
Good Performance Metrics for Cloud Service Brokers

John O’Loughlin and Lee Gillam

Department of Computer Science
University of Surrey
Guildford, England

{John.oloughlin,l.gillam}@surrey.ac.uk

Abstract—The large number of Cloud Infrastructure Providers
offering virtual machines in a variety sizes, but without
transparent performance descriptions, makes
price/performance comparisons difficult. This presents
opportunities for Cloud Service Brokers (CSBs). A CSB could
offer transparent price/performance comparisons, or
performance discovery. This paper explores the kinds of
performance measures such CSBs should use. Using three
quite different benchmarks, povray, bzip2 and STREAM, we
show a 17%, 77% and a 340% increase in performance,
respectively, from worst to best in an existing large Cloud.
Based on these results, we propose a discovery service for best
price/performance for use in aggregation of heterogeneous
resources.

Keywords- Cloud Computing; performance;brokers;metrics

I. INTRODUCTION

In Infrastructure Clouds, users can obtain a wide range of
compute resources, predominant amongst which are Virtual
Machines (VMs). There are a large (and increasing) number
of Cloud providers, all selling a variety of VM types. These
VM types are typically defined in terms of amounts of
resources provided: number of vCPUs, amount of RAM and
an amount of local storage. The lack of transparent
performance descriptions for instance types, and the large
performance variation of instances of the same type that we
[1] and others [14] have previously reported, makes finding
the best price/performance a daunting task. It is, therefore,
not surprising that Cloud Service Brokers (CSBs), which
can act as intermediaries between Cloud users and Cloud
providers, are gaining attention. There is a clear opportunity
for such CSBs to address the price/performance issue.

For a CSB to address price/performance, they must first
clarify how performance is defined, measured and,
especially, useful to Cloud users. Provider-specific
performance measures, such as Amazon’s EC2 Compute
Unit (ECU), are of limited value to a user since they do not
always correlate well to the performance of the application
they wish to run [1].

In this paper, we explore the kinds of performance
measures that could be useful to users, and therefore
beneficial to profit-seeking CSBs. CSBs will need to know
the deliverable performance of various Cloud resources with
respect to the applications user wish to run. However, large

Clouds are inevitably heterogeneous and resource
availability may be unpredictable. And so it is vital to find
strategies for obtaining the best resources when it is not
possibly simply to request the best.

The rest of this paper is structured as follows: In section
II, we explore the types of services a CSB could offer and
show how they can help users with the daunting task of
finding comparable instances across providers. In section
III, we explore performance measurement and identify
metrics that are appropriate for Cloud users. In section IV,
we explain and present the performance results obtained
from approximately 300 m1.small instances on EC2. We
show how performance is dependent on both the CPU
model backing the instance and the application. We use
these results to propose a performance discovery service,
initially for Amazon EC2; which we explore in detail in
section V. In section VI, we present conclusions and future
work.

II. OPPORTUNITIES FOR CSBS

Resources in Infrastructure Clouds should be available on
demand and with the ability to obtain or release more and/or
bigger and smaller VMs in order to scale use as required.
Additionally, the user should not have to worry about the
provider’s ability to meet this demand. Such capability,
together with a ‘pay for what you use’ charging model,
makes Infrastructure Clouds particularly attractive for
handling workload spikes or ad-hoc computing tasks.
Presently, if they hope to obtain best performance for price,
each Cloud user needs to understand both the resource
requirements of their application and the capabilities and
pricing structures offered by each Infrastructure provider.
Clearly there are costs and risks associated to such
determination, and likely much repetition of effort across
users.

At minimum, a CSB could reduce the repetition and
associated costs of determining best performance for price by
having transparent information about likely performance.
Gartner [2] identifies three kinds of service that brokers can
provide: intermediation, aggregation and arbitrage, and
each of these kinds of service could benefit from such
determination.

An intermediation service enhances existing services to
add value to them. A potential performance service exists

64Copyright (c) IARIA, 2014. ISBN: 978-1-61208-338-4

CLOUD COMPUTING 2014 : The Fifth International Conference on Cloud Computing, GRIDs, and Virtualization

simply in being able to find instances whose performance is
within a particular range.

In financial markets, arbitrage refers to the practice of
simultaneously buying and selling the same resources in
different markets and exploiting the price difference. CSBs
could exploit performance variation by reselling better
performing instances at a higher price and worse performing
instances at a lower price.

CSBs wishing to aggregate resources across Clouds to
find truly optimal performance would need first to
understand the deliverable performance of each them, and
then to be able to exploit the variations across them.

Such opportunities readily exist: simply finding
comparable instance types between providers is not always
straightforward. For example, both Amazon’s Elastic
Compute Cloud (EC2) First Generation Standard Instances
[3] and Microsoft’s Azure Standard Instances [4] start with a
very similar ‘small’ instance type: 1 vCPU with 1.7GB and
1.75GB of RAM respectively. After this they diverge, with
the EC2 extra large instance type having 4vCPU and 15GB
RAM whilst the Azure extra large has 8vCPU with 14GB
RAM.

Comparing expected performance is not always possible
either. EC2 offers a compute rating for their instance types,
in the form of the EC2 Compute Unit (ECU), but Microsoft
does not do so for Azure. Therefore, price/performance
comparison between the respective small instance types
requires the customer to conduct benchmarking experiments
of both types. Comparing a larger range of instances types,
across multiple providers, will quickly become expensive,
and quite possibly prohibitively so, for all except the largest
users. In addition, as we show later in this paper, it would be
a mistake to consider just a few instances in even a single
provider as necessarily representative.

For EC2, Amazon define the ECU in terms of equivalent
performance to a reference machine, ‘…an early 2006 Xeon’
[5]. How the equivalence is established is not explained.
Following EC2 we find both the Google Compute Engine
Unit (GCEU) [6] and the HP Cloud Compute Unit (HPCCU)
[7] defined in terms of reference machines. It is unclear how
these metrics relate to established performance metrics; such
as program execution time. Clearly there are multiple
opportunities for the CSB in both understanding and
providing price/performance information for instance types
in terms of performance metrics that are useful to customers.
And in the next section we explore what those metrics might
be.

III. COMPUTE PERFORMANCE METRICS AND

MEASUREMENTS

The question of how compute performance should be
defined and measured is surprisingly contentious. There is
no commonly accepted unit of work on a computer – and
therefore no accepted definition of either how fast a
computer is or how much work has been done per unit of
time. Some performance metrics involve physical
characteristics of the machine, such as CPU clock rates or
Theoretical Peak Performance (TPP). Such approaches tend

to have common failings: (1) they are only valid when
comparing machines of the same micro-architecture (2) they
tend to correlate poorly to actual application performance.

Defining machine performance in terms of application
performance also leads to some difficulties: should we use
actual applications (that are in common use) or applications
which are, in some sense, typical of a class of applications?
Should we use one application or a suite of applications? If
we use a suite of applications how do we best summarise
them? We do not discuss these important questions in
further detail here but we do note that the trend is for actual
applications and not kernels or micro applications.

There are, however, certain characteristics a good
performance metric should have [8]. Four of the more
important characteristics are:

• A metric is linear if, when its value changes by a given
ratio, the actual performance (as measured by
application performance) of the machine changes by the
same ratio. For example, the Amazon ECU to be linear
we might expect a 2 ECU machine to run a CPU bound
application in half the time of a 1 ECU machine.

• A metric is reliable if, whenever it indicates that
machine A should outperform machine B, it does.

• A metric has repeatability if the same value (within an
error bound) is obtained every time we take a
measurement.

• Finally, a good metric should be easy to measure.
Our previous work [1] has shown that the ECU may be

reliable but is neither linear nor repeatable, unless a large
error bound is considered. It is also not easy (or indeed
possible) to measure since it is defined in terms of
equivalent performance to a reference machine without
defining how the equivalence is established or what
approaches are used to construct it.

A. ‘Bad Metrics’

The following commonly found metrics all fail on at least
one of the above characteristics: CPU clock rate, Theoretical
Peak Performance, the maximum number of instructions a
CPU could in theory execute per second, (TPP), Millions of
Instructions per Second (MIPS), BogoMIPS and Floating
Point Operations per Second (FLOPS). We discuss these
metrics further below:

Clock Rate: A number of providers [12] express
expected performance of their instances in terms of a clock
rate but do not specify the CPU model. Clock rate is
generally not a reliable indicator of application
performance. The Pentium 4 range, for example, had higher
clock rates than the Pentium 3 models but without a
corresponding increase in application performance due to a
significant increase in the depth of the CPU pipeline.

TPP: TPP for a multi-core CPU is calculated as the
number of cores multiplied by the number of execution units
multiplied by the clock rate. It serves only as an upper
bound on performance, and assumes that the CPU pipeline
is full at all times. However, due to pipeline stalls, branch

65Copyright (c) IARIA, 2014. ISBN: 978-1-61208-338-4

CLOUD COMPUTING 2014 : The Fifth International Conference on Cloud Computing, GRIDs, and Virtualization

mis-predictions and memory hierarchy latency, application
performance may well differ significantly from the one
predicted by the TPP. This is of course an issue with peak
metrics in general – they are often unobtainable.

MIPS: MIPS is calculated as the instruction count for an
application divided by execution time*106. A MIPS rating
cannot be used to compare the performance of CPUs with
different instruction sets, since the same program may
compile to a different total number of instructions. For
example, we cannot readily compare a RISC machine to a
CISC machine. MIPS, along with FLOPS, suffers from
being a throughput (or rate) metric and yet the unit of work
being done (execute an instruction or floating point
instruction) is not constant. For example, memory access
instructions will take longer to execute than instructions
which operate on data present in CPU registers. Whilst
MIPS are not commonly used by providers, they are the
default performance measure available in the well-known
Cloud simulation toolkit Cloudsim.

BogoMIPS: BogoMIPS stands for Bogus MIPS and is
defined by the number of NOOP (no operation) operations a
machine performs per second. It is used in the early stages
of Linux Kernel boot process as a calibration tool and was
not intended as a performance metric. In spite of this, some
have claimed [10] that a machine’s BogoMIPS can be
related to its performance - without offering any supporting
evidence for such a claim.

FLOPS: Similar to MIPS, FLOPS uses an inconsistent
unit of work – the FLOP. Different FLOPS may take
different amounts of time to execute depending on what
they do. However, peak GigaFLOPS (GFLOPS), as
measured by High Performance Linpack, is still the measure
used to rank systems in the well-known top 500 HPC list.
Some supercomputing centres are now moving away from
peak performance to sustained performance of applications
their users will run. It should also be noted that expressing
performance in terms of FLOPS will not inform a user of a
system how well an application that contains no floating
point operations will run, and so the measurement is domain
specific.

B. ‘Good Metrics’

The metrics above are generally defined in terms of machine
characteristics; better performance metrics tend to be
defined in terms of application performance. We discuss
some of these below.

Program Execution Time: This metric is defined by the
elapsed wall clock time from program start to finish. Some
authors [9] consider this to be the only meaningful and
informative metric and suggest that any other metric may be
misleading. Performance is defined as the inverse of
execution time and so faster execution times give higher
performance scores.

Throughput: Throughput (CPU bandwidth) is defined as
the number of units of work per unit time (usually per
second) the CPU can perform. For consistency, the unit of

work should be well defined and remain constant. As
discussed there is no commonly accepted definition of unit
of work, and so this becomes workload dependent.

Work done in a fixed time: In the program execution
time metric, the amount of work done is fixed and wall
clock time is the variable of interest. In [11], the authors
argue that some systems, such as HPC, are purchased in
order to allow more work to be done in the same amount of
time when compared to older systems. By ‘more work’ they
tend to mean solving a larger problem, not just an increase
in throughput. This could be, for example, running a Monte
Carlo Simulation at a much greater number of iterations to
produce smaller error bounds on estimates.

Response Time: The above metrics are suitable for batch
jobs. For interactive applications or websites, response time
(also known as application latency) is a good metric. It has
been shown [16] that higher response times lead to lower
user satisfaction.

In general, the good metrics relate to application
performance and not machine characteristics. Given this,
ratings that relate equivalent performance to specified
physical machines, as currently favoured by large Cloud
providers, are unsatisfactory for most purposes. And, as we
will show, are also not particularly meaningful even for
comparing virtual machines in the same Cloud (provider).
Cloud Service Brokerages, then, would add good value by
selecting good performance metrics that can clearly relate to
the applications that their customers wish to run.

IV. EXPERIMENTS ON EC2

In this section we address a question that we believe will
be of interest to a typical Cloud user: Given a number of
workloads, where can I obtain best performance for them?
Here, we explore this question in one Region of Amazon’s
EC2 (US-East), which reveals several insights into
performance variability.

A. Experimental Setup and Results

We consider the following 3 workloads:
1. A bzip2 compression on an Ubuntu 10.04 desktop

ISO.
2. A povray ray trace on the benchmark.pov file.
3. STREAM memory bandwidth benchmark using the

triad kernel.
Both bzip2 (albeit with different input files) and povray are
part of the Standard Performance Evaluation Corporation
(SPEC) CPU benchmark suite [15]. They measure different
aspects of the CPU: bzip2 primarily uses integer arithmetic
whilst povray makes heavy use of floating point operations.

We run into an immediate and interesting difficulty. The
EC2 account we are using has access to just 4 of a possible 5
Availability Zones (AZs) [13] in US East: us-east-1b, us-
east-1c, us-east-1d and us-east-1e. As we shall see, EC2 AZs
have different performance characteristics from each other. It
is therefore entirely possible that the AZ this account does
not have access to, us-east-1a, provides better performance.

66Copyright (c) IARIA, 2014. ISBN: 978-1-61208-338-4

CLOUD COMPUTING 2014 : The Fifth International Conference on Cloud Computing, GRIDs, and Virtualization

We ran approximately 300 m1.small instances. In each
instance the workloads were run sequentially. For bzip2 and
povray we recorded the Programme Execution Time,
whilst STREAM reports memory bandwidth in MB/s. As the
unit of work is consistent, STREAM is an example of a good
throughput metric. In Table 1 below, we record the
summary statistics (to the nearest second or MB/s):

TABLE I. SUMMARY STATISTICS

Workload Mean Max Min SD CoV
Bzip2 (s) 528 745 421 78 0.15
Povray (s) 636 701 599 33 0.05
STREAM
(MB/s)

2853 5860 1328 1239 0.43

We determine the CPU model backing an instance by

examining the file /proc/cpuinfo. All of these instances were
backed by one of the following Intel Xeon CPU models:
E5430, E5-2650, E5645 and E5507. The CPU models found
are the same as in our previous work. In Table II below, we
present the statistics for each of the workloads broken down
by CPU model.

TABLE II. SUMMARY STATISTICS BY CPU MODEL

Workload Statistic E5430 E5-
2650

E5645 E5507

Bzip2 Mean(s) 439 468 507 621
 Max(s) 467 500 535 745
 Min(s) 421 451 490 567
 SD(s) 11 12 10 31
 CoV 0.025 0.026 0.02 0.05
Povray Mean(s) 693 614 606 632
 Max(s) 701 624 628 650
 Min(s) 687 606 599 625
 SD(s) 3 5 7 5
 CoV 0.004 0.008 0.011 0.008
STREAM Mean(MB/s) 1446 5294 3395 2348
 Max(MB/s) 1572 5860 4008 2448
 Min(MB/s) 1328 4935 2995 2078
 SD(MB/s) 66 191 287 104
 CoV 0.045 0.036 0.085 0.044

The coefficient of variation (CoV) is the ratio of the

standard deviation relative to the mean and is useful for
comparing the amount of variation between two data sets.
The CoV here shows that the amount of variation for each
workload is greater when considered across all CPU models
than for a particular CPU model. For example, across all
CPU models the CoV for the bzip2 workload is 0.15 whilst
for the individual CPUs the largest CoV we find is 0.05, and
the smallest CoV is 0.02, as found on the E5645. We
interpret this as follows: There is approximately 8 times the
amount of variation in bzip2 results considered across all
CPU models than we find on the E5645. We also note that
the E5507 has twice the variation as found on the other
models. We have similar findings for the povray and
STREAM workloads.

From the results we see that performance for all
workloads depends on the CPU model backing the instance.
As such, we can order the CPUs by how they perform the
task. For bzip2 we have (from best to worst): E5430, E5-

2650, E5645 and E5507. Interestingly, the orderings for both
povray and STREAM are different, for example, for
STREAM the ordering would be: E5-2650, E5645, E5507
and E5430. This shows that it is not possible to identify a
‘best’ CPU for all workloads, providing an opportunity for a
CSB to identify which CPUs models provide best
performance for specific applications.

These results suggest that the E5-2650 is the most
versatile CPU, for these three workloads - it is the second
best performing CPU model for both the bzip2 and povray
tests and the best for STREAM. In Fig.1, Fig.2, and Fig.3
below we present histograms of the results, broken down by
CPU model, which show this more clearly.

Figure 1. Bizp2 Execution Time(s)

Figure 2. Povray Execution Time(s)

67Copyright (c) IARIA, 2014. ISBN: 978-1-61208-338-4

CLOUD COMPUTING 2014 : The Fifth International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 3. Triad Memory Bandwidth

We can use these results to identify which CPU model is
most suitable for a particular workload. The question we
now consider is this: How would I obtain instances with this
CPU model backing it when I can’t specify it in the request?
In Table III below, we record the percentages of the CPU
models we found in the 4 AZs (note that, due to Amazon’s
structuring within EC2, different users may well have
different mappings):

TABLE III. CPU MODEL DISTRIBUTION BY AZ

 E5430 E5-2650 E5645 E5507
us-east-1b 25% 0 40% 35%
us-east-1c 27% 0 23% 50%
us-east-1d 30% 0 36% 34%
us-east-1e 0% 88% 12% 0%

Considering STREAM, we know that the E5-2650 is the

best performing (from Table II), and from Table III, we see
that we should choose us-east-1e when running this
workload. For povray it is slightly more complicated. The
E5645 is, on average, the best for this task but the E5-2650
gives very similar performance. Whilst it may be tempting to
run instances in us-east-1b for this workload, we note a high
percentage of the E5430, the worst performing CPU for the
task. A safer option may still be us-east-1e.

B. Work Done and Price/Performance Considerations

Although performance information for users is useful,
arguably more important for them is price/performance –
more so when considering systems or workloads requiring
multiple instances or multiple instance types. For the bzip2
and povray workloads we consider one completed
compression or image rendering as a unit of work. For each
CPU model we can calculate the average number of units of
work per hour that can be performed, and from this we
deduce a price per unit of work. The instance price per hour
for an m1.small in the US East Region (as of 01/14) is $0.06.
The cost of an instance is the number of wall clock hours

elapsed since the instance was launched, with partial hours
charged as full hours. For example, an instance started at
20:50 and terminated at 22:05 will be charged for 3 hours. In
Table IV below, we record the partial Units of Work (UoW)
per hour (which we call the completion rate) together with
the price per UoW.

TABLE IV. UNITS OF WORK

Workload E5430
($/UoW)

E5-2650
($/UoW)

E5645
($/UoW)

E5507
($/UoW)

Bzip2 8.2
0.0073

7.7
0.0078

7.1
0.0085

5.8
0.001

Povray 5.2
0.0112

5.9
0.0101

5.9
0.0101

5.7
0.0103

Table IV uses mean application execution times, and also

includes partial work done. Whilst in some cases this may be
useful, in general it is not clear if a user would be interested
in partial completion of work. Instead, we can consider a
simpler question, for example: What are the best and worse
prices for completing my work using m1.small instances?
One such piece of work might be ‘compress 10 desktop ISO
images using bzip2’.

From Table 1, we calculate the best and worst completion
rate as 8.6 and 4.8 (min E5430 and max E5507). Based on
EC2 wall clock hours, 10 units will see the user charged for
at least 2 hours on the E5430 and at least 3 hours on E5507:
best price would be $0.12 (potentially $0.18 depending on
job start timing) and worst price is $0.18 (potentially $0.24).
So, assuming start on the hour, we may see a 50% increase
in cost for the same work. And yet, if we compare the actual
execution times - 421s to 745s - we find a 77% increase.
However, to complete 50 units of work requires 6 hours on
the E5430 and 11 hours on the E5507, with respective costs
being at least: $0.36 and $0.66, an 83% increase in the cost.

V. EC2 PERFORMANCE DISCOVERY SERVICES

Based on the foregoing, we would envisage one
performance service which could be used for EC2 as
follows: A user requests performance information for a
workload on a range of instance types. We assume the
workload would be representative of an application the user
wishes to run. For example, a user may have determined on
their local systems that their application requires high
memory bandwidth, so STREAM workloads, as described in
section IV, would be of interest. In general, these workloads
could be either well known benchmarks, a dwarf kernel [17]
or a self-produced effort. How well the workload and the
application correlate is the responsibility of the user not the
broker at this point.

The broker will then determine the performance ordering
of the CPU models associated to the class. So for example, a
user requesting a povray run against the standard benchmark
input file on m1.small instances would have the following
returned to them: E5645, E5-2650, E5507 and E5430.

In this first step we have identified which CPU models
give best price/performance. Next, and based on historical
data, the broker will inform the user in which AZ they are
most likely to find the better performing CPU models, as

68Copyright (c) IARIA, 2014. ISBN: 978-1-61208-338-4

CLOUD COMPUTING 2014 : The Fifth International Conference on Cloud Computing, GRIDs, and Virtualization

discussed in section IV sub-section B. The historical data
could also be used to provide estimates of the probability of
actually obtaining a given model.

Additional services can easily be imagined, such as
obtaining instances with given CPU models on behalf of the
user. Further, as we have demonstrated, performance
variation is greatest amongst different CPU models, and
exists in instances backed by the same model. In this case the
variation could be a function of resource contention, or
simply variation in quality of other system parts, and so is a
run time property. Finding best performing instances at run
time is another potential performance service.

VI. CONCLUSIONS AND FUTURE WORK

There is an overwhelming variety of instance types on
offer currently, in various Infrastructure Clouds, and a lack
of transparent performance information. This make choosing
instances types that offer best price/performance for given
applications difficult. This would seem to be a clear
opportunity for CSBs to add performance related services on
top of existing Cloud offers. To be successful, we would
argue that the notions of performance must be in-line with
ones that are relevant to the applications that users wish to
run. As discussed in section III, these are most likely to
involve one or more of execution times, throughput and
work done.

We have shown that performance of an instance depends
on both the CPU model backing the instance and the
application. And so determining best price/performance
requires knowledge of both, as well as an ability to predict
where the ‘best’ CPU models for the application can be
found. Based on our work here, and on previous results, we
proposed a performance discovery service. As an example,
we showed that for the best memory bandwidth performance
for m1.small instances (our EC2 account), make requests to
us-east-1e.

In future work, we wish to explore these ideas further,
and in particular to tackle the problem of performance
monitoring with respect to the ‘good’ metrics described here.
This is needed for CSBs who would need to offer Service
Level Agreements (SLAs) with performance guarantees for
instances obtained on behalf of users. In the same way that
providers describe performance in terms of machine
characteristics, we find most performance monitoring
focuses on system metrics. It is unclear how system metrics
relate to the good performance metrics as described here, and
we hope to address suitable performance monitoring also.

REFERENCES

[1] J. O’Loughlin and L. Gillam, “Towards performance
prediction for Public Infrastructure Clouds: an EC2 case
study,” Proc. IEEE Fifth International Conference on Cloud
Computing Technology and Science (CloudCom 2013),
Dec2013, pp. 475-480.

[2] “IT Glossary,” www.gartner.com. [Online]. Available:
http://www.gartner.com/it-glossary/cloud-services-brokerage-
csb [Accessed: 27th January 2014].

[3] “Amazon EC2 Instance,” aws.amazon.com. [Online].
Available: http://aws.amazon.com/ec2/instance-types/
[Accessed: 27th January 2014].

[4] “Virtual Machine Pricing Details,” www.windowsazure.com.
[Online]. Available: http://www.windowsazure.com/en-
us/pricing/details/virtual-machines/ [Accessed: 27th January
2014].

[5] Amazon EC2 FAQs,” aws.amazon.com. [Online]. Available:
http://aws.amazon.com/ec2/faqs/#What_is_an_EC2_Compute
_Unit_and_why_did_you_introduce_it [Accessed:27th
January 2014].

[6] “Google Cloud Platform,” cloud.google.com. [Online].
Available: https://cloud.google.com/pricing/compute-engine
[Accessed:27th January 2014].

[7] “HP Cloud Pricing,” www.hpcloud.com. [Online]. Available:
https://www.hpcloud.com/pricing [Accessed:27th January
2014].

[8] D. Lilja, Measuring Computer Performance, New York,
Cambridge University Press, 2000.

[9] J. Hennessy and D. Patterson, Computer Architecture a
Quantitative Approach, 5th Ed. Waltham, Elsevier, 2012.

[10] I. Goiri, F. Julii, J. Fito, M. Macias and J. Guitart,
“Supporting CPU-based guarantees in Cloud SLAs via
resource level QoS metrics”, Future Generation Computer
Systems,Vol 28, pp. 1295-1302, 2012.

[11] Q. Snell and J. Gustafson, “A new way to measure computer
performance”, Proc. Hawaii International Conference on
Systems Science, pp.392-401, 1995.

[12] “CloudLayer Computing”, softlayer.com. [Online]. Avaialble:
http://www.softlayer.com/cloudlayer/computing [Acessed:
27th January 2014].

[13] Global Infrastructure,” aws.amazon.com. [Online]. Available:
http://aws.amazon.com/about-aws/globalinfrastructure/
[Accessed: 27th January 2014].

[14] M Armbrust et al, “Above the clouds: a Berkely view of cloud
computing”. Technical Report EECS-2008-28, EECS
Department, University of California, Berkeley.

[15] “SPEC CPU2006,” www.spec.org. [Online]. Available:
http://www.spec.org/cpu2006/ [Accessed: 27th January
2014].

[16] J. Hoxmeier and C. DiCesare, “System response time and and
user satisfatcion: an experimental study of browser based
applications”, Proc. Of the Association of Information
Systems Americas Conference, Long Beach California,
pp.140-145, 2000.

[17] Dwarf-Mine,” view.eecs.berkeley.edu/wiki. [Online].
Available: http://view.eecs.berkeley.edu/wiki/Dwarfs
[Accessed: 27th January 2014]

69Copyright (c) IARIA, 2014. ISBN: 978-1-61208-338-4

CLOUD COMPUTING 2014 : The Fifth International Conference on Cloud Computing, GRIDs, and Virtualization

