
Relational Algebra for Heterogeneous Cloud Data Sources

Aspen Olmsted

Fisher College

Department of Computer Science, Boston, MA 02116

e-mail: aolmsted@fisher.edu

Abstract— Cloud computing has changed the way commonly

used data is stored. Before the adoption of the cloud, most data

was preserved in proprietary relational databases. Cloud

services provide native storage for several complex data types

including contacts, calendar events, tasks and form responses.

Along with the cloud services the user is delivered mobile

application synchronization, web application interfaces and

guarantees of availability. Unfortunately, along with all the

benefits of the native cloud data types comes complexity that

leads to several difficulties. One difficulty is data queries that

relate data from different heterogeneous data sources. In this

paper, we develop a relational algebra that operates on two-

dimensional data stored in many heterogeneous cloud formats.

The relation algebra is exposed via web-services and allows a

user to combine data from different data types and across

domains.

Keywords-Relational Algebra; Cloud Computing; Heterogeneous

Data

I. INTRODUCTION

Relational algebra is a mathematical notation used for
modeling the data stored in two-dimensional tables. Edgar F.
Codd [1] created relational algebra to express the operations
and operators used with relational databases to query data.
Since its original inception, relational algebra has been
extended to model query operations on many different data
source structures from the original relational model. Two
examples of extensions to the original relational algebra
specification is an extension that allows operations on
hierarchical data [2] and an extension that allows operations
on semantic data [3].

In the same work [1], Codd also developed algorithms for
reducing redundancy in the data model to ensure that data
was kept correct and not lost from the update and deletion
anomalies. At the time of Codd’s work, access to computers
to store databases was rare, and access to applications that
manage data was even rarer. In today’s world, most
individuals carry at least one device with several databases
on it. The same data is often stored on different machines in
their office and their home. The redundant copies of the data
lead to problems Codd could not have anticipated with his
single data store where he applied his relational algebra
operations.

Keeping the distributed data updated across all the diverse
devices has been improved by the cloud. Often the data is
stored in the cloud and changes made on mobile devices or
desktops are bi-directionally synchronized with the cloud.
Unfortunately, the data tends to be stored in different
heterogeneous databases that are specialized for the type of
data the application handles. An example of the diverse data

source problem in the cloud is seen when looking at the three
major cloud productivity app providers. Google G Suite [4],
Microsoft Office 365 [5], and Zoho Docs [6] each have
different data formats and application programmer interfaces
(API) for emails, form data, calendar data. Each of these
cloud office suites also provides the ability to store diverse
two-dimensional data in spreadsheet files.

The organization of the paper is as follows. Section II
describes the related work and the limitations of current
methods. In Section III, we describe the relational algebra
operators, we implemented for the cloud data sources.
Section IV describes the different data sources we allowed as
operands in our work. Section V describes some motivating
examples of queries we developed using our relational
algebra. Section VI drills into some specific details on how
we programmed the relational algebra query engine and how
data can be returned from the engine. In section VII, we talk
about using the relational algebra to enforce consistency in
the distributed data source. We conclude and discuss future
work in Section VIII.

II. RELATED WORK

Garcia-Molina, Ullman, and Widom [6] spend several
chapters in their database textbook discussing algebra on
relations. The authors build upon the work originally
developed by Codd [1]. They contribute several expressive
additions to Relational Algebra in their book. One addition
allows for a linear sequence of operations. The second
addition utilizes relation algebra to express constraints on
relations. We utilize their work to develop our cloud
heterogeneous data source constraints.

Agrawal [2] extended relational algebra to handle
hierarchical data. In Codd's original work and our work, we
assume the data sources are two-dimensional tables where a
column, or set of columns, of the table, relates to a column or
set of columns, in a different two-dimensional table.
Agrawal’s work adds an operator to express hierarchical
relationships and query the transitive closure of those
relationships.

Cyganiak [3] took relation algebra and applied the
operators to Resource Description Framework (RDF) triples.
An RDF triple is a 3 part notation for expressing the subject
object and predicate. An interesting piece of Cyganiak work
is in a subsection of the paper that looks at extensions to
relational algebra that would allow the operators to work on
full RDF datasets. RDF datasets are collections of RDF
graphs that would be distributed across the internet. Our
work uses distributed data sources but does not limit the
format to the same data structure as he did with RDF graphs.

120Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

III. CLOUD RELATIONAL ALGEBRA OPERATORS

Relational algebra is a set based mathematical model that
provides a notation for performing operations on sets and
producing sets as results of the operations. In this work, our
cloud-based relational algebra includes the same operators as
traditional relational algebra, but instead of operating on sets,
our algebra operates on bags or multisets. A bag or multiset
is a generalization of a set that allows duplicate instances of
elements in the bag. We choose to work with bags for
performance reasons as we do not have control of the data
sources in the cloud and they may contain duplicate elements.
We also use bag operations for performance reason. The
deduplication process of a bag is at best a Nlog2N operation.

Table I shows our relational cloud algebra operators
mapped from the original relational algebra. Our
implementation was developed as functions in Google App
Script. The signature of each function contained the same
number of arguments as the original relational algebra but
implemented as parameters to the function. Each function
also returns a two-dimensional relational structure that can be
passed into any of the other cloud relational functions as an
input for the relation. The consistent return type allows the
operators to be combined to produce complicated queries.

A. Selection

The cloud selection function is called by passing in a
condition as a string and a relation. The algorithm iterates
over the tuples in the relation and returns all the tuples where
the condition evaluates to true.

B. Projection

The cloud projection function is called by passing in a
comma-delimited list of columns in the first argument as a
string. The second argument is the original relation data
source that holds the data columns. The result is a new table

with just the columns specified.

C. Product

The cloud production function takes the two arguments
passed in and creates a cartesian product of the tuples in the
first argument and the tuples in the second argument. The
result is a new two-dimensional multiset with the schema
made up of the combination of the columns from the two
input datasets. The multiplicity of the result relation is the
number of tuples in the first argument data source multiplied
by the number of tuples in the second argument data source.

D. Theta Join

The cloud theta join function is invoked by passing in
three arguments. A new data source is passed out of the
function with the same schema as if the first and third
arguments were passed to the product function. The
multiplicity is reduced by applying a filter to the product. The
filter condition is specified in the second argument to the
function.

E. Natural Join

The cloud natural join function is similar to the theta join
function except no condition is specified. The caller specifies
the two input sources and the data is joined based on equal
column names between the two sources.

F. Rename

The cloud rename function is used to change the names
of the columns in the data source. The primary purpose of
the operator is to ensure as a predecessor to a natural join or
an intersection, union or difference operation.

G. Intersection

The intersection cloud function takes two data sources as
arguments and finds the tuples that exist in both data sources.
The schema of both data sources needs to match so that the
tuples can be compared. The result relation has the columns
of one of the input data sources and the tuples that were in
common between the two data sources. Often in bag
relational operations, the intersection operator produces a set.
Our implementation produces a bag for the performance
reasons given earlier.

H. Union

The union cloud function takes two data sources as
arguments and combines the dataset. The schema of both
data sources needs to be identical so that the tuples can be
combined. The result relation has the schema of one of the
input data sources and all the tuples that were in both of the
two input data sources. Often in bag relational operations, the
union operator produces a set. Our implementation produces
a bag for the performance reasons given earlier.

TABLE I
 RA CLOUD OPERATORS

Relational
 Operator

Example Name Cloud
Function

Σ R1 := σC

(R2)
selection R1 =

ra_select(c,R2)

Π R1 := πL

(R2)
projection R1 =

ra_project(L,R2)

⋈ R3 := R1
⋈C R2

theta join R3 =
ra_theta(R1,c,R2)

⋈ R3 := R1
⋈ R2

natural join R3 =
ra_natural(R1,R2)

Ρ R1 := ρL
(R2)

rename R1 =
ra_rename(L,R2)

Χ R3 := R1
Χ R2

product R3 =
ra_product(R1,R2)

∩ R3 := R1
∩ R2

intersection R3 =
ra_intersect(R1,R2)

∪ R3 := R1
∪ R2

union R3 =
ra_union(R1,R2)

— R3 := R1
—R2

difference R3 =
ra_diff(R1,R2)

121Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

I. Difference

The cloud difference function takes two data sources as
arguments and finds the tuples that exist in the first data
source but not in the second data source. The schema of both
data sources needs to be identical so that the tuples can be
compared. The result relation has the columns of one of the
input data sources and the tuples that were in the first data
sources but not the second data source. Often in
implementations of relational operations on bags, the
difference operator produces a set. Our implementation
produces a bag for the performance reasons given earlier.

IV. CLOUD HETEROGENEOUS DATA SOURCES

Cloud service providers offer native storage for many
different sources of data a user may want to query. In our
implementation, we supported several different types of data
sources. The data sources either had a fixed static schema or
the schema was dynamic based on the configuration of the
data source. Some examples of fixed static schemas are Rich
Site Summary (RSS) feeds, events and contacts. With other
data sources, the schema varies based on the specific relation
queried. These sources include spreadsheet data, form data,
and web services. Table II shows the breakdown of the
schema types for the different cloud data sources.

Some of the schemas for the different data types are fixed
while others are pulled from the metadata of the data. The

data sources that cross domains require the unique address of
the data source. RSS Feeds are a data source that can cross
domains and have a fixed schema. When an RSS data source
is used as the operand of an operation, we prepend a string of
“rss=” followed by the feed URL. An example operand of
type RSS would be expressed as
“rss=http://today.cofc.edu/category/news-briefs/feed/.”
Table III shows the fixed schema for all tuples in a relation of
type RSS. Each RSS tuple has a title, date of publication and
description, which are the typically displayed by an RSS
reader. There is also a link field returned by an RSS feed. We
parse the link into four parts: scheme, host, the path and query
string. The scheme is the protocol that is used to reference
the link. The host is the website where the link is hosted. The
path identifies a specific resource at the website, and the
query string is a set of key-value pairs that are sent as
parameters to the resource. We parse URL into the separate
components so that each component can be easily joined to
other data sources in relational algebra queries.

The Calendar datasource is a fixed schema source that
reads data that is stored in the Google GSuite. The calendar
data source is broken into two different relations. The first
relation has the primary event details for events on the
calendar. The second relation has the guests that are linked
to the event. Table IV displays the schema for the event
component of the data source, and TABLE V shows the
schema for the event guest data. We separated the calendar
data into two sources to normalize the guest email addresses.
The email address is often a unique identifier in cloud data
sources. Having the email addresses in a normalized relation
will allow for easy joining to other data sources. When a
calendar data source is used as an operand, the operand is
passed as a string with a prefix of “calendar=” followed by

TABLE II
RA CLOUD DATA SOURCES

Data Source schema Ownership

Spreadsheets Dynamic Distributed

Forms Dynamic Personal

Contacts Static Personal

Events Static Distributed

RSS Feeds Static Distributed

RESTful
data

Dynamic Distributed

TABLE III
RSS SCHEMA

Field Data Type

Title String

LinkScheme String

LinkHost String

LinkPath String

LinkQueryString String

PubDate String

Description String

GUID String

TABLE IV
EVENTS SCHEMA

Field Data Type

Id String

Title String

Description String

StartTime Date

EndTime Date

AllDay Boolean

Recurring Boolean

Location String

TABLE V
EVENT GUEST SCHEMA

Field Data Type

EventId String

Name String

Email String

122Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

the name of the calendar. The events data source allows data
to come from different ownership. To access a calendar
owned by a different user B, user A would need to share the
calendar with user B. An example operand of type event
would be expressed as “calendar=US Holidays.” To query
the guests of an event, you would prefix the relation with
“calendarguests=.” An example operand of type event would
be expressed as “calendarguests=US Holidays.”

The contacts data source is a large schema with many de-
normalized columns. We chose to leave the table mostly de-
normalized except pulling out the contact emails into their
own relation. Table VI shows the schema for the contact
relation. In the schema, addresses and phone number types
are represented by distinct attributes. The phone and address
fields were not used in any of our test cases that involved join
operations. For simplicity, we left the phone and address
fields de-normalized. A future version may add additional
cloud data sources where the address or phone number is a

primary key, and we will want to normalize this data. Table
VII shows the schema for the contact emails. When a
reference to a contacts data source is used as an operand in a
relational algebra operation, the operand is expressed with a
fixed string of “contacts.” The primary cloud providers of
contact services do not support distributed contacts, so there
is one single relation that holds the contacts. If the relational
algebra operation should operate on the contact emails, then
the operand is expressed as the fixed string of
“contactemails.”

The spreadsheets data source use the first row of the data
range to specify the schema to be used. In our experimental
implementation, we assume the data range starts in cell A1 on
the first tab of the spreadsheet. Future implementations could
enhance the spreadsheet functionality to specify specific tabs
and specific cell ranges. As you will see in our example
distributed queries our primary goal with spreadsheet queries
was to allow queries across ownership. So in the relational
algebra operations, the operand can specify wildcards to
include many spreadsheets stored in the same folder. With
the Google GSuite, each spreadsheet can be owned by a
different user. The user executing the relational algebra can
locate the shared files into their own folder.

Form data behaves almost identically to spreadsheet data
in our implementation. The Google GSuite stores form data
as spreadsheet data so when a form is queried in a relational
algebra operation the first row in the spreadsheet is the form
questions. Again our implementation assumes all questions
are included in the data set by starting the data from cell A1
in the backend spreadsheet.

TABLE VI
CONTACTS SCHEMA

Field Data Type

Id String

FullName String

GivenName String

MiddleName String

FamilyName String

Initials String

Prefix String

Suffix String

MaddenName String

NickName String

ShortName String

HomeAddress String

HomeAddressIsPrimary Boolean

WorkAddress String

WorkAddressIsPrimary Boolean

Company String

JobTitle String

AssistantPhone String

CallBackPhone String

HomePhone String

WorkPhone String

MobilePhone String

Page String

HomeFax String

WorkFax String

HomePage String

TABLE VII
CONTACT EMAILS SCHEMA

Field Data Type

ContactId String

Type String

Email String

Primary Boolean

[{ country: 'China', population: 1379510000 },
 { country: 'India', population: 1330780000 },

 { country: 'United States', population: 324788000 },
 { country: 'Indonesia', population: 260581000 },
 { country: 'Brazil', population: 206855000 }]

];

Figure 1. Example REST data

123Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

Our implementation of restful web-services made some
simple assumptions to ensure success in the first version. The
first assumption is that there is no authentication. The second
assumption was that data is returned in JavaScript Object
Notation (JSON) format. The data returned from the web-
service must be an array of JavaScript objects, each with the
same properties. In the industrial world, these restrictions are
too high to successfully include data from many 3rd party
vendors, but it was good enough for our implementation to
prove that web-service data could be included in the
relational algebra operations. Figure 1 shows a sample JSON
array of countries along with its population that can be
processed by our relational algebra.

V. EXAMPLE DISTRIBUTED QUERIES

The first example query we tested with our cloud
relational algebra was querying of graduate student program
of study (POS) plans that were stored in individually owned
spreadsheets in the cloud. Each student in the graduate
program keeps a spreadsheet they have shared with the
program director. The MS degree requires each student to
take eleven classes to complete their degree. Four of the
classes are core classes, so all students are required to take

these classes. There are some additional four classes to
represent the focus area, so students choose a focus area and
have a set of classes to choose from to meet the focus
requirement. The final three courses are electives that can be
taken as a thesis option. Table VIII shows a sample POS for
a typical student with a focus on cybersecurity. The shared
links are stored in a single cloud directory named
“GradSchool.” Each spreadsheet is given a name that starts
with the student's name followed by the letters “POS.” The
spreadsheets have three columns. The semester a student
plans to take a course is the first column. The course they plan
to take is the second column. The third column holds the POS
category the course is fulfilling.

To determine the demand for a specific course, we can
write a relational algebra expression that uses a combination
of the selection and projection operations. Figure 2 shows
the cloud relation algebra that will return a two-dimensional
array of the student's email address and the class they want to
take in the “Summer 18” semester. Once the result data is
returned to a cloud spreadsheet, a pivot table can be used to
display the course demand.

Figure 3 extends this example by performing a theta join
operation on the students taking summer classes with their
contact information. For the implementation, two theta joins
are applied. The first join is done by the owner of the
spreadsheet to the email of the contacts. The second join is
completed from the contact email id to the contact id. This
query is only possible because the normalization that was
performed on the contact data described earlier. A student
may have both a home and work email address, and it is not
known which email is the owner of the spreadsheet data.

The second example query we wanted to handle with our
cloud relational algebra was also related to student data. In
this example, we want to combine the results from a student
survey on happiness in the program with the events the
student attended and the classes they took during the
semester. Figure 4 shows a part of our final query. We start
by extracting the classes from the program of study
spreadsheets with the selection operation on the semester =
“Fall 17”. We apply a theta join to the results of the selection
operation with the cloud form named
“SpringStudentSurvey.” The results of the join operation are
then theta joined to the event guests in the “studentevents”
calendar. In the final step, the guest is theta joined with the
event they attended. Normally, the attributes would be

TABLE VIII
SAMPLE POS

Semester Class Area

Fall 17 CSIS602 Core

Fall 17 CSIS603 Core

Fall 17 CSIS614 Cybersecurity

Spring 17 CSIS601 Core

Spring 17 CSIS604 Core

Spring 17 CSIS631 Cybersecurity

Summer 18 CSIS638 Elective

Summer 18 CSIS649 Elective

Fall 18 CSIS632 Cybersecurity

Fall 18 CSIS641 Cybersecurity

Fall 18 CSIS618 Elective

ra_project(“owner, class”,ra_select(“semester=Summer 18”,”Spreadsheet=GradSchool/*POS”))

Figure 2. RA to retrieve students taking summer classes

ra_theta(ra_theta(ra_project(“owner, class”,ra_select(“semester=Summer
18”,”Spreadsheet=GradSchool/*POS”)),”owner=email”,contactemails),”contact_id=id”,contacts)

Figure 3. RA to retrieve student summer contact info

ra_theta(ra_theta(ra_select(“semester=Fall 17”,”Spreadsheet=GradSchool/*POS”),”owner=username”, ra_project(“opinion”,
”Form=SpringStudentSurvey”)),“email=username”,”calendarguests=studentevents”),“eventid=id”,”calendar=

studentevents”)

Figure 4. RA to retrieve student survey and student data

124Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

minimized with another projection operation, but for
simplicity, we left projection out of Figure 4.

The three queries presented in this section are just a small
representation of the types of queries that can be performed
with the heterogeneous data.

VI. IMPLEMENTATION

As discussed in the earlier sections we developed our
solution using Google Application Script (GAS) [7]. The
GAS environment was designed to allow a developer to
extend G Suite [4], Google’s suite of cloud office
applications. The programming environment concepts are
similar to the Microsoft VBA programming functionality
included in Microsoft Office [8]. At the time of our
experimentation, Microsoft did not offer a similar
programming environment for their cloud office suite Office
365 [5].

We felt the best storage location for the result of the cloud
relational algebra operations was in Google spreadsheets.
Google spreadsheets can be enhanced with GAS to allow
custom functions. Unfortunately, for security reasons,
Google does not allow spreadsheet custom functions to
access external data. We decided to implement our solution
as a web-service that could be called from any programming
language but also imported into a Google cloud spreadsheet
using the “importdata” function.

VII. CONSTRAINTS ON HETEROGENEOUS DATA SOURCES

In this section, we build on the work previously described
to query data using relational algebra. We extend the work to
guarantee consistency in data entry in the cloud by expressing
constraints utilizing the heterogeneous data. The general idea
is that we want to express a constraint that evaluates to true
before allowing new data to be saved.

Since the heterogeneous data is entered into the different
native cloud applications directly, we have limited ability to
intercept the request and execute our relational algebra
queries. Google has exposed some Triggers in the GAS
framework that do allow us to intercept the save request we
can use for validation.

Google Forms and Calendars are the two applications that
currently provide triggers that allow us to intercept the data
save and validate that the relational algebra evaluates to true.
We are hopeful that more triggers will be exposed via the API
and we can extend our constraint work.

With Google Forms a trigger can intercept the post and
run the related relational algebra constraint. Since all the
relational algebra operators return a two dimensional set of
data, we assume an empty set is false and any data returned

is true. If an empty set is returned, then the form is not
submitted. Instead, the user is redirected to a new URL with
the fields of the form prefilled. The field with the error is
replaced with an error message stored in the constraint setup.
TABLE IX shows our implementations simple constraint setup
for form submissions. The first column in the table identifies
the field in the form that is checked. The second column
holds the relational algebra. The third column specifies how
validity is identified. The validity column is expressed as
invalidity to simplify the rule definition as it is often
expressed as an empty set on the return of the relational
algebra. The fourth column holds the message that is to be
displayed in the pre-filled form the user is redirected to if
there is a constraint violation. TABLE IX was used with a
simple example form for event booking that ensured that the
room specified in field 1 and the resource specified in field
two where valid. To be valid, they had to exist in specific
cloud spreadsheets.

The calendar triggers were designed to solve the problem
of synchronization of events between multiple calendars.
Because of this design, there is not a way to intercept a call
before the data is persisted. Several of the Google cloud
products support time-driven triggers. Time-Driven trigger
functions are similar to a CRON [10] job that runs a script
based on a specific time. Time-driven triggers let scripts
execute at a particular time or on a recurring interval, as
frequently as every minute or as infrequently as once per
month. The challenge with a time-driven trigger is how to
know what data has changed since the last time the trigger
fired. The calendar triggers solve this problem by passing a
list of events that have changed since the last trigger fired.
We decided not to implement relational algebra constraints
that based on the calendar triggers or the time-driven triggers
because it would require human interaction after the data is
persisted to fix the constraint issue.

VIII. CONCLUSIONS AND FUTURE WORK

Based on our research, we believe the use of native
heterogeneous cloud data sources will continue to grow and
replace the proprietary relational data sources that people and
organizations have come to rely upon for joining data into
queries for analysis and constraints. This work demonstrates
a successful implementation of the low-level relational
algebra operations and provides some successful use cases of
our tool. The hooks available to enforce constraints based on
the relational algebra are inadequate at this point as
demonstrated in our discussion. We hope the cloud vendors
can be enticed to provide programmatic hooks before all data
persistence operations in the future. Our future work will

TABLE IX
Sample Form Constraint Table

Field RA Invalid Message

1 ra_select(“semester=*Field1*”,”Spreadsheet=Rooms”) Empty Please choose a valid room

2 ra_select(“semester=*Field2*”,”Spreadsheet=Resources”) Empty Please choose a valid
resource

125Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

expand our use cases and provide a native front end to the
relational algebra web-services we provided.

REFERENCES

[1] E. F., "A relational model of data for large shared data
banks," Communications of the ACM, vol. 13, no. 6, pp.
377-387 , 1970.

[2] R. Agrawal, "Alpha: an extension of relational
algebra to express a class of recursive queries,"
IEEE Transactions on Software Engineering, vol.
14, no. 7, pp. 879 - 885, 1988.

[3] R. Cyganiak, "A Relational Algebra for SPARQL,"
HP Labs, Bristol, UK, 2005.

[4] Google, "Get Gmail, Docs, Drive, and Calendar for
business.," [Online]. Available:
https://gsuite.google.com/. [Accessed 18
September 2018].

[5] Microsoft, Inc., "Modernize the workplace with
Office 365," [Online]. Available:
https://www.microsoft.com/en-

us/CloudandHosting/office365.aspx. [Accessed 18
September 2018].

[6] Zoho, Inc, "Your personal file manager," [Online].
Available: https://www.zoho.com/docs/. [Accessed
18 September 2018].

[7] H. Garcia-Molina, J. Ullman and J. Widom,
Database Systems: The Complete Book, Pearson,
2008.

[8] Google, "Google Apps Script," [Online]. Available:
https://developers.google.com/apps-script/.
[Accessed 18 September 2018].

[9] Microsoft, Inc., "Getting Started with VBA in
Office," 7 June 2017. [Online]. Available:
https://docs.microsoft.com/en-
us/office/vba/library-reference/concepts/getting-
started-with-vba-in-office. [Accessed 18
September 2018].

[10] Wikipedia Foundation, Inc., "Cron," [Online].
Available: https://en.wikipedia.org/wiki/Cron.
[Accessed 24 September 2018].

126Copyright (c) IARIA, 2019. ISBN: 978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization

