
Enabling Resource Scheduling in Cloud Distributed Videoconferencing Systems

Álvaro Alonso, Pedro Rodrı́guez, Ignacio Aguado, Joaquı́n Salvachúa
Departamento de Ingenierı́a de Sistemas Telemáticos

Universidad Politécnica de Madrid
Madrid, Spain

email:{aalonsog, prodriguez, iaguado, jsalvachua}@dit.upm.es

Abstract—When deploying videoconferencing systems in
Cloud based infrastructures, one of the most complex challenges
is to distribute Multipoint Control Units (MCUs) among dif-
ferent servers. By addressing this challenge, we can improve
the flexibility and the performance of this type of systems.
However, to actually take advantage of the Cloud possibilities
we have also to introduce mechanisms to dynamically schedule
the distribution of the MCUs across the available resources.
In this paper, we propose a resource scheduling model for
videoconferencing systems and, starting from an existing MCU
distribution architecture, we design a solution to enable the
resource scheduling basing on custom criteria. These criteria can
be based on the characteristics of each server or in their status in
real time. We validate the extended model by setting up a typical
videoconferencing deployment among a set of Cloud providers
and testing a decision algorithm. We conclude that the proposed
model enables the use of a wide range of algorithms that can be
adapted to the needs of different Cloud deployments.

Keywords—cloud computing; videoconferencing; distributed
MCU; scheduling

I. INTRODUCTION

Nowadays, a very important part of the applications and
services we consume over Internet are provided in Cloud [1]
infrastructures. The main advantage of using this technology
is that one can adapt the amount of provisioned resources for
a service based on the demand. In traditional deployments,
one has to forecast the demand before obtaining the hardware
and this involves a lack of flexibility that can result in a
waste of resources. However, using Cloud based deployments
one can dynamically scale a service in almost real time by
adding or removing computing capacity. In other words, Cloud
Computing provides the illusion of infinite computational
power on a pay-per-use basis.

In addition to this advantage, this flexibility enables easier
and more efficient ways to distribute the services among dif-
ferent servers. Thus, one can balance the system load, replicate
instances or geographically distribute them. These operations
are done almost instantaneously with a click or by calling an
API. Even some public Cloud providers offer components that
automatically distribute the load between servers. However,
these mechanisms are usually designed to be used by request-
response services such as RESTful or web services.

In videoconferencing systems, the communication between
participants is usually performed via a central server called
Multipoint Control Unit (MCU). MCUs are used to address
the signalling and to interchange the media streams between
peers. Furthermore, in advanced configurations they are used
to record sessions or to transcode video and audio flows.

Today, thanks to technologies such as Adobe Flash [2] and
HTML5 [3] with its real-time communications standard Web

Real Time Communications (WebRTC) [4], videoconferencing
systems are accessible from web applications and mobile
devices and its use is open to a higher number of users than
ever before. On the other hand, the demand of these services
can vary dynamically in short periods of time. The fluctuation
in the number of users and the managed sessions results in
substantial changes in the computing capacity consumed by
the MCUs. Hence, and this is strengthened in [5], deploying
MCUs in Cloud infrastructures offers several advantages. One
of them is the already mentioned idea of distributing a service
among several servers. But, as anticipated, the standard solu-
tions for resource scheduling do not apply to the specific case
of MCU distribution.

In traditional web services based on HTTP, it is usually
enough with a distribution of the users requests using load
balancers. These components are adapted to the requirements
of complex web services. However, we argue no general
solution for distributed videoconferencing systems is available.
Here, the resource use in each of the distributed nodes may
depend on several parameters besides the number of users.
This can be understood with a very easy example. Suppose an
scenario with an MCU distributed in two servers and managing
six users each. In the first MCU the six users are connected to
the same videoconferencing room and in the second one each
user is connected alone to a different room. Obviously, the
first MCU is consuming more resources because it is receiving
packets from each user and broadcasting them to all of the
rest while the second one is only receiving packets from the
users without any processing to do. Furthermore, to address the
scheduling challenge in this scope we first need to understand
which type of criteria we need to take into account and then
we must enable a way to schedule the load distribution taking
those criteria into account.

In the next Section, we analyse the existing solutions
regarding resource scheduling in the Cloud and why they do
not cover the videoconferencing scenario. Then, in Section III
we describe our scheduling model and extend an existent dis-
tributed architecture to cover the needed requirements. Then, in
Section IV we validate the solution with a real implementation
and a typical use case. Finally, in Section V we enumerate
the main conclusions obtained and we analyse the different
research lines we open to continue the work.

II. RELATED WORK

Scheduling Cloud Computing resources has always been
a subject under study. Being able to dynamically adapt and
change the available resources depending on the demand of
the users is a key point in services deployed in the Cloud.
Many strategies have been designed in order to solve this

51Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

problem, using techniques like the Genetic Algorithm [6],
Particle Swarm Optimization (PSO) [7], Ant Colony Optimiza-
tion (ACO) [8] or Load Balancing Ant Colony Optimization
(LBACO) [9]. All of them try to find an optimal resource
allocation for workload in a generic Cloud architecture.

In spite of all of this work, there is not any solution
specifically designed for a videoconferencing service. How-
ever, there exists a model which, if properly developed, could
be useful. The model described in [10] could be the first
step of Scheduling a videoconference service in the Cloud.
There, the authors propose an architecture that allows to easily
divide an MCU in atomic parts called One To Many (OTMs).
An OTM is a software component that basically broadcasts
a video/audio stream to many participants. And these OTMs
can be distributed among different servers without introducing
extra latency in the communications.

It is important to define a valid and efficient algorithm for
this kind of services to obtain better performance and more
flexibility. However, in order to achieve this goal it is essential
to propose a mechanism that allows us to implement it in the
model described above. No other solutions have been defined
for this new layer of functionality in a videoconference service,
but this work defines, implements and tests one.

We extend the OTM model by adding the layer that allows
us to decide how to schedule the resources among the dis-
tributed OTMs (dOTMs). These decisions are customisable and
can be based on the characteristics or the status of the servers
where the OTMs are deployed. As an example case we also
provide a basic algorithm. With this mechanism, specifically
designed for a videoconferencing service architecture, it is
possible to define new algorithms, grouping different criteria.

III. VIDEOCONFERENCING RESOURCE SCHEDULING

We have concluded that the first thing we need to start
working for an efficient videoconferencing services distribu-
tion is to design a model that allows us to introduce custom
decisions to schedule the resources. In this section, we describe
the model we propose by analysing the main characteristics it
has to cover. We also design an architecture that extends the
existing MCU distribution model dOTMs to comply with those
requirements.

A. Model description
As introduced above, distributed MCU servers differ from

common web services in many aspects. Videoconferencing is
not a request-response service and the amount of resources
needed per user depends on the size of the videoconferencing
sessions. According to this, we cannot distribute the users
homogeneously among distributed MCUs. When connecting
a new user, we need to know certain information about the
current status of each of the available servers to decide which
to use. Once the decision is taken, we need to be able to assign
the connection to the selected MCU. Thus, the model we are
proposing needs to cover three main aspects:

1) Decision layer: Having a distributed MCU, we need
a central component in charge of deciding where to allocate
each connection. This component has to be configurable with
custom decision algorithms that take as input the list of
available MCUs and their information and return the selected
one. Once the decision is taken this component has to be able
to communicate directly with the selected MCU to allocate the

resources there. Moreover, the algorithms can be automatically
modified in real-time taking into account the feedback received
from the MCUs.

2) MCU registration: To be able to communicate with a
specific MCU, the decision layer must have a list with all
the available ones. So, an MCU has to be registered in the
central component when it is added to the pool of available
MCUs. In the registration, the MCU can specify a set of fixed
characteristics of itself that can be used by the algorithms at
decision time.

3) MCU report: The fixed information set at registration
time is not enough. In the decision layer we also need real-time
information about the status of the MCUs. Thus, the algorithms
can decide also basing on parameters such us the CPU or
Memory use of each MCU. Therefore, we also need a returning
channel between the decision layer and each MCU.

B. Architecture design
To put these three requirements in a real MCU distribution

model we have designed an architecture that extends the one
described in [10]. The key of this architecture is the design of
a mechanism to split a traditional software MCU into smaller
components called OneToManys (OTMs). A OTM receives
packets from a source and forwards it to many destinations,
usually participants in a videoconferencing session. If all the
participants of a session are sharing their media with the others,
the MCU receives the media packets from each participant
and forwards them to the rest. Thus, with the dOTMs model,
we can manage a session using a OTM for each participant.
Running each OTM in a single process we can distribute the
same session among different servers. To achieve this it is
necessary to isolate the media layer of the MCU.

The dOTMs model proposes the division of a traditional
MCU into three layers: signalling, control and media. There-
fore, as detailed in [11], this separation results in an architec-
ture with three main components:

• OTM: the software unit in charge of receiving media
packets from a participant and broadcast it to many.

• Agent: the component in charge of managing OTMs.
We have an Agent per each machine in which we want
to host OTMs.

• Controller: manages videoconference rooms and inter-
changes the signalling messages between clients and
OTMs. It also communicates with Agents to start and
stop OTMs.

To perform the signalling, these components communicate
between them using a Message Bus. When a new participant
joins a videoconferencing session and wants to publish media,
the Controller asks an Agent to create a new OTM and estab-
lishes the signalling between the client and the created OTM.
When they are connected the media communication takes
place directly between them. When other participant wants
to subscribe to the published media, the Controller searches
the corresponding OTM and establishes the connection in the
same way.

If we start Agents in different servers we can distribute even
the same videoconferencing session in different infrastructures
taking advantage of the Cloud benefits exposed before. How-
ever, the dOTMs model does not specify how to schedule the
resources between the available Agents. We have to adapt the
model to the requirements explained above modifying the way

52Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

in which the Controller and the Agents communicate between
them.

Reviewing the three requirements explained in the model
description and analysing the current dOTMs architecture we
can observe the following:

1) Agent decision: When a new OTM is required in a
session, the Controller selects the Agent in round-robin mode
sending the creation request to one of the available Agents
each time. We need to support the creation of OTMs in
specific Agents basing on custom algorithms. In order to
enable that, we have to introduce a way to allow the Controller
to communicate directly with a specific Agent.

2) Agent registration: The Controller does not really have
awareness about the existing Agents. To communicate with
them sends a message to a message bus and the bus is the
one that redirects it to one of the subscribed Agents. We need
to add a mechanism to provide the Controller a list of the
available Agents in every moment. In other words, every Agent
has to be registered in the Controller.

3) Agent report: To take the decision of which Agent
select to create a new OTM, the Controller needs information
of the available Agents. It is specially interesting to have
information of the status of each Agent in real time. In the
current configuration, once an OTM is created the Controller
sends messages directly to it and does not need to communicate
with the Agent anymore. To support a real time report from the
Agents we need to enable a persistent communication channel
between each Agent and the Controller.

Figure 1 illustrates the extensions we propose in this paper.
We introduce a new message queue for each of the Agents
(Agent id). These queues are configured in a direct unicast
mode and used by the Controller to communicate directly with
an Agent. When a new Agent is added to the environment it
creates a new queue to be able to receive messages. All the
Agents are still subscribed to the common queue (Agent) but
now that queue is able to send broadcast messages to all the
Agents. This queue is used by the Controller to send a periodic
message that will be answered by the existing Agents. In the
response of these messages each Agent includes three types of
information:

• Contact information: the needed information to con-
tact the Agent. It basically includes the id of the queue
created by the Agent.

• Fixed information: constant information that is con-
figured when creating the Agent.

• Realtime information: information about the state of
the Agent in each moment.

With this information sent periodically, the Controller has
an updated list of the available Agents. Furthermore, when a
new OTM is needed it can use the information (both fixed and
real-time) of the Agents to decide to which of them delegate
the creation. Once decided it sends the creation message using
the specific queue. The broadcast queue is still configured to be
able to send messages in round robin mode. Thus, if one does
not want to specify which Agent to use and wants to evenly
distribute the connections between all of them, the system can
be used as before. Finally, the periodic broadcast messages
are also used as a heartbeat to ensure that an Agent is still
available and reachable. The Controller stores a count of the
not responded messages to determine when an Agent is not
usable anymore.

Machine 1

Message Bus

Controller

Agent 1

agent_1 agent_2 agent

Machine 2

Agent 2

Figure 1: Message Bus configuration

TABLE I: MESSAGES FROM THE CONTROLLER TO THE AGENTS

createOTM

Requests a new OTM to an Agent. The Agent is selected in round
robin mode.

Queue Agent

Type unicast

Parameters -

Returns OTM id

createOTM

Requests a new OTM to a specific Agent.

Queue Agent id

Type unicast

Parameters -

Returns OTM id

deleteOTM

Forces the destruction of an OTM. The message is sent to all the
Agents and only the Agent that owns the OTM deletes it.

Queue Agent

Type broadcast

Parameters OTM id

Returns Result code

getAgents

Requests information to all the Agents available in the system.

Queue Agent

Type broadcast

Parameters -

Returns Stats object

In Table I, we can see the detailed specification of the
messages we need to enable the proposed mechanism. The
two original messages (createOTM and deleteOTM) are the
same, but we need a new createOTM message to create in a
specific Agent (sent to the unicast queue of the Agent) and
the getAgents broadcast message to obtain the status of each
Agent.

53Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

IV. VALIDATION

We have proposed a mechanism that, having a videocon-
ferencing system distributed between several nodes, allows us
to dynamically decide how to schedule the load among them.
In this section, we validate the mechanism testing a working
implementation of the model in a real videoconferencing
deployment.

A. Implementation
To validate the solution we use an open source project

named Licode [12]. Licode is developed by the authors of this
paper and provides a WebRTC compatible videoconferencing
system with three main parts.

The first one is an MCU built on top of the WebRTC
standard that implements a signalling protocol based on SDP
exchange. For the establishment of the media connection it
implements the Interactive Connectivity Establishment (ICE)
[13] standard and for the encryption of all the media data Se-
cure Real-time Transport Protocol (SRTP) [14] and Datagram
Transport Layer Security (DTLS) [15] protocols. The second
part is a JavaScript client API that wraps the WebRTC API
facilitating the development of videoconferencing applications
and adding the necessary modules to communicate with the
MCU. Finally, to ensure the security in the signalling between
clients and MCU, Licode includes an authorisation module
based on Nuve [16]. This module is also in charge of the
management of rooms and it is able to start entire MCUs in
different machines in order to scale the system.

The current Licode version implements the mechanism
exposed in this work using the Advanced Message Queuing
Protocol (AMQP) [17] protocol for the message bus, more
specifically the RabbitMQ implementation. To send the unicast
messages we have implemented an Remote Procedure Call
(RPC) mechanism using direct exchanges and for the broadcast
messages we use topic exchanges.

When the Controller sends the getAgents broadcast mes-
sage to get the information about the existing Agents, they
respond with the following information:

• Agent id: a unique identifier of the Agent.
• rpc id: the identifier of the AMQP queue to which

the Agent is subscribed.
• Metadata object: a JSON object used to store fixed

information when starting the Agent.
• Stats object: a JSON object with realtime information

about the state of the Agent. It includes CPU and
memory usage.

• Keep Alive counter: a counter used to ensure that
the Agent is still responding to the requests. When
the counter reaches an established limit, the Agent is
unregistered in the Controller.

To take the decision of which Agent choose to create
a new OTM, the Controller uses the round robin mode as
default. Custom policies can be configured by introducing
programmatic scripts. A custom script receives as a parameter
an object with the Agents information, performs the decision
based on it and returns the selected Agent.

B. Experiment description
Using Licode project and its implementation of the model

proposed, we have performed an experiment to prove that
the solution works in a real use case. We propose a very

Message Bus

Controller

AWS EC2 VM

Agent 3

Web
Application

Authorization
Server

Google Cloud VM

Agent 2

Openstack VM

Agent 1

Figure 2: Deployment configuration

TABLE II: INSTANCES USED FOR THE AGENTS

Cloud Platform Instance Type CPU Memory

Openstack m1.small 1 vCPU 2 GB

Google Cloud f1-micro 1 vCPU (Shared GCPU) 0.60 GB

Amazon EC2 t2.micro 1 vCPU (Variable ECU) 1 GB

common scenario in which we (as supposed videoconference
as a service provider) need to provide videoconferencing rooms
on demand to a variable number of users.

To host the needed resources we own a set of physical
computers in which, to facilitate the deployment, we have set
up a private cloud environment to deploy virtual machines.
If we eventually need more resources we have the possibility
of hosting them in two different public cloud providers. The
component that we will deploy in the public cloud providers
is the Agent in charge of creating new OTMs. In this case
the Agent is the bottleneck when it comes to resources use.
As seen in [10], dOTMs are limited by CPU, bandwidth
or memory are not a limiting factor in public clouds’ low
processing power instances. Thus, for the purpose of this
experiment we will replicate the conditions and simplify load
metrics to only take into account CPU measurements.

The deployment of resources in those public Clouds im-
plies an economic cost so the criteria is to prioritise the use
of the private Cloud and only when we do not have compute
capabilities there, we use the public ones. However, in this case
we always want to reserve a part of the computing power of
the private Cloud to host private meetings so we will configure
a use threshold below the maximum computational level.

Once the set up is ready, we start connecting clients to
videoconferencing rooms. First clients will be handled in the
private cloud and when the configured threshold is reached, we
will start handling the new ones in the public Clouds. To decide
which of the two available public Clouds we will select, we
will follow load criteria, using in each moment the one that
is consuming less resources. We also define a weight factor
between both public clouds that can be used to set a priority
taking into account different criteria.

C. Deployment set up
To deploy the needed component for the experiment we

have chosen Openstack Compute [18] as the private cloud and
Amazon Web Services EC2 [19] and Google Compute Engine
[20] as the public ones. In Figure 2 we can see a diagram of
the configuration.

54Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

0

10

20

30

40

50

60

70

80

0 35

70

10
5

14
0

17
5

21
0

24
5

28
0

31
5

35
0

38
5

42
0

45
5

49
0

52
5

56
0

59
5

63
0

66
5

70
0

73
5

77
0

80
5

84
0

87
5

91
0

94
5

98
0

10
15

10

50

10
85

11

20

11
55

11

90

12
25

12

60

12
95

13

30

13
65

14

00

14
35

14

70

15
05

15

40

15
75

16

10

16
45

16

80

C
PU

 U
sa

ge
 (%

)

Time (sec)

Google OS EC2

Figure 3: Cloud Providers CPU Usage

Algorithm 1 Agent decision
Require: cpuThreshold , weightFactor , osAgent ,

googleAgent , ec2Agent
1: osCPU getCurrentCPU (osAgent)
2: if osCPU < cpuThreshold then
3: return osAgent

4: else
5: googleCPU getCurrentCPU (googleAgent)
6: ec2CPU getCurrentCPU (ec2Agent)
7: if googleCPU ⇤ weightFactor < ec2CPU then
8: return googleAgent

9: else
10: return ec2Agent

11: end if
12: end if

We have deployed the Controller in a separate virtual
machine. In other virtual machine we have deployed the
Authorisation Server (Nuve), the Web Application server and
the RabbitMQ server. The infrastructure in which these com-
ponents have been deployed is not relevant for this experiment.
Nor the capabilities of the virtual machines. On the other
hand we have deployed an Agent in a virtual machine of each
of the mentioned cloud providers, Openstack, Google Cloud
and Amazon EC2. The characteristics of the selected virtual
machines are described in Table II. The operating system used
is Ubuntu 14.04 LTS for all of them.

The small size and computing power of the selected virtual
machines is not a problem in the scope of the scenarios we
designed. It is very convenient to have a low enough processing
power that we can saturate easily to test the ability to allocate
OTMs. Regarding the amount of bandwidth available for this
type of instance, we have tested it is enough to handle the
amount of users we are going to connect.

To host the clients we have used the same instance type as
the Amazon EC2 Agent. They connect using Chromium [21]
browser (the open-source project behind the Google Chrome)
version 45.

Algorithm 1 shows the decision policy we have configured
in the Controller. The algorithm is executed everytime we need
a new OTM. In the Metadata object of each Agent, we can
find the cloud provider where it is running. This way we obtain
the values of osAgent , googleAgent and ec2Agent . We set this
parameter in each Agent at boot time. On the other hand, the
Stats object allows as to get the current CPU consumption of
each Agent (getCurrentCPU () method). In this experiment
we have configured the following constants:

• cpuThreshold : 60 %
• weightFactor : 1
With this threshold value we ensure that a 40% of the

private cloud computing capability is reserved for special
rooms that we need to host internally. In this experiment
we have set a neutral weight factor. This means that there
is no priority between the public cloud providers. When the
public part is needed, we always create the Agent in the
infrastructure that is consuming less CPU. However, using
this factor we could design algorithms that establish priorities
taking into account advanced criteria such us the pricing, the
geographical location, etc. Furthermore, we can use algorithms
with feedback that modify the value of that factor taking into
account real-time aspects, such as the fluctuation of the pricing.

D. Results
We have created six videoconferencing rooms and con-

nected clients to a random one every 35 seconds, starting in
second number 110. This dynamic is only changed in second
number 1320, when five clients disconnect from their rooms.
The results of the experiment are showed in Figure 3.

As it can be observed, on one hand the CPU usage in
the Openstack vitual machine keeps growing as new clients
connect to the service. On the other hand, the activity in the
Google Cloud and Amazon EC2 ones is almost null. The
first key point can be found at second number 875, where
the threshold of 60% is first exceeded. From that moment
the CPU Usage in Google Cloud and Amazon EC2 virtual
machines starts growing, while the Openstack one suffers
minor variations but remains almost constant. The growth of

55Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

Google Cloud and Amazon EC2 stops at second 1330 as a
consequence of the disconnection of five clients explained
before. From that moment, the CPU usage of the Openstack
virtual machine stops exceeding the threshold, so new clients
start connecting again to it instead of connecting to Google
Cloud or Amazon EC2 ones. Finally, in second number 1410
the threshold is exceeded again, so the Openstack CPU usage
remains constant and the Google Cloud and Amazon EC2
starts growing again until the end of the measures in second
1680.

V. CONCLUSIONS AND FUTURE WORK

Cloud Computing provides numerous benefits to scalable
and distributed services. There are several studies regarding
how to efficiently distribute web services or databases taking
advantage of the Cloud. But in relation with videoconferencing
systems and MCU servers the literature is not so extensive.
This type of systems has particular characteristics that make
the traditional load balancers not optimal.

In this paper, we have defined a model for scheduling
resources in videoconferencing Cloud deployments and de-
signed an architecture that enables this scheduling basing
on the realtime status of the MCUs that are managing the
sessions. Thanks to this new model, we can design cloud-
based scenarios in which we distribute the load according
to advanced decision algorithms. To validate that the model
actually covers the requirements of videoconferencing scalable
systems, we have set up a real deployment using a set of well
known Cloud providers and illustrating a very common use
case. For this we have used a complete implementation of the
model configuring it with an algorithm prototype that simulates
the requirements of a videoconferencing as a service provider.

The main conclusion after the experiment is that the pro-
posed model actually works and offers a customisable way to
distribute a videoconferencing service according to the specific
requirements of each deployment. Once we have the tools to
enable this custom decisions, the main challenge is to study
algorithms that could standardise the requirements of typical
videoconferencing scenarios. Thus, multiple lines of research
are opened from this point. The immediate one is to test other
kind of algorithms that take into account different criteria than
the load of the virtual machines. For instance, a scheme based
on the pricing of each Cloud provider should be explored.

If we geographically distribute the Agents, we can also take
into account latency constraints to improve the quality of the
communications connecting each client to the closer Agent.
Furthermore, if the Agents can be connected between them
using trees we can improve the latencies even more. As we
can see in [22] using hybrid clouds also offers cost saves in
many cases.

Other interesting line is the design of algorithms with
feedback that are modified in real-time taking into account
the status of the Agents. Finally and putting all of these things
together, it is interesting the study of common characteristics
of videoconferencing deployments that allow us to generalise
the requirements and design a global procedure to schedule
the resources.

REFERENCES

[1] P. Mell and T. Grance, “The NIST Definition of Cloud Comput-
ing,” http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
[retrieved: March, 2013], 2009.

[2] Adobe Flash Player. [Online]. Available:
http://get.adobe.com/en/flashplayer/ (retrieved: January, 2016)

[3] HTML5 W3C. [Online]. Available: http://dev.w3.org/html5/spec/
(retrieved: January, 2016)

[4] A. Bergkvist, D. C. Burnett, C. Jennings, and A. Narayanan, “Webrtc
1.0: Real-time communication between browsers,” August 2012.

[5] A. Alonso, P. Rodriguez, J. Salvachua, and J. Cerviño, “Deploying a
multipoint control unit in the cloud: Opportunities and challenges,” in
CLOUD COMPUTING 2013, The Fourth International Conference on
Cloud Computing, GRIDs, and Virtualization, 2013, pp. 173–178.

[6] C. Zhao, S. Zhang, Q. Liu, J. Xie, and J. Hu, “Independent tasks
scheduling based on genetic algorithm in cloud computing,” in Wireless
Communications, Networking and Mobile Computing, 2009. WiCom
’09. 5th International Conference on, Sept 2009, pp. 1–4.

[7] S. Pandey, L. Wu, S. Guru, and R. Buyya, “A particle swarm
optimization-based heuristic for scheduling workflow applications in
cloud computing environments,” in Advanced Information Networking
and Applications (AINA), 2010 24th IEEE International Conference on,
April 2010, pp. 400–407.

[8] X. Lu and Z. Gu, “A load-adapative cloud resource scheduling model
based on ant colony algorithm,” in Cloud Computing and Intelligence
Systems (CCIS), 2011 IEEE International Conference on, Sept 2011,
pp. 296–300.

[9] K. Li, G. Xu, G. Zhao, Y. Dong, and D. Wang, “Cloud task scheduling
based on load balancing ant colony optimization,” in Chinagrid Con-
ference (ChinaGrid), 2011 Sixth Annual, Aug 2011, pp. 3–9.

[10] P. Rodriguez, A. Alonso, J. Salvachua, and J. Cervino, “dOTM: A
mechanism for distributing centralized multi-party video conferencing
in the cloud,” in The 2nd International Conference on Future Internet
of Things and Cloud (FiCloud-2014). IEEE, 2014, pp. 61–67.

[11] P. Rodrı́guez, A. Alonso, J. Salvachúa, and J. Cervino, “Materialising
a new architecture for a distributed mcu in the cloud,”
Computer Standards & Interfaces, pp. –, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0920548915001014
(retrieved: January, 2016)

[12] Licode. [Online]. Available: http://lynckia.com/licode (retrieved:
January, 2016)

[13] J. Rosenberg, “Interactive Connectivity Establishment (ICE): A Protocol
for Network Address Translator (NAT) Traversal for Offer/Answer
Protocols,” Internet Requests for Comments, RFC Editor, RFC
5245, April 2010. [Online]. Available: http://tools.ietf.org/html/rfc5245
(retrieved: January, 2016)

[14] M. Baugher, “The Secure Real-time Transport Protocol (SRTP),”
Internet Requests for Comments, RFC Editor, RFC 3711, March
2004. [Online]. Available: http://tools.ietf.org/html/rfc3711 (retrieved:
January, 2016)

[15] E. Rescorla, “Datagram Transport Layer Security,” Internet Requests
for Comments, RFC Editor, RFC 4347, April 2006. [Online]. Available:
http://tools.ietf.org/html/rfc4347 (retrieved: January, 2016)

[16] P. Rodrı́guez, D. Gallego, J. Cerviño, F. Escribano, J. Quemada, et al.,
“Vaas: Videoconference as a service,” in Collaborative Computing:
Networking, Applications and Worksharing, 2009. CollaborateCom
2009. 5th International Conference on. IEEE, 2009, pp. 1–11.

[17] “OASIS Advanced Message Queuing Protocol (AMQP) Version 1.0,”
OASIS Standard, Tech. Rep., October 2012.

[18] Openstack. [Online]. Available:
http://www.openstack.org/software/openstack-compute/ (retrieved:
January, 2016)

[19] Amazon EC2. [Online]. Available: http://aws.amazon.com/ec2
(retrieved: January, 2016)

[20] Google Compute Engine. [Online]. Available:
http://cloud.google.com/compute (retrieved: January, 2016)

[21] Chromium. [Online]. Available: http://www.chromium.org/ (retrieved:
January, 2016)

[22] J. Cervino, P. Rodriguez, I. Trajkovska, F. Escribano, and J. Salvachua,
“A cost-effective methodology applied to videoconference services over
hybrid clouds,” Mobile Networks and Applications, vol. 18, no. 1, pp.
103–109, 2013. [Online]. Available: http://dx.doi.org/10.1007/s11036-

012-0380-4 (retrieved: January, 2016)

56Copyright (c) IARIA, 2016. ISBN: 978-1-61208-460-2

CLOUD COMPUTING 2016 : The Seventh International Conference on Cloud Computing, GRIDs, and Virtualization

