
Monitoring and Managing IoT Applications in
Smart Cities Using Kubernetes

Shapna Muralidharan
Korea Institute of Science

and Technology
Seoul, South Korea

Email: 023870@kist.re.kr

Gyuwon Song
Korea Institute of Science

and Technology
Seoul, South Korea

Email: gyuwon@kist.re.kr

Heedong Ko
Korea Institute of Science

and Technology
Seoul, South Korea

Email: ko@kist.re.kr

Abstract—With the rapid urbanization, cities are transforming
to smart cities with core objectives to maintain a safe, healthy
and livable environment for the people. The current landscape
of smart cities are continuously evolving with unique challenges
and gaining ground with new technology-based solutions on the
Internet of Things (IoT) and cloud computing. The efficient inte-
gration of IoT and cloud computing can tackle the unprecedented
growth of smart cities by supporting various smart services
like healthcare, transportation systems, environment monitoring,
smart grids, etc. Recent advances in cloud computing like
containerization of applications are promising solutions to host,
supervise and reform the diverse IoT applications in smart cities.
In this paper, we have explored the possibilities to implement a
secure, distributed and reliable cloud-based monitoring system
for IoT applications for effective management of a smart city
environment. We propose to build a container-based system
with low latency, a reliable and secure communication among
large scale deployment of IoT devices with a strong focus on
horizontal interoperability among various IoT applications. Our
experiment with Docker-based containerization techniques along
with a Kubernetes container orchestration platform emphasizes
an efficient way to manage and monitor the status and events in
IoT applications in the scale of smart cities.

Keywords- Smart city; Internet of Things (IoT); Cloud
computing; Docker; Kubernetes; Interplanetary File System
(IPFS)

I. INTRODUCTION

The current trend indicates that the urban areas are ex-
panding massively, with predictions indicating 70% of the
world’s population in cities by 2020 [1]. Due to the anomalous
increase in the urban population the standard quality of life
is deteriorating. The concept of smart cities is put forth
to improve the living standard in cities which is curbed
by challenges like environmental issues, air pollution, traffic
congestion, etc[2]. The countermeasures needed to tackle these
issues are overwhelming owing not only to the scale of the
smart cities but also the heterogeneous technologies, devices
and the platforms involved in the development. Technologies
like cloud computing and Internet of Things (IoT) envision the
large-scale development of smart cities. Various applications
like smart healthcare, intelligent transportation, smart grids,
smart homes, etc., deploy many connected IoT devices which
are distributed over a wide geographical area and perform
various activities with a massive volume of data generated
over a time period. IoT along with the cloud computing

Smart 

Industries
Smart

healthcareSmart 

Agriculture

Smart

Transportation

Smart 

Buildings

Smart 

Homes Smart 

GridsSmart Waste 

Disposal

Smart 

Governance

Fig. 1: A Smart City Scenario

technologies has made an impact on analyzing and processing
the diverse data collected from various applications to be
useful to the end users [3].

Although IoT is the key technology to keep the smart
city connected, the predictions for connected IoT devices
in the future along with the traditional centralized cloud
architecture might limit the horizontal development among the
vertically integrated smart cities. Figure 1 shows a smart city
scenario. The centralized cloud architecture is more vulnerable
to increasing network loads, low latency requirements, energy
issues and exposed to a single point of failure which does
not suit delay-intolerant IoT applications [4][5]. To overcome
these issues and to increase the efficiency of IoT applications
proposals to distribute cloud architecture with edge and fog
computing was introduced [6][7]. Further efforts to design
frameworks based on the concept of software-defined net-
worked systems by virtualizing IoT nodes and resources were
initiated [8]. Though the distributed, hierarchical cloud archi-
tecture proved advantageous, it is challenging to implement
a fully integrated approach in a hybrid smart city with its
limitations.

To overcome the challenges faced by the smart city envi-
ronment due to its scale and the heterogeneity of applications
we need a hybrid cloud architecture managing the micro-
level IoT applications. The current focus in cloud development
is shifting towards containers an alternative to virtualization
technique by changing the way the operations are carried
out. To tackle the critical characteristics of IoT systems on
its scale and data-centric nature containers make it easier to
build, deploy and maintain IoT applications even when IoT
devices have limited resources to support operating systems.

1Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization



Containers packaged with all dependencies and software for
IoT applications are portable, light and secure. Though the IoT
applications are deployed at ease with containers, still the scale
of the smart cities hosting multiple IoT applications makes
it difficult to monitor and coordinate the containers running
in different applications. A platform to orchestrate all these
containers along with their varying workloads, computing,
networking, and storage are in demand.

In this paper, we have created a smart city scenario and
analyzed the possible options to containerize IoT applications
with the help of Docker containers. Further, we have used
Kubernetes an open-source platform to manage their work-
loads, coordinate the services providing effective monitoring
and management environment. To be more precise the contri-
butions of the paper are:

• Creating a Smart city scenario in our testbed
• Deploying IoT nodes with P2P pubsub communication

model based on Interplanetary File System (IPFS)
• Containerizing IoT applications using docker containers
• Orchestrating various Docker containers in Kubernetes
• Evaluating the use of Docker containers and the Kuber-

netes service for IoT applications in smart cities
The remainder of this paper is structured as follows. Section II
discusses the requirements of a smart city and existing related
work. The enabling technologies for smart cities is illustrated
in Section III. We explain the prototype implementation of
our experimental framework in Section IV and results in
Section V. Section VI annotates the conclusion.

II. REQUIREMENTS IN A SMART CITY & RELATED WORK

In this section, we will describe the main requirements and
challenges of an IoT-Cloud based smart city framework and
the existing related works to address these issues.

A. Requirements in a Smart City

The convergence of the ubiquitous IoT technologies and the
cloud resources to process, store and network data generated
from IoT devices has led to the concept of a smart city.
Several challenges and requirements arise from developing a
smart city which include interoperability, providing efficient
data management mechanisms and seamless integration of the
infrastructure [9]. The essential features to develop IoT-Cloud
based smart city include:

• Reliability: IoT devices present a range of sleep pat-
terns and uncertainties in network connectivity can make
sensitive data unavailable when needed. It is a foremost
concern in safety-critical applications like healthcare.

• Scalability: Billions of connected devices are forecast,
making it challenging to scale while ensuring its reliable
data delivery.

• Latency: Managing latency values for delay-intolerant
applications like healthcare, smart grids, demanding P2P
scalability, avoiding the single point of failure by moving
away from the centralized cloud-based framework.

• Flexibility: Providing flexibility by containerization mak-
ing the IoT nodes available and inter-operate horizontally.

• Monitoring: Efficient monitoring is required to coordinate
the IoT devices deployed in a distributed platform like
smart cities.

• Security: Strong security measures are required to handle
the data transactions among various applications.

The aforementioned challenges and requirements need to be
addressed to facilitate an integrated smart city environment.
The current shift in focus from virtualization to containeriza-
tion can overlook and satisfy the challenges and the require-
ments in a smart city.

B. Related Work

The rapid development in the concept of smart cities is
demanding an upgrade in a wide array of domains like IoT
and cloud computing. The traditional centralized cloud-based
architectures used by the IoT applications can cope with
their varying storage and computing resource requirements.
Existing works initially discussed the possibilities of vir-
tualizing IoT resources with the help of Software Defined
Networks (SDN) and development of an integrated IoT frame-
work [10][11]. The solutions from virtualizing though looked
promising limited the flexibility in deploying various IoT
systems due to its heterogeneous nature with varying resource
requirements in near real-time. To bridge this gap lightweight
virtualization using containers is getting adopted. The last few
years existing works have explored possibilities to use Docker
containers in an IoT framework [12][13]. Container-based
solutions are inherently optimized for running applications
on IoT devices which have limited resources, and they are
portable and lightweight, unlike virtual machines [14]. Other
existing works on containerization focus their work on using
containers for specific use cases even for smart cities, but there
is no specific work exploring the need to orchestrate all these
containers to maximize the benefits [15]-[17].

The existent works on smart cities based on IoT and
cloud adopts containerization in some IoT use cases, but
limited work related to the usage of containers for multiple
use cases exists. Moreover, some of the issues in deploying
and maintaining containers across various applications need a

Host Operating System
Hypervisor

Docker

Infrastructure Infrastructure

App 1 App 2 App 3Guest 

Operating 

System

Guest 

Operating 

System

App 1 App 2

Virtual 

Machine

Virtual 

Machine

Containerized 

Applications

Virtual Machines Containers

Fig. 2: Virtual Machines and Docker Container Model

2Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization



monitoring platform like Kubernetes. In this paper, we have
exploited the benefits of containerized IoT applications along
with a monitoring platform based on Kubernetes to effectively
maintain a smart city scale deployment.

III. ENABLING TECHNOLOGIES

The paradigm focus shift from traditional virtualization
to container-based virtualization solutions have gained great
momentum in recent years because containers utilize kernel
features to create an isolated environment of the running
process. Further, they use the hardware of the host system and
does not use the virtualized hardware like a hypervisor. The
usage of host hardware makes the containers lightweight and
able to start in milliseconds allowing it to perform well in large
scale environments like in smart cities [18]. A comparison
between hypervisor and docker is illustrated in Figure 2. The
following explanations clearly state the reasons to choose
docker to create our IoT based containers in this paper.

A. Docker

Docker is an open source project offering standardized
solutions to enable the ease in implementing Linux appli-
cations inside portable containers [19]. There are a variety
of system-level container services like OpenVZ and LXC
available, but we chose docker since it is application oriented
and it can work well with the micro-services environment
like IoT [20]. Docker containers are built from base images,
and they are the building blocks of docker. The images act
as a template to create the containers and can be configured
with the applications. Docker hub shares every change in the
image with a team like a layer in git. Commands in Docker
containers can be executed manually or automatically using
Dockerfiles holding a series of instructions. Docker containers
can be linked to each other to form a tiered application,
and they can be started, stopped and terminated. There is
a docker daemon that interacts with the containers through
CLI or Representational State Transfer (REST) API’S. The
lightweight virtualization technique is mainly used because
of its features like rapid application deployment, portability,
versioning of images in docker along with minimal overhead
and ease in maintenance helps in building Platform as a
Service(PaaS). Figure 2 shows a model of Docker container.

B. Container Orchestration

Containerization in docker expedites the feasibility to run
applications that are containerized over multiple hosts in
multiple clouds [21]. Cluster architecture in containers enables
the need to operate multiple containers in different hosts
and clouds which is inevitable in smart cities [22]. Different
hosts holding same docker containers can be clustered and
controlled. Further, typical applications residing in clusters are
logically created from the same base images, making easier
replication among various hosts. This feature of scaling the
nodes can enable the vision in the scale of a smart city.
The cluster-based containerization in docker creates a need to
bridge the gap between the clusters and cluster management.

User Interface

kubectl

Kubernetes Master

API Server

Scheduler

Controller Manager

etcd

Node 1

Docker

kubelet

Pod 1 Pod 2 Pod 3 Pod 4

kube-proxy

Node 2

Docker

kubelet

Pod 1 Pod 2 Pod 3 Pod 4

kube-proxy

Fig. 3: Kubernetes Architecture

A cluster orchestration platform should be able to monitor the
scaling, load balancing and the other services of containers
residing across different hosts. It should support the scalable
discovery and orchestration of the containers and provide
communication in the clusters. Among various available or-
chestration platforms in this paper, we have used Kubernetes
for monitoring and managing IoT applications.

C. Kubernetes

Kubernetes is a multihost container management platform,
which uses a master to manage Docker containers over mul-
tiple hosts [23]. A sample of the Kubernetes architecture is
shown in Figure 3. As mentioned before we need an orchestra-
tion platform for the clusters and Kubernetes can dynamically
monitor the applications running in containers and can perform
the resources provisioning along with auto-scaling support
with its built-in features [24]. We have exploited this feature
of Kubernetes to invigilate the nodes residing in various
IoT application containers in a smart city based scenario.
Kubernetes creates pods the basic deployment units, which
holds one or more grouped containers. The Kubernetes master
can assign each pod a virtual IP. A node agent called Kubelet
monitors the pod, and it reports the pod status, its resource

Node 1: Raspberry pi Cluster

Docker

kubelet

Pod 1 Pod 2 Pod 3 Pod 4

kube-proxy

go-ipfs 

container

go-ipfs 

container

go-ipfs 

container

go-ipfs 

container

Node 2: Mac-Mini

Docker

kubelet

Pod 1 Pod 2 Pod 3 Pod 4

kube-proxy

go-ipfs 

container

go-ipfs 

container

go-ipfs 

container

go-ipfs 

container

Node 3: MacBook

Docker

kubelet

Pod 1 Pod 2 Pod 3 Pod 4

kube-proxy

go-ipfs 

container

go-ipfs 

container

go-ipfs 

container

go-ipfs 

container

Kubernetes Master 

Node: Macbook

API Server

Scheduler

Controller Manager

etcd

Kubernetes

Dashboard

Monitoring

Pod Replication

Resource 

provisioning

Fig. 4: Proposed Experimental Framework

3Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization



Kubernetes Dashboard 

Pod from 

Raspberry pi 

Publish: 

Temperature 

data 

Pod Details in Dashboard 

IPFS-IoT 

Container 

Node 

Pod from Raspberry pi 

Subscribe: Temperature data 

Pod from Mac-Mini 

Subscribe: Temperature data 

Pod from MacBook 

Subscribe: Temperature data 

Pod from MacBook 

Subscribe: Temperature data 

Logs in pods 

ipfs pubsub pub temp “23”  

ipfs pubsub sub temp 

23 

 

Fig. 5: A Model IoT application enabled among the pods

utilization, and events to the master. The Kubernetes master
controls a scheduler, storage component, an API manager
and the controller manager. Kubernetes provisions namespaces
separately to enable each application to be partitioned and
prevent them from affecting each other. In this paper, we have
used the Kubernetes platform to monitor docker containers in
the smart city scenario.

IV. PROPOSED EXPERIMENTAL FRAMEWORK

• Cluster Setup: To replicate the smart city scenario hosting
various applications, we deployed a similar prototype
and evaluated the scenario experimentally. The setup
consisted of a set of three different machines of different
capacities hosting the docker images to imitate the differ-
ent specifications of IoT nodes. The whole experimental
setup is shown in Figure 4. We have used a set of five
Raspberry Pi 3 nodes with Quad Core 1.2 GHz Broadcom
BCM 2837, 64 bit CPU and 1 GB RAM, Mac Mini with
processor i5 − 2410M, RAM 2GB 1333MHz, CPU 2.3
GHz and Mac book with processor i5 RAM 8GB for
the experiments. To begin with, we have installed the
docker base images of go-ipfs in all the three different

sets of devices [25]. IPFS is a well-known P2P file
system with inherent capabilities like clustering, pubsub
model and distributed storage. We have used ipfs images
so that it can emulate our IoT nodes enabled with the
IPFS development Stack. So each device holds a set of
containers holding go-ipfs based images packaged in it.
We have mainly used the pubsub protocol in IPFS for
data exchange among the IPFS-IoT nodes.

• Cluster Orchestration: After creating the docker images
now to orchestrate these containers created we have
installed Kubernetes 1.13 in all the machines and enabled
a master node in the Macbook. The master node is the
principal node controlling the rest of the machines which
ran as container execution nodes. The IPFS daemon was
initiated after enabling the IPFS based containers as pods
in Kubernetes. The IPFS Daemon was initiated with the
pubsub mode to enable communication among the dif-
ferent containers. Each container is perceived to perform
a different IoT application like monitoring temperature,
humidity, air quality, and many more. Each container
hosting different IoT applications might need the data
from another container running diverse applications in
smart city scenario needing interoperability. The data ex-
change is enabled with the pubsub model with subscribers
receiving data from publishers for a particular subscribed
topic.

• Monitoring: To enable monitoring of the IoT applications
clustered under one platform in Kubernetes we have used
Heapster v.0.19.1. Heapster enables a web GUI-based
Kubernetes Dashboard in the master node which helps
in monitoring the system resource metrics. It can collect
the resource utilization information of each node, and the
gathered information can be viewed in the Kubernetes
dashboard. Heapster queries the master for a list of nodes
in the system using Kubernetes API, and it is possible
to determine whether the node is still active or down
due to some issues. Furthermore, we can visualize the
information concerning the nodes, pods and the services

Fig. 6: Monitoring Pods in Kubernetes dashboard

4Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization



Fig. 7: Event log and Affected Pod Detection

and the data related to the deployments from the dash-
board. In this paper, we have tried to establish the smart
city scenario with diverse IoT applications and evaluate
the docker containerized solutions along with Kubernetes
orchestration platform for practical monitoring purposes.
We have limited the number of containers in the pod to
one to understand the Kubernetes healing action when
the pod fails.

Fig. 8: Data Exchange among pods using IPFS Pubsub
Mechanism

V. EVALUATION OF EXPERIMENTAL FRAMEWORK

We have utilized the setup as mentioned earlier to evaluate
the proposed smart city scenario. Each pod had a different
schedule for publishing its data similar to an IoT application
and the subscribers subscribed to a particular topic were
immediately notified when there is a new update based on the
IPFS pubsub model. A model setup for recording temperature
data using a temperature sensor and pods subscribing for it is
shown in Figure 5.

• Monitoring: Over this experimental setup to begin with
the containers were started and the starting time was

recorded in the time of milliseconds suiting IoT appli-
cations. The CPU and memory usage for the whole de-
ployment as well as individual pod details from the time
of creation is enlisted in the dashboard enabling complete
details of the running pods. Then we were able to to see
each log and event executed in the pods. Message logs
in one dashboard logging each pubsub event happening
across nodes residing in different machines made pod
monitoring easier. This monitoring system hugely helps
applications in large scale like IoT deployed in smart
cities to locate the affected pods. The start of the entire
deployment along with the pods CPU usage shown in the
dashboard is illustrated in Figure 6.

• Pod Failures: The Kubernetes dashboard can efficiently
show the pod failures by indicating the infected pods
in red and the working pods in green. To try detecting
this pod failure scenario, we manually terminated one of
the nodes in one of the machines using the commands
in Command-Line Interface (CLI). When one of the
pods goes down, Kubernetes has 30 seconds to create a
replication of the same pod, and this is one of the reasons
we have tried to limit the number of containers in the pod
to one in number to visualize the reaction of Kubernetes
engine when one of the pod goes down. Figure 7 shows
the self-healing capability in Kubernetes to increase the
reliability and flexibility in the smart city ecosystem along
with event logging.

• Resource Scheduling: Another important experimentation
feature is the resource scheduler in Kubernetes engine.
The trials are done to keep the CPU utilization of the pod
within its limit. We have tried to flood many messages
at a particular time from a pod to mimic this scenario.
When the CPU limits cross a particular threshold, then
the application is considered to be in heavy load and the
Kubernetes engine can autoscale its pod to increase by
one. This resource scheduling can efficiently manage real-
time applications like IoT, where some of the applications

5Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization



are event-driven and can considerably increase the CPU
and memory usage. Efficient data exchange for a temper-
ature sensor using the IPFS pubsub model among pods
is shown in Figure 8.

From the experimental results discussed above, we can see
that the docker containers enabled with Kubernetes orchestra-
tion can prove to be a comprehensive monitoring mechanism
and has an ease in deployment and is flexible. This experimen-
tal setup to validate smart city scenario with containerizing IoT
application proved to be advantageous.

VI. CONCLUSION

In this paper, we provide a container-based IoT application
in a smart city scenario for efficient monitoring and
management. The experiment showed efficient data exchange
among the pods. Moreover, the active deployment of the
application is monitored using the state of the pods. The
Kubernetes dashboard helps in reviewing the system resource
usage as well as the event logging in the pods which can
satisfy the scalability issues in smart cities. We have also
reviewed the self-healing nature of Kubernetes platform, an
essential factor to ensure the reliability of the model. For
further experimentation, we are trying this scenario in real
life deployment at an elderly-care facility with 320 elderly in
Seoul. From this work, we expect to demonstrate combining
IoT applications in containers with a cloud management
platform like Kubernetes would be indispensable in IoT
deployment in a smart city.

ACKNOWLEDGEMENT

This research was supported by the Korea Institute of Science
and Technology (KIST) under the Institutional Program (Grant
No. 2E29450), and National Research Council of Science and
Technology (NST) grant by the Korea government (MSIT)
(No. CMP-16− 01-KIST).

REFERENCES

[1] “United Nations, Population Division”, 2017, Available:
http://www.un.org/en/development/desa/population/ [Accessed:
2019-02-25]

[2] T. Nam and T. A. Pardo, “Conceptualizing smart city with
dimensions of technology, people, and institutions”, in Proc.
ACM dg.o’11, College Park, Maryland, USA, pp. 282–291, Dec.
2017.

[3] C. Zhu, V. C. M. Leung, L. Shu, and E. C.-H. Ngai, “Green
Internet of Things for smart world,” IEEE Access, vol. 3, pp.
2151–2162, 2015.

[4] S. Sarkar, S. Chatterjee, and S. Misra, “Assessment of the
suitability of fog computing in the context of Internet of
Things”, IEEE Trans. Cloud Computing, 46-59, 2018.

[5] D. Bouley, “Estimating a data center’s electrical carbon foot-
print,” Schneider Elec., USA, White Paper 66, 2015.

[6] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing
and its role in the Internet of Things,” in Proc. 1st Ed. MCC
Workshop Mobile Cloud Computing, New York, NY, USA, pp.
13–16, 2012.

[7] H. Chang, A. Hari, S. Mukherjee, and T. Lakshman, “Bringing
the cloud to the edge,” in Proc. IEEE Conf. Comput. Commun.
Workshops (INFOCOM WKSHPS), pp. 346–351, May 2014.

[8] S. Nastic, S. Sehic, D. H. Le, H. L. Truong, and S. Dust-
dar, “Provisioning software-defined IoT cloud systems,” in
Proc. Int. Conf. Future Internet Things Cloud (FiCloud), pp.
288–295, Aug. 2014.

[9] M.Vögler, J.M. Schleicher, C. Inzinger, S. Dustdar, and R.
Ranjan, “Migrating smart city applications to the cloud”, IEEE
Cloud Computing, 3(2), pp.72-79, 2016.

[10] C. Buratti et al., “Testing protocols for the Internet of Things
on the EuWIn platform,” IEEE Internet Things J., vol. 3, no.
1, pp. 124–133, Feb. 2016.

[11] T. Taleb, A. Ksentini, and R. Jantti, “‘Anything as a service’
for 5G mobile systems,” IEEE Netw., vol. 30, no. 6, pp. 84–91,
Dec. 2016.

[12] T. Renner, M. Meldau, and A. Kliem, “Towards container-based
resource management for the Internet of Things,” in Proc. Int.
Conference Software Networking (ICSN), pp. 1–5, 2016.

[13] R. Morabito, “A performance evaluation of container technolo-
gies on Internet of Things devices,” in Proc. IEEE INFOCOM
Demo San Francisco, CA, USA, pp. 999–1000, 2016.

[14] C. Pahl and B. Lee, “Containers and clusters for edge cloud
architectures–a technology review,” in Future Internet of Things
and Cloud (FiCloud), 2015 3rd International Conference on.
IEEE, pp. 379–386, 2015.

[15] J. Rufino, M. Alam, J. Ferreira, A. Rehman, and K. F. Tsang,
“Orchestration of containerized microservices for IIoT using
Docker,” in Industrial Technology (ICIT), 2017 IEEE Interna-
tional Conference on IEEE, pp. 1532–1536, 2017.

[16] R.G. Chesov, V. N. Solovyev, M. A. Khlamov, and A. V. Proko-
fyev, “Containerized cloud based technology for smart cities
applications,” Journal of Fundamental and Applied Sciences,
vol. 8, no. 3S, pp. 2638–2646, 2016.

[17] M. Kovatsch, M. Lanter, and S. Duquennoy, “Actinium: A
RESTful runtime container for scriptable Internet of Things
applications,” in Internet of Things (IOT), 3rd Intl. Conf. on
the IEEE, pp. 135–142, 2012.

[18] M.Eder, “Hypervisor-vs. container-based virtualization.” Future
Internet (FI) and Innovative Internet Technologies and Mobile
Communications (IITM), 2016.

[19] “Docker”, https://www.docker.com/ [Accessed: 2019-02-20]
[20] A. Sill, “The design and architecture of microservices,” IEEE

Cloud Comput., vol. 3, no. 5, pp. 76–80, Sep 2016.
[21] B. Satzger, W. Hummer, C. Inzinger, P. Leitner, & S. Dustdar,

“Winds of Change: From Vendor Lock-In to the Meta Cloud,”
IEEE Internet Computing, vol. 17, no. 1, pp. 69–73, 2013.

[22] V. Koukis, C. Venetsanopoulos, and N. Koziris, okeanos:
“Building a Cloud, Cluster by Cluster,” IEEE Internet Com-
puting, vol. 17, no. 3, pp. 67–71, 2013.

[23] “Kubernetes”, https://kubernetes.io/ [Accessed: 2019-02-01]
[24] C. C. Chang, S. R. Yang, E. H. Yeh, P. Lin, and J. Y.

Jeng. “A kubernetes-based monitoring platform for dynamic
cloud resource provisioning”, IEEE Global Communications
Conference, pp. 1-6. IEEE, 2017.

[25] “Docker-IPFS”, https://hub.docker.com/r/ipfs/go-ipfs/
[Accessed: 2019-02-10]

6Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-703-0

CLOUD COMPUTING 2019 : The Tenth International Conference on Cloud Computing, GRIDs, and Virtualization


