of the cloud 
relational algebra operations was in Google spreadsheets.  
Google spreadsheets can be enhanced with GAS to allow 
custom functions.  Unfortunately, for security reasons, 
Google does not allow spreadsheet custom functions to 
access external data.  We decided to implement our solution 
as a web-service that could be called from any programming 
language but also imported into a Google cloud spreadsheet 
using the “importdata” function. 

VII. CONSTRAINTS ON HETEROGENEOUS DATA SOURCES 

In this section, we build on the work previously described 
to query data using relational algebra. We extend the work to 
guarantee consistency in data entry in the cloud by expressing 
constraints utilizing the heterogeneous data.  The general idea 
is that we want to express a constraint that evaluates to true 
before allowing new data to be saved. 

Since the heterogeneous data is entered into the different 
native cloud applications directly, we have limited ability to 
intercept the request and execute our relational algebra 
queries.  Google has exposed some Triggers in the GAS 
framework that do allow us to intercept the save request we 
can use for validation. 

Google Forms and Calendars are the two applications that 
currently provide triggers that allow us to intercept the data 
save and validate that the relational algebra evaluates to true.  
We are hopeful that more triggers will be exposed via the API 
and we can extend our constraint work. 

With Google Forms a trigger can intercept the post and 
run the related relational algebra constraint.  Since all the 
relational algebra operators return a two dimensional set of 
data, we assume an empty set is false and any data returned 

is true.  If an empty set is returned, then the form is not 
submitted.  Instead, the user is redirected to a new URL with 
the fields of the form prefilled.  The field with the error is 
replaced with an error message stored in the constraint setup. 
TABLE IX shows our implementations simple constraint setup 
for form submissions.  The first column in the table identifies 
the field in the form that is checked.  The second column 
holds the relational algebra.  The third column specifies how 
validity is identified. The validity column is expressed as 
invalidity to simplify the rule definition as it is often 
expressed as an empty set on the return of the relational 
algebra.  The fourth column holds the message that is to be 
displayed in the pre-filled form the user is redirected to if 
there is a constraint violation.  TABLE IX was used with a 
simple example form for event booking that ensured that the 
room specified in field 1 and the resource specified in field 
two where valid.  To be valid, they had to exist in specific 
cloud spreadsheets. 

The calendar triggers were designed to solve the problem 
of synchronization of events between multiple calendars.  
Because of this design, there is not a way to intercept a call 
before the data is persisted.  Several of the Google cloud 
products support time-driven triggers.  Time-Driven trigger 
functions are similar to a CRON [10] job that runs a script 
based on a specific time.  Time-driven triggers let scripts 
execute at a particular time or on a recurring interval, as 
frequently as every minute or as infrequently as once per 
month. The challenge with a time-driven trigger is how to 
know what data has changed since the last time the trigger 
fired.  The calendar triggers solve this problem by passing a 
list of events that have changed since the last trigger fired.  
We decided not to implement relational algebra constraints 
that based on the calendar triggers or the time-driven triggers 
because it would require human interaction after the data is 
persisted to fix the constraint issue.  

VIII. CONCLUSIONS AND FUTURE WORK 

Based on our research, we believe the use of native 
heterogeneous cloud data sources will continue to grow and 
replace the proprietary relational data sources that people and 
organizations have come to rely upon for joining data into 
queries for analysis and constraints.  This work demonstrates 
a successful implementation of the low-level relational 
algebra operations and provides some successful use cases of 
our tool.  The hooks available to enforce constraints based on 
the relational algebra are inadequate at this point as 
demonstrated in our discussion. We hope the cloud vendors 
can be enticed to provide programmatic hooks before all data 
persistence operations in the future.  Our future work will 

TABLE IX 
Sample Form Constraint Table 

Field RA Invalid Message 

1 ra_select(“semester=*Field1*”,”Spreadsheet=Rooms”) Empty Please choose a valid room 

2 ra_select(“semester=*Field2*”,”Spreadsheet=Resources”) Empty Please choose a valid 
resource 

 

125Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization



expand our use cases and provide a native front end to the 
relational algebra web-services we provided. 
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