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Abstract—Driverless (autonomous) vehicles will have greater
attack potential than any other individual mobility vehicles ever
before. Most intelligent vehicles require communication interfaces
to the environment, direct connections (e.g., Vehicle-to-X (V2X))
to an Original Equipment Manufacturer (OEM) backend service
or a cloud. By connecting to the Internet, which is not only
necessary for the infotainment systems, cars could increasingly
turn into targets for malware or botnet attacks. Remote control
via the Internet by a remote attacker is also conceivable, as
has already been impressively demonstrated. This paper ex-
amines security modeling for cloud-based remote attacks on
autonomous vehicles using a Security Abstraction Model (SAM)
for automotive software systems). SAM adds to the early phases
of (automotive) software architecture development by explicitly
documenting attacks and handling them with security techniques.
SAM also provides the basis for comprehensive security analysis
techniques, such as the already available Common Vulnerability
Scoring System (CVSS) or any other attack assessment system.

Keywords–Automotive Security; Automotive Software Engineer-
ing; Security Modeling; Cloud Attacks; OTA Updates.

I. INTRODUCTION

Modern cars are interconnected networks, with potentially
more than 150 Electronic Control Units (ECUs) in luxury
models communicating with one another and with the envi-
ronment (V2X communication). In recent years, car manu-
facturers produced vehicles that are connected to the Internet
and are providing cloud services, e.g., Tesla’s mobile app,
BMW iDrive or Audi Connect. In most cases, the user can
even monitor or control parts of the vehicle using a mobile
application or cloud service. These convenience features are
designed to attract new customers but may impede some of
the security goals by downright enabling a barrage of possible
attack vectors. Attackers do not target cars in the same way as
they would attack standard computer systems; cars use differ-
ent networks, protocols and architectures [1], [2]. Moreover,
cars carry burdensome legacy mechanisms with insecure and
unencrypted protocols (e.g., CAN, Controller Area Network)
in their system design and were originally not designed in
line with today’s security principles [3], [4]. Secure automotive
network architectures were not prioritized in the past due to
the general preconception in the last three decades that cars
are secure because of their technical complexity (security by
obscurity). The goal is to establish the principle of security by
design, not only for automotive software systems but for cloud

services as well. However, numerous attack vectors [5], [6],
[7] on cars and their network of ECUs, actuators and sensors
exist. In contrast to desktop computers, human lives are at stake
when these “driving computers” are the target of an attack.

In an earlier publication, we introduced SAM: a Security
Abstraction Model for automotive software systems [8]. The
examples discussed in [8] are direct attack vectors. In this
paper, however, we will focus on remote attack scenarios in
the automotive domain considering cloud attacks and over-the-
air (OTA) updates. Figure 1 illustrates the difference between
direct attack vectors and cloud attack vectors. Cloud attack
vectors target the vehicle indirectly over cloud infrastructure,
e.g., the OEM’s server.

Figure 1. Direct Attack Vector vs. Cloud Attack Vector

In this paper, we show:

• A list of certain cloud attack vectors that cause major
threats to automotive systems.

• A revamped version of SAM, featuring the ability to
use any type of scoring system for attack rating.

• An explanation of how to use a well-known security
scoring system (like CVSS) with SAM.

• A practical case study, applying the new version of
SAM to the discussed cloud attacks from our list.

The rest of this paper is structured as follows: Section II
reviews the state of the art on remote / cloud attacks on modern
vehicles. Section III discusses possible remote attack scenarios
and the security challenges of cloud attacks and OTA updates
in the automotive domain. Section IV presents the current
version of SAM and how to use any generic scoring system
for attack rating. Section V illustrates two examples of remote
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and OTA update attacks using SAM for security modeling.
Section VI reviews related work on security architectures for
automotive software systems. Section VII concludes the paper
and gives an outlook on future work.

II. STATE OF THE ART

Modern vehicles communicate critical and safety relevant
commands over a shared powertrain between different types of
ECUs. The most popular broadcast network used for commu-
nication is the CAN bus. CAN bus messages are unencrypted
and unsigned by default, because this just wasn’t an issue
when CAN was designed. Remote exploitation of a single
ECU item on the CAN bus causes a major security threat
because it allows an attacker to send valid (and potentially
harmful) messages over the bus to critical parts of the vehicle’s
ECU network. Various attacks [7] have shown that adversaries
are able to cause serious threats by compromising a vehicle’s
ECU (or adding an external device) and sending malicious
CAN commands to the devices listening on the bus. Once the
adversary has the ability to send arbitrary CAN messages, she
is able to control the braking system, engine behaviour, the air
vents, (un-)locking the doors, etc. Therefore there is a strong
need to secure the vehicle before the adversary even can gain
access to the CAN bus. If the adversary has access to the
powertrain it is already too late.

Modern vehicles have a tremendous amount of remote
attack surfaces like wireless protocols, mobile application sup-
port and more. Examples of specific remote technologies are
the passive anti-theft system (PATS), tire pressure monitoring
systems (TPMS), remote keyless entry (RKE), Bluetooth, radio
data systems (3G, 4G, LTE, 5G, etc.), Wi-Fi and telematics.
Miller and Valasek describe numerous remote exploits tar-
geting said technologies [7]. Typically, infotainment systems
tend to feature Internet access and support for third-party
applications. If one or some of these applications or services
become vulnerable to hacking attacks over the network, an
adversary might be able to control a crucial participant in the
physical network of the vehicle: the CAN bus. Automotive
Ethernet is a new approach in the automotive domain to
connect ECUs in the vehicle, though, it is not expected to fully
replace the CAN bus. CAN will continue to exist as a low-cost
component, for example for connecting low-cost and compu-
tationally weak actuators and sensors with their corresponding
ECUs or gateways, rather than be used as the main powertrain.
As of today, the LIN-bus (Local Interconnect Network) is used
for this type (low-cost, low-risk) of connection.

Although the CAN specification describes CAN as unen-
crypted by default, a sound solution for encryption and authen-
tication is necessary to ensure a safe and secure distribution of
critical new software over this public channel. In the automo-
tive domain, there are not only software updates to consider,
but hardware updates as well. If a workshop, for instance,
replaces one of the brakes in a vehicle, they might also replace
the corresponding ECU. In that scenario, how will the new
cryptographic key (for message cryptography) be obtained?
Common key distribution techniques like the Diffie-Hellman
key exchange are difficult to implement, since many of the
smaller network participants are low-cost and computationally
weak ECUs. These ECUs often do not feature enough memory
or CPU power to perform those cryptographic algorithms and
methods. Cost is a limiting factor as well, when it comes to

implementing expensive hardware into the vehicle. Automobile
manufacturers prefer to spend more money on the salaries of
programmers (fixed costs; used for entire fleet) rather than
spending a cent more on a hardware part of a vehicle (variable
costs; for each vehicle) because of the huge market scale. This
means that hardware modules like TPMs (Trusted Platform
Modules) are unattractive (cost, weight, space) as a key storing
solution for each and every communicating part in the vehicle.
Message cryptography on the CAN bus is not only hard
to realize due to the strong network complexity, where key
distribution is a difficult problem, but because an adversary in
control of an ECU also gets access to the keys stored on that
device.

III. AUTOMOTIVE ATTACK SCENARIOS

This section describes the motivation of our approach. This
motivation is necessary to highlight the threats and dangers
of automotive attack scenarios when considering cloud attack
vectors. The claim of this section is to demonstrate what kinds
of cloud attacks are possible and how they should be generally
assessed. Section IV will describe how to assess them in more
detail with SAM. A majority of remote attack vectors targeting
automotive systems lead to accessing and tampering with the
CAN bus, i.e., altering, sending or blocking CAN frames.
Therefore it is necessary to improve the security of the remote
access systems before a potential adversary even gets to the
powertrain. OTA updates are most often pulled and received
via the infotainment unit, which has access to a 4G, LTE or
5G broadband connection. From there, each and every ECU
that needs to receive an update has to get the new firmware
or software patch from the infotainment unit via the CAN
bus. Rolling out sensitive data, especially new firmware or
security patches in case of OTA updates over the CAN bus
is incredibly critical and a major liability. OEM updates must
be checked and validated before they can be deployed to the
range of ECUs connected to the CAN bus. Faulty network
configurations and the lack of authentication checks for OTA
updates and patches can increase the risk of cloud and botnet
attacks, e.g., Mirai [9].

All of this information needs to be documented in a system
model that takes attack modeling for automotive software sys-
tems into account. The latest version of SAM [10] introduces
new attributes for rating these kinds of attacks.

The following is a non-exhaustive list of cloud attack vec-
tors that cause major threats to automotive software systems:

• Rolling out malicious (possibly unsigned) firmware to
ECUs.

• Gaining remote control access to the vehicle using the
OEMs cloud and mobile application’s infrastructure.

• Infecting the system with ransomware.

The above attacks were chosen because they break the
security goals integrity and authenticity. These security goals
are especially important to make sure that the safety critical
software of the vehicle stays untampered. Once the adversary
has gained remote access to the vehicle she can start follow-
up attacks as she already has access to the powertrain. The
following is a list of automotive attack vectors regarding the
CAN bus, assuming the adversary already has gained access
via remote attack:
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• Reverse engineering of CAN frames by filtering by
arbitration IDs and identifying frames via tools like
cansniffer or other can-utils [11].

• Injection of CAN frames from ECUs that were taken
over after the remote attack (e.g., replay attacks,
spamming attacks, etc.).

• Denial of Service (DoS) attacks, e.g., as shown by
Palamanca et al [12].

Basically, cloud features and OTA updates have to be consid-
ered skeptical from the start. Even if the distribution source of
the software is the OEM, attacks are still possible. A potential
attacker might have found a way to distribute his malware
over the OEM’s infrastructure (e.g., their servers) and as a
result a trust problem arises. It is fair to assume that any
kind of roll-out (software updates, cloud data) is untrusted
until the key distribution problem described earlier has been
solved. Even if a solution for key distribution in heterogeneous
CAN bus networks is developed, the number of remote attack
vectors will rise harshly in comparison to the number of direct
attack vectors. Hence, it is important to have a framework for
modeling safe and secure automotive software systems with a
system architecture model that takes even cloud attacks and
remote attack vectors into account. The changes to the SAM
meta model presented in this paper are a tangible solution for
this kind of security analysis and security by design.

IV. USING GENERIC SCORING SYSTEMS FOR SAM
The current version of SAM introduces many new at-

tributes to the modeling entities which allow for using well-
known security scoring systems like CVSS [13]. In order to
be able to keep SAM up-to-date and gain, some flexibility
by not making a strong commitment to one particular system,
we designed SAM to use any generic scoring system. When
modeling attack scenarios, users of SAM can choose among
their favorite. In this paper, we will use the CVSS. The latest
version of SAM is available open source [10]. The architecture
description has been completed to the extent that common
scoring systems are now able to find the necessary information
and thus perform their analyses. Inspired by the CVSS, which
is an acclaimed industry standard for rating vulnerabilities in
computer systems, we added new attributes to some of SAM’s
entities. The CVSS proposes three different metric groups
for calculating the vulnerability scores. In the following, an
explanation of the interplay between SAM and the metrics is
given. The assignment of the attributes to the meta entities
and partly their naming does not come from CVSS, but was
developed by the athors.

The Base Metric Group reflects the intrinsic properties
of Attack: from SAM’s automotive-oriented perspective, this
group therefore indicates the characteristics that result if the
attack in question is aimed at the automotive domain in
general. The entity AttackableProperty refers to the properties
of the attacked item that are beyond the control of the
attacker and must exist in order to exploit the vulnerabil-
ity For example, in the case of a side channel attack, the
use of shared caches within a multicore system. The at-
tribute conditionPrerequisiteComplexity (“Low”
and “High”) in the AttackableProperty refers to the complexity
of encountering or creating such conditions. For example,
in the case of the side channel attack mentioned above, the

conditionPrerequisiteComplexity is “Low” be-
cause shared caches are to be expected nowadays. It would
be “High” if the attack made it necessary for all tasks on
all cores to use one single common cache. When evaluating
this property, all user interaction requirements for exploit-
ing the vulnerability must be excluded (these conditions are
recorded in the property privilegesRequired of Attack
instead). If the conditionPrerequisiteComplexity
is “Low”, the attack is more dangerous than if the
conditionPrerequisiteComplexity is “High”. The
property privilegesRequired describes the level of priv-
ileges an attacker must possess before successfully exploiting
the vulnerability. This metric is greatest if no privileges are
required. Also, the Attack entity has been extended with
the attributes accessRequired and userInteraction.
The attribute accessRequired describes the context in by
which vulnerability exploitation is possible. Whether the user
or driver of the vehicle needs to interact with the system
in a certain way, e.g., by pressing a button, is captured in
userInteraction. Attacks that do not require any user
interaction increase the score of the attack. The Temporal
Metric Group allows for adjustment of the score after more
information of the exploited vulnerability is available. If, for
example, exploit code has been published or the report
confidence of a vulnerability is confirmed, the temporal
score rises. In SAM, temporal metrics are part of the entity
Vulnerability. The Environmental Score Metrics additionally
enable the general CVSS Score (resulting from the Base Metric
Group) to be adapted to the specific (automotive) company.
The metrics are the modified equivalent of the base metrics
weighting properties related to the concrete company’s infras-
tructure and business risk. SAM offers a fully comprehensive
basis to analyse the CVSS Base Metric Group, which means
that SAM can also be used to evaluate the Environmental
Metric Group. Environmental Metrics do not require any
additional information beyond the Base Metrics, but merely a
readjustment of the analysis perspective towards the concrete
company. This means that the security scoring analysis can
be carried out entirely by an analyst based on the available
information provided by SAM.

The new changes to the SAM meta model (see Figure 2) al-
low the use of any security scoring or attack rating system, not
only CVSS. This means that not all metrics and explanations
of the CVSS have been transferred to SAM. This allows for
more flexibility and SAM does not have to be adapted for any
future CVSS updates. All attributes used for attack assessment
are of the type String. This allows for SAM to be used with
generic assessment techniques and is not tightly coupled with
the CVSS attribute descriptions. In the model itself, or from the
model itself, a CVSS score cannot be calculated automatically
anyway. Doing so would happen in a behaviour model while
SAM models are structure models. But if a security analyst is
familiar with the CVSS, she will be able to calculate the CVSS
score with all the information that is provided by the structure
model. It is therefore still possible to find related information
about the attribute types (“High” and “Low”, etc.) in the notes
of the meta model, but does not lead to problems in case of
non-compliance.

V. CASE STUDY ON CLOUD ATTACKS

SAM allows for a security analysis of cloud attacks. In
the following we will show two examples: a remote attack
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Figure 2. SAM Metamodel

to gain control of the vehicle (1) and an OTA update attack
to install ransomware on the vehicle’s infotainment unit (2).
The attacks were chosen because they break the security goals
authenticity and integrity. Cloud attack vectors often work
only because of the absence of those security goals. The
following examples are both in that category. (1) In the first
part of the case study, we elaborate on a remote attack to
gain control of a driving passenger vehicle as described by
Miller and Valasek [7]. This kind of attack is one of the
worst scenarios that can happen in theory and in practice,
as an adversary does not need to have physical access to
the target (accessRequired = N). Once the remote attack

was successful, the adversary can perform numerous follow-up
attacks as listed in Section III. Hence, the impact on the three
security goals (confidentiality, integrity, availability) is H(igh).
The adversary performing the attack is a RemoteAttacker
and his attack motivation might be to harm the passengers or
other road users (CrashVehicle). The exploited vulnerability
is the wrong D-Bus configuration, specifically the open D-
Bus port as the AttackableProperty. The vulnerability exists
because of the VehicleFeature BroadbandConnectivity of
the Item InfotainmentUnit. As the Vulnerability is already
known because of the publication of Miller and Valasek
and an official fix by the OEM is available, the tempo-
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Figure 3. Exemplary architecture model for a cloud attack.
CVSS v3.0 Vector String: CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:C/C:H/I:H/A:H/E:F/RL:O/RC:C

Figure 4. Exemplary architecture model for an OTA attack.
CVSS v3.0 Vector String: CVSS:3.0/AV:N/AC:H/PR:H/UI:R/S:U/C:L/I:H/A:H/E:U

ral metrics are F(unctional) for exploitCodeMaturity,
O(fficial) Fix for remediationLevel and C(onfirmed) for
reportConfidence. Hence, the remote attack scores a 9.0
as a Base Score and a 8.3 as a Temporal Score. This cloud
attack is illustrated in Figure 3.

(2) The second part of the case study illustrates an OTA
update attack using ransomware. A potential attack might
compromise the OTA update interface to install an adversary’s
version of firmware. The ransomware would take control of
the car by, e.g., by blocking or weakening the braking system
until the user whose car has been infected pays a ransom to
gain back full control of their vehicle. The attack motivation of
such attack would be financial gain in the SAM context with
the adversary demanding the ransom. For the update to be
installed, however, the user is required to approve the update,
e.g., by pressing a confirmation button on the infotainment
unit. In contrast to the attack described above, this attack
example is merely an unproven concept as no such attack or
real scenario is known yet. However, it might be in the future
and SAM is able to create a threat model for such an attack
scenario. The exploit code maturity is unproven and there is
no remediation level or report confidence defined. Hence, this

OTA update attack scores a 6.0 as a Base Score and a 5.5 as
a Temporal Score. This OTA update attack is illustrated in
Figure 4.

VI. RELATED WORK

SAM utilizes common concepts of the listed projects and
related work. A non-trivial foundation includes the work of
Holm [14], featuring a Cyber Security Modeling Language
(CySeMoL) for enterprise architectures, Mouratidis [15] (Se-
cure Tropos), papers, such as Ngyuyen [16], Juerjens [17],
featuring UMLSec, which allows to express security-relevant
information within the diagrams in a system specification,
INCOSE work on integrating system engineering with system
security engineering [18], NIST SP 800-160 [19] and other
NIST work on cyber-physical systems [20]. SAM’s unique
characteristic and advantage over those existing approaches is
that it is already integrated into an existing system model, (i.e.
EAST-ADL [21]). SAM uses existing entities of the EAST-
ADL system model (e.g., Environment, Hazard, Item,
etc.) and is therefore tightly coupled with the system model.
This enables a seamless integration of a security model into
a system model that is extensively used in the automotive
industry.
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Some approaches deal with OTA updates in the way of
hardening ECU firmware. Karamba [22] proposes a solution
called “Autonomous Security” which focuses on embedding
native security through static code analysis of the ECU
firmware and locking it to factory settings. Multi-dimensional
whitelisting might be an effective approach to vehicle cy-
bersecurity. As manufacturers strive to limit post-deployment
modifications, hardening the ECUs offers the added benefit of
a more stable environment that is easier to secure over the life
of the vehicle.

PRESERVE was an “EU-funded project running from 2011
to 2015 and contributed to the security and privacy of future
vehicle-to-vehicle and vehicle-to-infrastructure communication
systems. It provides security requirements of vehicle secu-
rity architectures” [23]. The EVITA project tries to “design,
verify and prototype an architecture for automotive on-board
networks where security-relevant components are protected
against tampering and sensitive data are protected against
compromise. It focuses on V2X (vehicle to anything) com-
munications and provides a base for secure deployment of
electronic safety applications” [24].

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented an investigation on cloud
attacks in the automotive domain. Doing so, we give a
glimpse on possible cloud attack vectors and attack scenarios.
Moreover, we revamped the Security Abstraction Model for
automotive software systems with the ability to model even
more precise attack vectors and attack scenarios by enabling
the use of any generic security scoring system like CVSS. We
showed the feasibility of our approach by giving a case study
on cloud attacks applying the new model. SAM offers robust
tooling for modeling security for automotive software systems.
Future work will concentrate on the bottom-up approach,
i.e., improving embedded security and network security on
the application layer. Next steps need to develop automotive
software solutions to actually be included in the technical
and functional security concept. Our research focuses particu-
larly on a lightweight crypto approach for authentication and
encryption in the vehicle network and embedded software,
including a suitable keys distribution solution. Our work aims
to support security by design in the automotive industry
and SAM offers the necessary insights and fundamentals to
continue conducting relevant research in this domain.
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