
Virtual Machines’ Migration for Cloud Computing

Mohamed Riduan Abid
Alakhawayn University

Ifrane, Morocco
R.Abid@aui.ma

Karima Kaddouri
Alakhawayn University

Ifrane, Morocco
Ka.Kaddouri@aui.ma

Moulay Driss El Ouadghiri
Moulay Ismail University

Meknes, Morocco
dmelouad@gmail.com

Driss Benhaddou
University of Houston

TX, USA
dbenhadd@central.uh.edu

Abstract— Virtualization is strongly emerging back as a
fundamental Cloud Computing (CC) technology enabler
whereby CC services are mainly provided via the instantiation
of Virtual Machines (VMs). These instantiations follow a
stochastic pattern, which is mainly dictated by the nature of
the CC services requests and Cloud “elasticity”. Consequently,
a load-balancer emerges as indispensable to intervene in
situations where VMs need to be dynamically migrated from a
data center site to another in order to sustain optimal CC
operation. In this paper, we briefly survey available VM
migration techniques, delineate their pros and cons, and shed
further light into the novel aspects to consider when
approaching, these VM migration techniques, from a CC
perspective, e.g., considering Mobile Cloud Computing (MCC)
and Network Function Virtualization (NFV). In addition, we
propose a novel VM migration scheme (soft-migration)
inspired from mobile communication.

Keywords-Virtual machines; Cloud computing; Live
migration; Soft migration

I. INTRODUCTION
Virtualization has its roots in the mainframe era. The late

1960s witnessed the release of a novel memory time-sharing
operating system known as the IBM 360 mainframe model
67 (a.k.a CP-67) to share scarce computing resources
among multiple users. This was a major innovation:
Personal users and organizations were actually able to use
computing capabilities at a lower cost without having to
own a computer. Some of the key customers to benefit from
these time-sharing capabilities were MIT, Princeton
University, Bell labs and General Motors [1]. Still, this early
project encountered several issues, one of them being
thrashing [2].

Optimizing resource utilization, in an era where
computing demands are dramatically increasing, is a must.
This can only be met through resource sharing and
underutilization avoidance. Cloud Computing (CC)
leverages optimal use of resources via the promotion of
computing as a utility instead of a product. As a utility,
users have on-demand access to computing resources in a
similar way to other public utilities, e.g., electricity, water,
and natural gas. Besides, users are charged only on what
they have used, i.e., pay-per-use. To implement “pay-per-
use”, CC services need to be dynamically allocated and

released, i.e., on-demand, and this is where virtualization.
The latter is the main technology enabler behind CC. CC
services are, in fact, provided via the instantiation of VMs
whose “sizes” can be dynamically decided on, and can be
created and released whenever needed. VMs are but image
files that can be stored, updated, retrieved for execution, and
even migrated from a physical station to another.

CC provides three basic service models: Software as a
Service (SaaS), Platform as a Service (PaaS), and
Infrastructure as a Service (IaaS) [4]. IaaS is provided via
the instantiation of virtual machines (VMs). VMs refer to
several virtual instances of an operating system running in
isolated partitions within a physical machine [5]. In analogy
with “time-sharing”, which was developed to optimize
resource utilization while giving each user the illusion of
having access to a complete set of system resources, VMs
take this idea further by providing users with complete
system environments, each with its own operating system
that manages virtualized hardware resources.

Due to the high and ever-growing demand that strains
Cloud resources, the maintenance and management of CC
operations against the heavy demand on CC services is a
primary concern, especially that the requests on the CC
services follow mostly a stochastic pattern which depend
mainly on the time when the user requests a CC service and
when it releases it. As a consequence, CC providers will
witness a dynamic load on their data centres which can only
be mitigated via the deployment of optimal load-balancing
schemes. Besides, leveraging “elasticity”, which is a
fundamental aspect in CC, would further worsen the
situation.

Elasticity is a major “pillar” in CC [4]. With elasticity,
CC users can be allocated VMs with elastic sizes depending
on the demand. For instance, an e-Commerce web service
would need to be allocated further extra resources (e.g.,
number of vCPU, memory, etc.) during peak periods (e.g.,
week-ends and holidays). These extra resources need to be
released once the need is over. The acquisition and release
of these extra resources should be instantaneous, a fact that
puts further pressure on the load dynamicity of CC data
centers, and thus renders the deployment of an optimal
Load-balancer (LB) indispensable. Besides deciding on
whether to admit a VM request or not, the LB would often

97Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

need to move (i.e., migrate) a VM from one Cloud site to
another one as a consequence of an instantaneous increase
(elasticity) in the size of the current running VMs.

The process of moving a virtual machine from one
physical host to another is labelled migration [6]. This
merely consists on the transfer of the VM state, which is
dictated by the actual memory image, virtual CPUs states,
and the states of attached IO devices. There are basically
two main migration techniques: pre-copy [7] and post-copy
[8]. Initially, these techniques were not tailored to fit the CC
services. Thus, they need to be adapted and fine-tuned to fit
in the CC contest. Two key performance metrics are
considered to evaluate a migration technique: downtime and
migration time. Downtime is the time during which the VM
is unreachable to the user because the VM is in the period of
transiting from a site to another, and migration time, which
is the total amount of time that is needed to transfer the VM
from source to destination while keeping it accessible. With
the arousal of VM migration, and in order to move a VM
between two physical machines, it was obligatory to
completely shut down the VM, prepare the destination host
resource-wise, move the VM files and then start the VM in
the new machine. Nowadays, thanks to several migration
techniques, we can move VMs with minimum downtime.

In this paper, we shed further light into the subtleties of
VM Migration. We survey available VM migration
techniques, present their strengths and weaknesses, and
advocate considerations to account for when approaching it
from a Cloud Computing point of view, mainly Mobile
Cloud Computing (MCC) which is rapidly increasing
domain marrying CC and Mobile Computing, and Network
Function Virtualization (NFV) which is deemed as the key
towards the Cloudification of the Telecommunication world.

 Besides, we present a novel VM migration (soft-
migration) scheme that is inspired from mobile computing.
This promotes the complete elimination of the downtime by
managing a time interval whereby VM requests are served
simultaneously by the source and target VMs in a similar
way to the soft hand-off process in cellular telephony. This
will assure the elimination of the downtime.

The rest of the paper is organized as follows: Section II
briefly surveys the different VM migration techniques In
Section III, we address VM migration from a CC
perspective and present relevant live migration use cases,
e.g., MCC and NFV. In Section IV, we present our novel
soft-migration scheme, and finally, we conclude and set
future work in Section V.

II. VM MIGRATION TECHNIQUES
There are two main techniques for moving VM’s

memory state: pre-copy [7] and post-copy migration [8]. In
a memory transfer we have three phases. First, we have the
(i) Push phase where the original VM keeps its running
status whereas some of the memory pages are being pushed
through the network to the target host. To make sure the
transfer is consistent, updated pages have to be retransmitted

thereafter. Second, in the (ii) Stop-and-copy phase, the
original VM is stopped, all the remaining dirty pages are
copied to the destination, and the VM is resumed on the
destination host. Finally, in the (iii) Pull phase, the copied
VM begins its execution. If it comes across a page that has
not yet been transferred, this results in a page fault from the
VM.

Pre-copy migration combines both the push phase and
the stop-and copy phase. The post-copy approach combines
the pull phase and the stop-and-copy phase. In pre-copy
memory migration (figure 1), the hypervisor copies all the
memory pages in an iterative fashion from source to
destination while the VM is still running at the source. If
some memory pages change (i.e., they become dirty) during
this process, they will be re-copied. Once enough pages are
transmitted (Threshold on the maximum number of iteration
is defined by the user at run time.), the VM is suspended at
the source and the remaining state is relocated to the
destination [7]. In post-copy migration (figure 2), the
transfer is initiated by suspending the VM at the source.
With the VM suspended, a minimal subset of the execution
state of the VM (CPU state, registers, non-pageable memory)
is transferred to the target. The VM is then resumed at the
target. At the destination, if the VM tries to access a page
that has not yet been transferred, it generates a page fault.
Concurrently, the source dynamically pushes the remaining
memory pages of the VM to the target - a technique known
as pre-paging, which minimizes page faults [8].

Figure 1. Pre-copy migration

Figure 2. Post-copy migration

98Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

The techniques discussed above have been remodelled
and readapted by a number of researchers to minimize
downtime when live migrating VMs.

E. Zaw et al. [9] propose an updated version of the pre-
copy approach. The designed framework is built to include a
pre-processing phase in order to decrease the size of
transferred data. A working set prediction algorithm is used
to implement the pre-processing step. The suggested
algorithm predicts the least recently used memory pages that
directly affects the total migration time. As a result, the
transferred memory page size is diminished. Evaluation of
the algorithm showed that the proposed solution –compared
with traditional pre-copy- can decrease the total migration
time by 11.45%.

With the objective to optimize virtual machine migration
based on pre-copy as well, H. Deng et al. suggest a memory
compression solution. Similar to the previously mentioned
work, the idea of reducing the size of migrated data to
improve the performance of VM migration is applied. In the
source node, data being transferred is first compressed by a
compression algorithm then, upon arrival to the destination
node, it is decompressed. The added metric here,
compression time, is an extra overhead caused by the
compression jobs. In [11], J. Changyeon et al. propose a
shared storage based technique for live migrating VMs.
Only unique memory pages are sent directly from the source
to the destination. Pages that are replicated and found on
shared storage are fetched directly by the destination node,
so duplicated data is not sent by the source node. The
authors demonstrated the efficacy of their suggested
technique by running a set of experiments with the XEN
hypervisor. There was an improvement in total migration
time between 30%-60% with minimal downtime rise, hence
improving the migration performance.

T. Wood et al. [12] present CloudNet, a CC platform that
attempts to deliver smooth connectivity between enterprise
and datacenter sites. It also implements wide area network
(WAN) migration of VMs. The objective once more was to
minimize the size of transferred data, migration time, and
user downtime. This framework uses asynchronous and
synchronous disk duplication to reduce downtime. The
performance of this platform was evaluated in a setting
composed of three geographically separated data centers and
a local testbed. The result showed that memory transfer time
was decreased by 65%.

III. LIVE MIGRATION IN CC
Live migration refers to the process of moving a virtual

machine from one physical host to another while the VM is
continuously powered-up. When properly done, this process
takes place without any perceptible effect from the point of
view of the end user. When a VM is running a live service,
it is important that this transfer occurs in a manner that
balances the requirements of minimizing both downtime and
total migration time. Thus, live VM migration is crucial for

dynamic resource management and proper carrying of CC
services in Cloud-based systems.

The idea of viewing computing resources given by Cloud
providers as a single unified pool is ideal. However, the
reality is far from this vision because these resources are
distributed across geographically separated and
interconnected datacenters. This presents a real challenge
for live VM migration in CC. The majority of authors
presented previously tackle live migration techniques from
the local area network (LAN) perspective, under the
assumption of a shared file system that allows migrating
only memory data and evading disk state transfers. The
situation is further worsened with the arousal of MCC [13]
whereby mobile devices will be mostly seeking Cloud
services in order to mitigate their inherent limitation on the
computer power and energy/battery.

MCC is strongly arising as a promising technology
leveraging Mobile Computing and Cloud computing. MCC
is driven by the emergence of novel IT ecosystems alike IoT
(Internet of Things) [14], Smart Cities [15], and Smart Grids
[16] whereby mobile devices, e.g., sensors/actuators, will be
all the time connected to the Cloud.

Due to the inherent limitations in energy and compute
power, mainly due the restriction in device size, these
devices will be mostly sending data for processing in the
Cloud. The mobility and ad-hoc topology of these
sensors/actuators will generate a dynamic load on the Cloud,
thus requiring an optimal load-balancer. The load-balancer
needs to account for this dynamicity by migrating VMs (that
will process mobile devices requests) into “closer” locations.
This is crucial for providing and maintaining requested QoS,
especially the delay.

Most of the previously proposed VM migration
techniques were not accounting for the novel mobile Cloud
services. With the rising demand for mobility of resources,
the requirement for MCC also increased, and nowadays
users rely on mobile devices. These devices can be
effortlessly connected to the Cloud, and accordingly, mobile
applications can easily access Cloud resources. Next section
delineates the most prominent contributions for VM
migration in MCC.

A. VM Migration for Mobile Cloud Computing
1) State of the Art
The development of mobile agents plays an important

role in remote access, data retrieval, and most importantly
mobile Cloud computing. M. Zaa et al. [17] tackle the issue
of migrating resources between the Cloud and mobile
devices using mobile agents. They can migrate from one
host to another host in search of resources. In particular,
they can be used to transport resources such as the VM’s
state from one environment to another, with its data
remaining intact and capable of executing in a new
environment.

99Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

Chun et al. [18] focus on VM migration using VM state
cloning. Their system, CloneCloud, duplicates the runtime
environment and then executes the application-level VM
either on the Cloud or the device. The goal is to achieve
better performance with a boosted CPU and memory
resources that can be exploited proficiently. However, the
application on the Cloud needs to access physical hardware
on the mobile devices. Henceforth, reproducing a device
and then executing it on the Cloud also adds more
complexity.

K. Ma et al. [19] highlight VM state migration using the
Stack on Demand (SOD) concept. Instead of using live VM
migration which can be too “massive” (i.e., bulky data unfit
for mobile devices), they propose a compressed migration
scheme intended for stack-based virtual machines. This
mechanism migrates the minimal portion of the VM state to
the destination host for continued execution. Inspired by the
stack concept, it chops the stack into segments and only
transfers the top segment at a time. M. Islam et al. [20]
propose a Genetic Algorithm based VM migration scheme
for a heterogeneous MCC system. Their genetic algorithm
leverages both user mobility and the load of the Cloud
servers to enhance the efficacy of VM migration. It chooses
the fittest Cloud server from the pool for a mobile VM and
decreases the total number of VM migrations. Thus, it
ensures a smaller task execution time. In [21], a technique
called dynamic VM synthesis was presented. This is based
on Cloudlets. A Cloudlet is a small-scale Cloud intended for
delivering computing resources to high-performing mobile
applications. In this scheme, a VM overlay (i.e. file that
captures a VM state) is sent by a mobile device to a Cloudlet
that has the base VM from which this overlay was created.
The Cloudlet merges the overlay with the base to synthesize
the ready-for-launch VM, which starts execution at the exact
state the mobile communicated.

2) Discussion
In [17], the mobile agents used to transport the VM state

from one environment to another also need to be migrated,
and depending on their availability, there can be some
downtime. Although the solution in [18] boosts performance
and considerably decreases user response time, there still is
minimal downtime when a migration point is reached. The
VM thread is suspended and its state sent to a clone. There,
the thread state is instantiated into a new thread and
execution resumes. In [19] when the top stack segment
finishes and pops, the return values are sent to the next site
for continued execution. However, there are often freeze
times between the multiple hops from one site to another.
For [20], when an adequate Cloud is found for the mobile
VM, there still is suspend time occurring as the VM state is
loaded on the Cloud. While significantly decreasing
response time, the solution in [21] still generates a few
milliseconds of downtime before the application is executed
on the Cloudlet. Furthermore, in the case when the Cloudlet
is not available nearby, the mobile device would need to
connect to a distant Cloud, which degrades performance.

In all of the previously mentioned contributions, the main
object of migration, the VM, is mainly an OS, a server or an
application. However, this is not always the case. There are
other use cases for live VM Migration not limited to this.
Thus there is a need to delve deeper and investigate other
use cases that justify the need for live migration. This is
particularly relevant for the paradigm shift we are
witnessing nowadays in networks, in what is referred to as
Network Functions Virtualization (NFV) [31].

B. NFV and Live VM migration
Network operators are becoming saturated with an

increasingly large quantity of network hardware appliances.
Launching a new network service usually necessitates
finding the space and power needed. Accommodating these
resources is becoming more and more challenging due to the
increasing costs of energy and capital investment, but also
the scarcity of skills essential to design, integrate, and
operate such complex hardware.

Furthermore, dedicated hardware quickly reaches end of
life, which implies that the purchase-integrate-deploy cycle
to be repeated is with little or no revenue benefit at all. Even
worse, with the current technological innovation
acceleration, hardware lifecycles are becoming even shorter
as dedicated hardware becomes rapidly obsolete. This
highly impedes on revenues innovation in a progressively
network-focused connected world.

NFV’s goal is to leverage one particular technology that
enables CC: Virtualization. Hardware Virtualization is
needed to link traffic between VMs and physical interfaces.
This connection is possible with the use of hypervisors and
other virtualized resources such as virtual Ethernet switches
(vSwitches). Cloud infrastructures provide mechanisms to
enhance resource availability, organization, and
administration. It also delivers automatic forking of VM
resources, the re-launch of failed VMs, and the migration of
VMs. These provide a much needed boost for incorporating
NFV in the cloud infrastructure.

NFV is a radical adjustment to the way network operators
design networks. It applies virtualization technologies to
consolidate network hardware onto virtualized servers,
switches and storage. These resources might be located in
datacenters, network nodes, or in the end user location. It
requires the implementation of network functions at the
software level made to run on standard server hardware,
also called “commodity of the shelf” (COTS). These
network functions can be migrated to, or forked in various
places in the network as required by demand, without the
need ever for installing and deploying new hardware
equipment.

Software-Defined Networking (SDN) [23] is a concept
related to NFV. SDN is a model that decouples the data
plane from the control plane, in such a way that the control
plane is central and the forwarding components remain
distributed. NFV is not dependent on SDN. It is completely

100Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

feasible to implement NFV as a standalone entity using
existing networking technologies. However, the two are
complementary and there are benefits to using SDN
concepts to develop and orchestrate an NFV infrastructure.

Last but not least, the network functions to virtualize (e.g.,
BBU (BaseBand Unit), switches, routers) might need to be
migrated as well, and the trend is not the same as with
ordinary VMs which consist on an OS on top of a virtual
hardware.

IV. SOFT MIGRATION
Our contribution in this survey is our proposition of a

soft-handover inspired framework for VM migration, that
we named soft-migration. Soft-handover [24] is a scheme
where a mobile phone is concurrently connected to two or
more radio base stations during a phone call. The cell
receiver combines the signals of both base stations for a bit
stream of better quality. If any one of the signal fades, there
will still be acceptable signal strength from the remaining
radio station.

We can use this concept of simultaneous connection with
the VM migration scheme (see Figure 3), where the VM is
connected to both hosts during migration time. This allows
it to run continuously regardless of the transfer state,
permitting a seamless VM migration. Thanks to unceasing
memory transfer from both servers, there would ideally be
very minimal disruptions and downtime.

Figure 3. Soft-Migration

Our soft-handover inspired idea aims to minimize
downtime as its primary objective. The pre-copy and post-
copy approaches have different suspend time gaps.

In post-copy, the suspend phase is at the very beginning,
when the VM is stopped and a minimal subset of it gets
copied to the target. Then, VM resumes execution at the
new host whilst the remaining pages get sent. The problem
here would be the high number of page faults that might get
generated if the user only accesses the pages that have not
yet been copied. This would result in further suspend time
when the wanted pages are being pulled from the source.
With pre-copy, the memory pages are copied without

stopping the execution of the VM. Then occurs the suspend
phase where the remaining and dirtied pages get sent, and
finally, execution is resumed on the new host. Here, there is
no page faults issue. Since the suspend phase does not occur
at the beginning, the majority of memory pages are copied
before the VM gets paused. Our proposed scheme can be
deemed as a “hybrid” approach between the pre-copy and
post-copy techniques, and consists of 2 phases, see figure. 4:

Phase 1: Similar to the pre-copy approach, memory pages
are copied from the original host to the target host without
stopping the execution of the VM.

Phase 2: After the maximum number of iterations is
reached (defined by the user), we switch to the new host and
resume execution there. There is no suspend phase. Instead,
and similar to the post-copy approach, the rest of the pages
will be dynamically pushed. If the user tries to access a non-
copied page or a dirty page being replaced, this will generate
a page fault. The missing page is dynamically pulled from
the source.

Figure 4. Proposed Migration Process

This approach ensures that the user is continuously
connected to either host during the VM transfer (see Figure
5), just as mobile users do in the hand off scenario.

The main advantage of the proposed scheme is that there
is no suspend time, and thus we have less down time: VM
execution is continuous even when the original host replaces
dirty pages and transfers remaining ones. Still, we have to
keep track of which pages are dirty and which are not in
order to minimize page faults, and this mandates the
implementation of module, within the Load-balancer, that
logs relative VM pages migrations.

101Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 5: User is never disconnected

V. CONCLUSION AND FUTURE WORK

In this paper, we surveyed main VM Migration and
addressed its particularity from a Could Computing
perspective, mainly when dealing with MCC services, and
when migrating network function either using NFV or SDN.,
We also presented our own soft-migration technique
inspired from the soft-handoff mechanism in mobile
communication.

Our future work consists of implementing the soft-
migration scheme and study its performance. In addition, we
will investigate plausible schemes for network function
migration in 5G whereby most of the (telecommunications)
functions are to be virtualized.

REFERENCES

[1] D, Morton, “IBM Mainframe Operating Systems: Timeline and

Brief Explanation for the IBM System/360 and Beyond”,
IBM, 2015.

[2] P. J. Denning, “Thrashing: Its causes and prevention”. Fall
Joint Computer Conference, pp. 915-922, 1968

[3] D. Dale, “Server and Storage Virtualization with IP Storage”,
Storage Networking Industry Association (SNIA), 2008.

[4] P. Mell and T. Grance, “The NIST Definition of Cloud
Computing”. National Institute of Standards and Technology,
pp. 1-3, 2011.

[5] J. Smith and R. Nair, Virtual Machines: Versatile Platforms for
Systems and Processes, Elsevier, 2005.

[6] C. Christopher, et al, “Live migration of virtual machines”. In
Proceedings of the 2nd conference on Symposium on

Networked Systems Design & Implementation pp 273–286,
2005.

[7] D. Botero, “A Brief Tutorial on Live Virtual Machine
Migration from a Security Perspective”, Princeton University,
2011.

[8] Hines, U. Deshpande, and K. Gopalan, “Post-Copy Live
Migration of Virtual Machines”, SIGOPS Operating Syst.
Review, 43(3):14–26, July 2009.

[9] E. Zaw and N. Thein, “Improved Live VM Migration using
LRU and Splay Tree Algorithm”, International Journal of
Computer Science and Telecommunication, vol. 3, no. 3,
2012.

[10] H. L. Deng, S.W. Shi and X. Pan, “Live Virtual Machine
Migration with Adaptive Memory Compression”, IEEE,
2009.

[11] J. Changyeon, E. Gustafsson, J. Son and B. Egger. "Efficient
Live Migration of Virtual Machines Using Shared Storage",
in the 9th ACM SIGPLAN/SIGOPS international conference
on Virtual execution environments, pp 41-50, 2013.

[12] T. Wood, P. Shenoy, K.K. Ramakrishnan and J. Van der
Merwe CloudNet, “Dynamic Pooling of Cloud Resources by
Live WAN Migration of Virtual Machines”. In Proceedings
of the 2011 ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments, pp 51–60,
2011. ACM.

[13] T. Dinh et al, "A Survey of Mobile Cloud Computing:
Architecture, Applications, And Approaches", Wireless
Communications and Mobile Computing Wirel. Commun.
Mob. Comput, pp: 1587–1611, 2013.

[14] F.Xial et al, "Internet of Things", International Journal of
Communication System Int. J. Commun. Syst. pp: 1101–
1102, 2012.

[15] H. Chourabi, T. Nam and S. Walker, "Understanding Smart
Cities: An Integrative Framework", 45th Hawaii International
Conference on System Sciences, pp: 2289-2297, 2012.

[16] J. R. Roncero, "Integration Is Key to Smart Grid
Management", CIRED Seminar 2008: SmartGrids for
Distribution Frankfurt, 2008.

[17] M. Zaa, J.P, Gabhane and A.V Dehankar. “A Survey on
Migration of Task between Cloud and Mobile Device”.
International Journal of Advanced Research in Computer
Engineering & Technology (IJARCET), pp. 610-613, vol 2,
no. 2, 2013.

[18] B. Chun et al, "CloneCloud: Elastic execution between mobile
device and Cloud," In Proc. Of Eurosys, 2011.

[19] K. K. Ma et al, "A Stack-On-Demand Execution Model for
Elastic Computing," In Proc. of the 39th Intl. Conf. on
Parallel Processing (ICPP2010), pp. 208-217, 2010.

[20] M. Islam, A. Razzaque and J. Islam, "A genetic algorithm for
virtual machine migration in heterogeneous mobile Cloud
computing," 2016 International Conference on Networking
Systems and Security (NSysS), pp. 1-6, 2016.

[21] M. Satyanarayanan et al, “The Case for VM-based Cloudlets
in Mobile Computing”, IEEE Pervasive Computing, 2009.

[22] B. Han, V. Gopalakrishnan, L. Ji and S. Lee, "Network
function virtualization: Challenges and opportunities for
innovations", IEEE Commun. Mag., vol. 53, no. 2, pp. 90-97,
2015.

[23] “Software-Defined Networking: The New Norm for
Networks”, ONF White Paper, April 13, 2012.

[24] Juan et al, “Verification of Mobility-Based Soft Handover
Algorithm using WCDMA Measurements Data”, IEEE 63 rd
Vehicular Technology Conference, 2006.

102Copyright (c) IARIA, 2018. ISBN: 978-1-61208-607-1

CLOUD COMPUTING 2018 : The Ninth International Conference on Cloud Computing, GRIDs, and Virtualization

