
Load Balancing in Cloud Computing Systems Through Formation of Coalitions in a
Spatially Generalized Prisoner’s Dilemma Game

Jakub Gasior
Systems Research Institute, Polish Academy of Sciences

Warsaw, Poland
E-mail: j.gasior@ibspan.waw.pl

Franciszek Seredynski
Polish-Japanese Institute of Information Technology

Warsaw, Poland
E-mail: sered@pjwstk.edu.pl

Department of Mathematics and Natural Sciences
Cardinal Stefan Wyszynski University

Warsaw, Poland
E-mail: sered@pjwstk.edu.pl

Abstract—The efficiency, in terms of load balancing and
scheduling problems as well as security of both communication
and computation processes, belong to the major issues related
to currently built cloud computing systems. We present a
general framework to study these issues and our research goal
is to develop highly parallel and distributed algorithms working
in environments where only local information is available. In
this paper we propose a novel approach to dynamic load
balancing problem in cloud computing systems. The approach
is based on the phenomena of self-organization in a game-
theoretical spatially generalized Prisoner’s Dilemma model
defined on the two-dimensional cellular automata space. The
main concept of self-organization used here is based on the
formation of temporal coalitions of participants (computational
nodes) of the spatial game in the iterative process of load
balancing. We present the preliminary concept design for the
proposed solution.

Keywords-Cloud computing; Cellular automata; Load-
balancing; Spatial prisoner’s dilemma.

I. INTRODUCTION

Cloud computing is one of the emerging developments in
distributed, service-oriented, trusted computing. It offers the
potential for sharing and aggregation of different resources
such as computers, storage systems data centers and dis-
tributed servers. The goal of a cloud-based architecture is to
provide some form of elasticity, the ability to expand and
contract capacity on-demand. That means there needs to be
some mechanism in place to balance requests between two
or more instances of client’s applications. The mechanism
most likely to be successful in performing such a task is a
load balancer.

It provides the means by which instances of applications
can be provisioned automatically, without requiring changes
to the network or its configuration. It automatically handles
the increases and decreases in capacity and adapts its distri-
bution decisions based on the capacity available at the time
a request is made.

In this paper, we consider the aspect of effective load
balancing, i.e., the process of distributing the load among

various nodes of a distributed system to improve both
resource utilization and job response time. The load can
be defined as CPU load, memory capacity, delay, network
load, etc. We formulate a purely theoretical conceptual
model defined as follows: given a set of virtual resources
in the Cloud (M1,M2, ...,Mn), a number of cloud clients
(U1, U2, ..., Uk) and a random set of applications (also jobs
or tasks) run by the clients (J1, J2, ..., Ji), find such an
allocation of jobs to the resources to equalize the system
workload [1].

We are interested in parallel and distributed algorithms
working in environments with only limited, local informa-
tion. Therefore, we propose a game-theoretical approach
combining a spatially generalized Prisoner’s Dilemma (SPD)
model and the cellular automata (CA) paradigm. Each
computational node is presented as a selfishly rational agent.
Such a problem formulation is alike to a CA in the sense that
the strategy first determines the rule based on the neighbors’
configuration and the rule in turn determines the next action
[2].

Competing players in such a system should act as a
decision group choosing their actions in order to realize a
global goal. Main issues that must be addressed here are: a)
incorporating the global goal of the multi-agent system into
the local interests of all agents participating in the game;
and b) such a formulation of cellular automata’s local rules,
that will allow to achieve those interests [12].

The paper is organized as follows. The following section
presents the basic concepts of spatial Prisoner’s Dilemma
game and cellular automata theory. Section 3 presents our
mathematical model of cloud computing system. Section
4 details the load-balancing algorithm from the game the-
oretical point of view. Finally, Section 5 provides some
concluding remarks.

II. PRISONER’S DILEMMA AND CELLULAR AUTOMATA

The concept of the evolution of cooperation has been
successfully studied using various theoretical frameworks.

201Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

Table I
A GENERAL PRISONER’S DILEMMA PAYOFF MATRIX

Cooperate Defect
Cooperate (R,R) (S,T)

Defect (T,S) (P,P)

In particular the Prisoner’s Dilemma (PD) is one of the
most commonly employed games for that purpose, a type of
non-zero sum game played by two players who can choose
between two moves, either to cooperate with or defect
from the other player. The problem is called the prisoner’s
dilemma, because it is an abstraction of the situation felt
by a prisoner who can either cut a deal with the police and
tell on his partner (defect) or keep silent and therefore tell
nothing of the crime (cooperate). While mutual cooperation
yields the highest collective payoff, which is equally shared
between the two players, individual defectors will do better
if the opponent decides to cooperate. The key tenet of this
game is that the only concern of each individual player is to
maximize his payoff during the interaction, which sets the
players as naturally selfish individuals.

The dilemma arises when a selfish player realizes that
he can not make a good choice without knowing what the
opponent will do. Non-zero sum describes a situation where
the winnings of one player are not necessarily the losses of
the other [4]. As such, the best strategy for a given player is
often the one that increases the payoff to the other player as
well. Table I shows a general payoff matrix, which represents
the rewards an entity obtains depending on its action and
the opponent’s one. In this matrix, T means the Temptation
to defect, R is the Reward for mutual cooperation, P the
Punishment for mutual defection and S the Sucker’s payoff.
To be defined as a PD, the game must accomplish the
condition T > R > P > S.

This payoff structure ensures that there is always the
temptation to defect since the gain for mutual cooperation
is less than the gain for one player’s defection. The out-
come (D,D) is therefore a Nash equilibrium - despite the
knowledge and awareness of the dilemma, both players opt
to defect even though both know they are going to receive
inferior scores [7]. In terms of evolutionary game theory
defection is the unique evolutionary stable strategy (ESS)
[8].

Nowak and May [3] have proposed a way to escape from
the dilemma. A variation of prisoner’s dilemma game work-
ing in the two-dimensional cellular automata space where
agents are mapped onto a regular square lattice with periodic
boundary conditions. In every round, players interact with
the immediate neighbors according to a strategy. The fitness
of each individual is determined by summing the payoffs
in games against each of its neighbors. The scores in the
neighborhood, including the individual’s own score, are
typically ranked. In the next round, all individuals update

their strategy deterministically. This approach is typical for
cellular automata models. From a biological perspective, the
utility of an individual is interpreted in terms of reproductive
success. Alternatively, from an economic perspective, the
utility refers to individuals adapting their strategy to mimic
a successful neighbor [7].

Nowak and May have shown that such spatial structure
enables the maintenance of cooperation for the simple
Prisoner’s Dilemma, in contrast to the classical, spatially
unstructured Prisoner’s Dilemma where defection is always
favored. It was determined that players do not need to
play the game with the whole population. By making this
assumption, different equilibria are likely to be established
in different neighborhoods. More importantly, the spatial
structure allows cooperators to build clusters in which the
benefits of mutual cooperation can outweigh losses against
defectors [2]. Thus, clusters of cooperative strategies can
invade into populations of defectors that constitute an ESS
in non-spatial populations [3].

III. PROBLEM FORMULATION

In this section, we formally define basic elements of
the model and provide corresponding notation. Then, we
define possible characteristics of the model that change the
available information and the type of jobs to be scheduled.

For the sake of simplicity, it is assumed that every node
placed on a two-dimensional cellular automata represents a
virtualized resource (Mk) - an abstraction of an entity that
process jobs. Computational power Ck of a certain resource
Mk is defined by a number of operations per unit of time it is
capable of performing. We distinguish between cooperative
(job taking) nodes and selfish (non-job taking) nodes. The
motivation for non-cooperative nodes to enter the cloud is to
just use resources to fulfill their own processing tasks in the
role of clients and refuse to contribute as a worker (although
they could due to their capabilities). Note that if nodes do
not benefit from cooperation incentives (e.g., the possibility
to submit jobs to others in the future), selfishness will be
the optimal strategy for each node.

Job (denoted as Jk) is an equivalent of application run
by the cloud clients. Every application is independent and
has no link between each other whatsoever, e.g., some
require more CPU time to compute complex tasks, and some
may need more memory to store data, etc. Resources are
sacrificed on activities performed on each individual unit
of service. In order to measure direct costs of applications,
every individual use of resources (i.e., CPU cost, memory
cost, I/O cost) must be measured. To simplify the problem,
we assume that job is simply an entity that, in order to be
completed, requires an access to a resource during certain
time pk. For the sake of the theoretical analysis, unless
otherwise stated, we assume that the jobs Jk are produced by
a Poisson process. The size of a job is known immediately
after the job has arrived to the system. At any given time,

202Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

let the local load Lk stand for the time moment when the
computation of the last currently known local job ends, thus
it can be defined as ratio between total size of node’s queued
jobs and its computational power:

Lk =

∑n
i=1 p

i
k

Ck
, (1)

where: n stands for the total number of jobs assigned to a
single node.

Informally, the goal of the scheduler is to find the
allocation and the time of execution for each job. The
distribution of the tasks must be done in such a way that
the system’s throughput is optimized. All scheduling and
load balancing decisions are taken locally by the agents.
The algorithm analyzes the node’s status in terms of its
utilization and capabilities. This status is matched against
the job’s requirements (as given by the job’s meta-data, pk)
considering user-configurable policies that define the desired
degree of resource contribution. Subsequently, each node
may begin execution of assigned tasks, or split them among
its neighbors.

Ideally, each node should receive the same (or nearly
the same) number of tasks. If the same amount of work
is associated with all the nodes, equal distribution of tasks
ensures a good load balance. This statement holds true
assuming that communication cost between neighbor nodes
is negligible. However, such an assumption is unlikely to
be fulfilled in real-world environments. Thus, we introduce
one more parameter defining the amount of time needed
to transfer the workload from one node to another and
denote it as qij , where: i and j stand for identifiers of
nodes participating in the exchange. For simplicity’s sake,
we assume that communication cost between neighbor nodes
is equal to one, and grows linearly with each additional cell,
except, of course a node may communicate with itself at no
cost.

It is important to note that, in this work we make very
few assumptions. We can deal with either static or dynamic
load. The network topology can be of any type as long as it
is connected. Nodes and networks can be homogeneous or
heterogeneous. Load balancing algorithms are operating in a
fully localized, distributed fashion. The required knowledge
is limited to the computation speed, local workload of the
neighbors and the computation time per one unit of load.
All these information are supposed to be given, calculated
or estimated.

IV. THE DYNAMIC LOAD BALANCING PROBLEM

We wish to distribute the workload among resources of
the system to minimize both: a) load imbalance and b)
communication cost between them. For that purpose, a set of
cellular automata’s local rules must be evolved according to
a specific utility function. Let us start by defining the cost and
the benefit of a load balancing process. The cost is the time

lost by exchanging the workload, due to communication.
The benefit is the time gained by exchanging the workload,
due to a better balance and faster execution of tasks.

Let Eij stand for the exchange of workload between
nodes i and j. The benefit given by the exchange Eij can
be estimated by the computation time on i and j without
the exchange minus the computation time on i and j after
this exchange [1]. Intuitively, the benefit of a load exchange
must be positive if the computation time is reduced by this
exchange and negative in the other case. The following
equation denotes the benefit of load balancing scheme,
assuming that node i transfers workload to node j:

Benefit(Eij) = max(Li, Lj)−
max(Li − Eij , Lj + Eij), (2)

where Li and Lj define local loads on nodes i and j,
respectively. Let us now consider the communication part of
the load balancing process. The cost of communication from
one node to another depends on the network architecture
(i.e., network bandwidth, network traffic, buffer size). A
truly portable load balancing algorithm would have no
option but to send sample messages around and measure
those metrics, then distribute the workload appropriately. In
this paper, however, we shall avoid this question by assuming
that all pairs of computational resources are equally far apart.
We can make the assumption that the total communication
cost is equal to the amount of time needed to transfer the
workload from node i to node j (denoted as qij) and thus:

Cost(Eij) = qij . (3)

Additionally, we make an assumption that any node which
took part in the balancing operation is obliged to return
resulting data to the originating node. This issue can be
solved by simply propagating the results backwards through
the initial load balancing route. Such a problem formulation,
however, may become ineffectual in a case of large quantities
of workload being shared among many neighboring nodes.
It is possible, that in such a case, there exist an alternative
way back to the originating node; shorter than original load
balancing route. The issue is illustrated in Figure 1, where A,
represents source node, and B represents destination node.
Green line indicates original load balancing route, while red
line shows the optimal way back.

We propose a simple solution to this problem by imple-
menting a gradient-based communication model. We define
the node’s proximity (P) as the shortest distance from itself
to the sender node. All cells are initialized with a proximity
of Pmax, equal to the diameter of the system lattice. The
proximity is set to 0 if node becomes overloaded and its state
changes to sender. All other nodes i with local neighbors ni,
compute their proximity as:

203Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

Figure 1. The issue of determining communication cost between source
node (A) and destination node (B). Green route shows original communi-
cation route according to the load balancing algorithm. Red route indicates
an alternative (optimal) way back.

P (i) = min(P (ni)) + 1. (4)

The resulting proximity map is later used used to perform
the migration phase. Results are routed through the system
in the direction of the sender node (Figure 2).

Figure 2. The gradient-based communication model. Computational nodes
send results in the direction of the sender node (red) via the gradient map
of proximity values. Cellular automata space comprises the von Neumann
neighborhood - the four cells orthogonally surrounding a central cell on a
two-dimensional square lattice.

Given this parameter, the cost function of load balancing
process from Equation 3 can now be extended and denoted
as:

Cost(Eij) = qij + P (i), (5)

assuming that node i is transferring its workload to node
j. Such a formulation is possible because node’s proximity
is equal to the amount of time needed for propagating the
results back to the originating node. Additionally, it ensures
that load balancing profitability is decreasing linearly with
an increase in distance from the source.

We may now construct our utility function, Γ, as the sum
of parts describing benefits and costs of the load balancing
operation, respectively:

Γ =
∑
k

Benefit(Ek
ij)− µ

∑
k

Cost(Ek
ij), (6)

where: k denotes the amount of workload exchanged be-
tween neighbor nodes and µ is a parameter expressing the

Table II
THE PRISONER’S DILEMMA RESCALED PAYOFF MATRIX

C (Send load) D (Compute locally)
C (Accept) Γ/2, Γ/2 0, 0
D (Reject) Γ, 0 0, 0

balance between the two aspects of load balancing scheme -
communication and computation. For programs with a great
deal of calculation compared to communication, µ should
be relatively small, and vice versa. As µ increases, the
number of processors in use will decrease until eventually
the communication is so costly that the entire calculation
must be done on a single node. Score calculated according to
Γ is awarded to every node taking part in the load balancing
scheme. Its magnitude is strictly dependent on agent’s action
taken in the PD game as shown in Table II.

After s (strategy update cycle) steps of interactions with
the neighbors, all nodes are presented with an opportunity
to update their strategy in a similar manner to the standard
SPD game. The present set of strategy imitation rules
is based on pairwise comparison of payoffs between two
neighboring agents. In each subsequent elementary step of
the evolutionary process we choose two neighboring players
(i and j) at random, we determine their payoff Gi and Gj ,
and player i adopts the strategy sj with a probability given
by the Fermi-Dirac distribution function as proposed in [9]:

W (si ← sj) =
1

1 + exp[(Gi −Gj)/K]
, (7)

where: K characterizes the uncertainty related to the strategy
adoption process, serving to avoid trapped conditions and
enabling smooth transitions towards stationary states [5].

It is well known that there exists an optimal intermediate
value of K at which the evolution of cooperation is most
successful [6, 10], yet in general the outcome of the PD
game is robust to variations of K. For K � 1, selection
is weak and the payoffs are only a small perturbation of
random drift. For K � 1, selection is strong and the
individual with the lower payoff will change its strategy.
In statistical physics, K is the inverse temperature: for
K → 0, the dynamics of the system is dominated by
stochasticity (the temperature of selection is high), whereas
in the limit K →∞ stochastic effects can be neglected (the
temperature of selection is zero) [11]. This phenomenon is
fully illustrated in Figure 3. Without much loss of generality,
we use K = 0.1, meaning that it is very likely that the better
performing players will pass their strategy to other players,
yet it is not impossible that players will occasionally learn
also from the less successful neighbors.

It can be seen that agent’s performance in the dynamic
load balancing scheme directly affects its scores acquired in
the PD game, by shifting the magnitude of payoff values.
Thus, agent with a more effective balancing strategy will

204Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -5 0 5 10

W

Gi - Gj

K=0.01
K=0.1

K=0.3
K=0.5

K=0.8
K=1

K=2
K=5

Figure 3. Strategy adaptation probability graph as a function of the
payoff difference and variable K, characterizing the uncertainty related to
the strategy imitation process.

acquire higher scores in the PD game, which in turn will
increase the probability of imitating that strategy by his less
successful neighbors and propagating it in the system. This
in turn should lead to an optimal load distribution in the
cloud computing environment.

V. CONCLUSION AND FUTURE WORK

We have proposed in this paper a novel paradigm for a
parallel and distributed evolutionary computation in cloud
computing systems based on the model of spatio-temporal
Prisoner’s Dilemma game. We presented the rules of a local
interaction among agents providing a global behavior of
the system as well as the analysis of costs and benefits of
workload exchange. Game-theoretic approach allowed us to
model organizational heterogeneity of cloud computing sys-
tems. Currently, the model is a subject of the experimental
study.

Our future work is threefold. Firstly, we want to further
enhance our model in order to study the problem of evolution
of global behavior and formation of coalitions between
agents. Secondly, we intend to extend the model to enhance
security of both communication and data processing. In
particular, we want to focus on aspects of reputation and
cryptography. This could be important, for instance, when
agents have to decide which action to take against outsiders.
If these outsiders have a reputation degree, such information
could be used in the decision-making process. Also, rep-
utation may turn important among members of coalitions
themselves, for instance to decide when coalitions should
be dissolved. Finally, we would like to port this solution to
real-world scenarios that involve data networks such as P2P,
sensor, and ad-hoc networks.

ACKNOWLEDGMENT

This contribution is supported by the Foundation for
Polish Science under International PhD Projects in In-
telligent Computing. Project financed from The European
Union within the Innovative Economy Operational Pro-
gramme 2007-2013 and European Regional Development
Fund (ERDF).

REFERENCES

[1] E. Jeannot and F. Vernier, “A practical approach of diffusion
load balancing algorithms,” pp. 211–221, 2006. [Online]. Available:
http://dx.doi.org/10.1007/11823285 22

[2] Y. Katsumata and Y. Ishida, “On a membrane formation in a
spatio-temporally generalized prisoner’s dilemma,” pp. 60–66, 2008.
[Online]. Available: http://dx.doi.org/10.1007/978-3-540-79992-4 8

[3] M. Nowak and R. May, “Evolutionary games and spatial chaos,”
Nature 359, pp. 826–829, 1992.

[4] M. Osborne, An Introduction to Game Theory. USA: Oxford
University Press, 2003.

[5] M. Perc and A. Szolnoki, “Social diversity and promotion of
cooperation in the spatial prisoner’s dilemma game,” Physical
Review E 77, vol. 77, p. 011904, Jan 2008. [Online]. Available:
http://link.aps.org/doi/10.1103/PhysRevE.77.011904

[6] M. Perc, “Coherence resonance in a spatial prisoner’s dilemma game,”
New Journal of Physics, vol. 8, no. 2, p. 22, 2006.

[7] G. Rezaei and M. Kirley, “The effects of time-varying rewards
on the evolution of cooperation,” Evolutionary Intelligence, vol. 2,
pp. 207–218, 2009, 10.1007/s12065-009-0032-1. [Online]. Available:
http://dx.doi.org/10.1007/s12065-009-0032-1

[8] J. M. Smith, Evolution and the Theory of Games. Cambridge
University Press, 1982.

[9] G. Szabó and C. Tőke, “Evolutionary prisoner’s dilemma game on a
square lattice,” Phys. Rev. E, vol. 58, pp. 69–73, Jul 1998. [Online].
Available: http://link.aps.org/doi/10.1103/PhysRevE.58.69

[10] G. Szabó, J. Vukov, and A. Szolnoki, “Phase diagrams for prisoner’s
dilemma game on two-dimensional lattices,” Physical Review E,
vol. 72, p. 047107, 2005.

[11] A. Traulsen, M. A. Nowak, and J. M. Pacheco, “Stochastic payoff
evaluation increases the temperature of selection,” Journal of Theo-
retical Biology, vol. 244, no. 2, pp. 349–356, 2007.

[12] M. Wooldridge, An introduction to multiagent systems. John Wiley
& Sons, 2009.

205Copyright (c) IARIA, 2012. ISBN: 978-1-61208-216-5

CLOUD COMPUTING 2012 : The Third International Conference on Cloud Computing, GRIDs, and Virtualization

