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Abstract—Machine learning algorithms are heavily applied to
address many challenges in various fields. This paper specifically
takes a look at use cases from the health sector, as well as the
industry 4.0 sector. In both cases, the knowledge about the clas-
sification process is as important as the classification itself. One
current problem is the disregard of expert knowledge provided by
adept human beings. In practice, it is possible and also feasible to
learn similar knowledge with machine learning algorithms like
artificial neural networks (ANNs) or support vector machines
(SVMs). However, time and money could be saved if this expert
knowledge was used directly. Right now, this is only possible
with more transparent algorithms like rule-based systems or
decision trees, where knowledge can be incorporated relatively
easily. The approach of this paper shows that rules generated
by a mixed fuzzy-rule formation algorithm can be optimized by
applying a controlled evolutionary strategy while maintaining the
interpretability of the decision-making process. The evaluation is
performed by executing the evolutionary strategy proposed in
this paper on data from two different industries.
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I. INTRODUCTION

Nowadays, there is a trend towards using deep learning
algorithms, e.g., Deep Neural Networks (DNN), for almost
any kind of Machine Learning problem [1]. One of the
earlier disadvantages, the slow computation with those kind
of algorithms, has been overcome successfully with the help
of graphics cards and their optimized cores [2]. Still, one
of the big remaining problems is the interpretability of the
results when using black box algorithms like DNNs [3][4].
There are many recent approaches to make those results more
transparent, but those are still in their infancy [5][6][7]. Other
Machine Learning algorithms are more transparent, e.g. Rule-
based systems or Decision trees and can provide a human
understandable explanation. In practice however, this trans-
parency often comes with the price of worse prediction results.

The approach depends on the use case or the Machine
Learning problem itself. Is it more important to absolutely get
the best result possible? Or can a weaker result be tolerated if
explanations and knowledge about the results origins can be
acquired? In case of the two different scenarios evaluated in
this paper, the transparent way to the result is as important as
the outcome itself.

The remainder of the paper is organized as follows: Sec-
tion II provides an overview about related work. Section III
describes the genetic adaptation of the Mixed Fuzzy-Rule
Formation. In Sections IV and V, the evaluations based on
two different Use Cases are conducted. Section VI completes
the paper by drawing a conclusion and suggesting future work.
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II. RELATED WORK

Elsayed et al. [8] combine fuzzy rules and evolutionary
algorithms, albeit in a different way than in our approach. In
their solution, two algorithms cooperate by using fuzzy rules
with complementary characteristics. This results in a higher
success rate when applied on different data sets with different
optimization problems. Their approach is especially interesting
as it can be used to further optimize the method proposed in
this paper.

Schaer et al. have shown that the adjustment of established
fuzzy rules and fuzzy set functions can lead to better results
[9]. Their work was evaluated within an autonomous car
racing competition where they could improve the previous
score by 0.5 %. The adjustments and optimizations of the
fuzzy components were mainly the product of simulation
experiments. In the conclusion, they are mentioning that there
are plans to use genetic algorithms for the adjustments which
is similar to the evolutionary strategy approach proposed in
this paper.

Jariyatantiwait and Yen [10] follow the special approach
of Differential Evolution (DE). They apply their modification
on the ZDT (Zitzler, Deb and Thiele) and DTLZ (Deb,
Thiele, Laumanns and Zitzler) test suits [11], which are used
for evaluating the optimization of algorithms and map the
optimization directly to fuzzy rules. Those rules adapt certain
control parameters during the evolution process. Examples are
the degree of greediness and exploration. They successfully
show that performance metrics can be combined with human
understandable knowledge in the form of fuzzy rules. The work
conducted in this paper takes a similar approach, but tries to
combine classification tasks themselves with fuzzy rules while
control parameters like the degree of exploration are defined
by hand.

Alcald-Fdez et al. [12] show that their modification of a
evolutionary fuzzy-rule based system leads to an improved
performance within monotonic classification problems. In con-
trast to this paper, the authors used genetic algorithms and
concentrated on adjusting crossover mechanisms, including
customised incest prevention and restarting processes while the
mutation mechanism was kept relatively simple by hardcoding
the mutation rate.

The works from various other authors in this section
show that evolutionary strategies within classification problems
hold a high value, given the good results and the preserved
interpretability by humans. This can be observed for many
more use cases, e.g., financial market [13] [14], medicine [15],
computer science [16], etc. and reinforce the choice to take a
deeper look at the two uses cases of this paper. However, a
direct comparison to other works with different use cases is
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very difficult to accomplish and would go beyond the scope
of this paper. Furthermore, modifying different parts of the
evolution process is still a heavily pursued research topic,
regardless of the use case.

III. PRELIMINARY

This work relies on the fuzzy rules generated by the
mixed fuzzy-rule formation proposed by Berthold [17]. The
decision to use this specific kind of fuzzy logic as a basis for
genetic adaptation was based on its ability to cope with high-
dimensional data sets while delivering good classification per-
formance. Additionally, the created rules can be interpreted by
humans and further expanded on using knowledge engineering.
Table I shows a quick and shortened example of a rule.

TABLE 1. EXAMPLE RULE

age operation year
(24, 48, 60, 64) (03, 06, 07, 07)

axillary nodes survival
(19, 21, 35, 46)  true

The attributes age, operation year and axillary nodes are
described textually in this example. Those 4 values per attribute
are to be seen in the usual fuzzy partition context. Looking
at the age value, this means that people ranging from 48 -
60 years are members of the complete (survival = true) set,
while the rest of the people in ranges from 24-48 and 60-64
years are only partial members of the (survival = true) set. The
same applies for the other attributes and the rule is only valid
when logically combining all the attributes. The following
configuration is used during the fuzzy rule generation with
the mixed fuzzy-rule formation algorithm:

e  Shrink rules after each commit to reduce conflicting
rules

e  Use the class with maximum coverage for training

e  Min/Max fuzzy norm for the rule activation computa-
tion

e  Volume Border Based shrink function after the com-
plete rule set has been established to further reduce
conflicting rules

Even with shrinking mechanisms in place, many rules are
created by the algorithm. It depends on the size of the dataset
and its attributes. More data usually results in more created
rules when using mixed fuzzy-rule formation. In order to
further minimize possible conflicts, only the two rules that
represent a class with the highest weight are chosen for the
Evolutionary Strategy (ES). This has mainly two reasons.

Firstly, the application of many rules to a big data set can
become time consuming, which is still a practical problem.
Fernandez et. al show in [18] that solutions for this challenge
are still in their infancy. Practical solutions proposed by Rio et
al. [19] furthermore show that, depending on the use case, there
is always a speed-accuracy trade-off. The second reason is the
easier comprehensibility by human experts. To have less, but
more robust rules additionally aids in the process of battling
over fitting. From a research point of view, this is especially
interesting as one of the major problems when implementing
predictive maintenance in the context of Industry 4.0 is the
ability to generalize the created or extracted knowledge to
subsets of machine types, like Computer numerical control
(CNC) grinding machines.

Copyright (c) IARIA, 2018. ISBN: 978-1-61208-631-6

A. Workflow

The following list provides a quick overview of the work-
flow depicted in Figure 1.

1)  Split the data into Training/Validation (70%) and Test
sets (30%)
2)  Create a complete rule-set using the mixed fuzzy-rule
formation algorithm
3) Filter the two rules with the highest weight per
prediction class
4)  Apply the rules to the Test Set
5)  Adapt the filtered rules by mutation
6) Compare the results based on F-measure
7)  Keep on mutating
8)  Stop the iteration after a defined Terminal Condition
for Mutation (TC M) has been met. This can take on
the form of an interval, result or event
9)  Save the adapted rules and results
10)  Split the data into training/validation (70%) and test
sets (30%) again, but in a different way than before
11)  Adapt the mutated rules from the previous iteration
12)  Apply the adapted rules to Test Set and save the result
13)  Compare the results
14)  Stop the iteration after a defined interval, result or
event

The algorithm stops the current iteration and starts a new
one as soon as a defined terminal condition (TC M) is satisfied.
The fitness function used for comparing the results is defined
as the classification F-measure, which is selected in order to
consider precision, as well as recall. At first, the TC M is
called when the algorithm does not improve the F-measure
after a certain number of iterations, which could be rather
limiting considering that mutations are based on randomness.
Another factor was that the mutated rules should never mutate
so much that they completely change their meaning. So, a
rather low number of maximum 42 mutations per mutation
iteration is allowed. When applied to the use cases described in
Section V, the final terminal condition is defined as a maximum
of 15 mutation iteration rounds. This definition is based on
the decision to optimize the existing rules and not to create
new ones. In test runs, it was evaluated that with a very high
number of mutation rounds, the underlying rule could not be
identified any more. To mitigate over fitting, the following two
procedures are implemented. Firstly, the first training set in the
first mutation round includes data which is held back and used
only for validation purposes. Secondly, after each mutation
iteration the dataset is split again in a different way based on
the pseudo random generator provided by the python random
library.

IV. EVOLUTIONARY STRATEGY

The adaptation process concentrates on mutating the gen-
erated rules in order to optimize those rules. This procedure
pursues a slightly different approach compared to classical ge-
netic algorithms (GAs). Evolutionary Strategy usually does not
include a crossover mechanism for the population adaptation.

There are mainly two reasons to concentrate on ES. Firstly,
when including crossover mechanisms, the fuzzy rules often
drastically change and do not represent their original meaning
any more. This stands in opposition to the focus in this
paper, which is to optimize existing rules which are built upon
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Figure 1. Workflow

specific knowledge. Secondly, when only using mutation, the
algorithm can, if needed, dynamically be controlled to a high
degree. The first approach was to start with a lower mutation
rate (meaning values within the rules were allowed to change
up to +-5%) and let the rate steadily increase. The second
approach was to start with a higher mutation rate of 40 % and
let it steadily decline. In practice however, the best results were
achieved using a random mutation rate, confined to a change
within -40 % to + 40 %. Surprisingly, this is true for both data
sets described in Section V.

V. EVALUATION WITH USE CASES

The following use cases will show the practical applicabil-
ity of the proposed genetic adaptation. The decision to evaluate
with the help of two different data sets is made in order to get
a brief look at the generalization potential of the algorithm.

A. Evaluation 1: Health Sector

The "Haberman’s Survival Data’ [20] provides information
about the survival status of breast cancer patients who under-
went surgery. This multivariate dataset contains 306 examples
and was gathered by the Billings Hospital in Chicago. The
data was provided by the Machine Learning Repository of
the University of California, Irvine [21] with the following
description of the attributes:

e  Age of patient at time of operation (numerical)

e  Patient’s year of operation (numerical)
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e  Number of positive axillary nodes detected (numeri-
cal)

e  Survival Status (binary class attribute)

o 1 = the patient survived 5 years or longer
o 2 = the patient died within 5 years

The mutation is performed on the fuzzy rules attributes
age, operation year and axillary nodes, shown in Table II. Like
previously mentioned, the maximum change of one attribute
per mutation lies between -40 % and +40 %. As the data in this
use case only consisted of integers, the mutation also delivers
only integers. A control mechanism detects if violations of the
hard and soft boundaries of the fuzzy rules were the result of
a mutation and rolls the fuzzy rule back to the state one step
before the violating mutation has occurred. Table II shows one
rule created by mixed fuzzy-rule formation and two mutations.
Mutation 1 is violating the fuzzy rule in the last value of the
attribute age while mutation 2 represents a valid mutation.

TABLE II. MUTATIONS OF AN EXAMPLE RULE

mutation age operation year axillary nodes survival
(24, 48, 60, 64) (03, 06, 07, 07) (19, 21, 35, 46) true
1 (24, 48, 60, 59) (03, 06, 07, 07) (19, 21, 35, 46) true
2 (24, 48, 60, 62) (03, 06, 07, 07) (19, 21, 35, 46) true

Figure 2 gives a graphical overview of one part of a rule.
The soft limits can clearly be seen in green colour at the
operation years 60 and 67 while the hard limits are represented
by years 59 and 69.
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Figure 2. Part of a fuzzy rule

TABLE III. SCORING STATISTICS: HEALTH SECTOR

Iteration Mutations | Rate | F-measure
0 - - 0.696
1 30 24 % 0.695
2 35 2 % 0.691
3 7 10 % 0.684
4 42 4 % 0.682
5 29 30 % 0.681
6 14 13 % 0.684
7 31 29 % 0.685
8 13 9 % 0.690
9 5 21 % 0.693
10 10 37 % 0.699
11 31 29 % 0.697
12 13 9 % 0.686
13 28 21 % 0.689
14 10 7% 0.693
| 15 (TC) = 10 [ [ [ 0.699 |

Table III shows the individual iterations of the adaptation
process. The number of mutations is listed next to the mutation
rate, which represents the average change of the values during
that iteration. It can be seen that in iterations 10 and 11 the
algorithm leads to a better result. Iteration 15 triggers the
terminal condition and iteration 10 is selected, as it improves
the F-measure by 0.3 %. Although the improvement may seem
small, the new knowledge in form of the mutated fuzzy rules
could be evaluated and used by human experts.

B. Evaluation 2: Industry 4.0

Industry 4.0 and predictive maintenance is a hot topic in
research and business right now. Companies want to precisely
predict the date and time a machine needs maintenance in
order to produce more efficiently [22]. Often, many sensors
are added to machines or along the production line. The
data gathered by these sensors is then used to build the
predictive models. The dataset used in this evaluation has been
provided by Ludovic in [23] and consists of 1001 records.
The interesting fact about this dataset is that it also provides
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Figure 3. Correlation of lifetime and machine health

additional information like the responsible maintenance team
for a certain machine. The following attributes are provided in
the data set:

e lifetime of the machine in weeks (numeric)
e  pressure (numeric)

e  moisture (numeric)

e  temperature (numeric)

e  provider of the machine (string)

e  responsible maintenance team (string)

° status

o 1 = machine is broken
o 0 = machine is still working

Another interesting part about this data set is that the
information provided is relatively easy to obtain for different
kind of machines. Corresponding cost-effective sensors for
temperature or moisture measurement can usually be addi-
tionally installed, regardless of the age of the machine. In
contrast to the first use case, the values of the sensor attributes
consist of floating-point numbers. The mutation was performed
on the numerical attributes lifetime, pressure, temperature and
moisture. It turns out that mutating the string type attributes
like provider and maintenance team had a too strong impact on
the original fuzzy rule. This makes sense as a slight change
in those data types can completely turn a fuzzy rule on its
head. Figure 3 shows the correlation of lifetime and health
of a machine. Looking at this graph, it makes sense to use
a rule-based system to model this correlation and use it for
classifications and predictions. However, Figure 4 shows that it
is not as easy when looking for correlations of the temperature
and the health of a machine as there seems to be a rather equal
distribution. Thankfully, fuzzy rule-based systems can cover
the correlations between attributes thanks to the soft- and hard
boundaries as shown in Table II and, at the same time, retain
transparency.

Table IV shows that in this use case, the algorithm improves
in iterations 2, 3, 4 and 9 compared to the original fuzzy
rule. The F-measure is improved by 0.4 %. This time, the
best results are obtained after relatively few iterations.
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Figure 4. Correlation of temperature and machine health

TABLE IV. SCORING STATISTICS: INDUSTRY 4.0

Iteration Mutations | Rate | F-measure
0 - - 0.650
1 3 13 % 0.650
2 23 20 % 0.654
3 30 14 % 0.651
4 1 2 % 0.651
5 13 21 % 0.645
6 16 19 % 0.647
7 25 1% 0.647
8 40 28 % 0.650
9 31 13 % 0.651
10 27 9 % 0.649
11 9 5 % 0.645
12 22 39 % 0.646
13 8 17 % 0.642
14 20 7 % 0.640
| 15 (TC) =2 [ [ [ 0.654 |

VI. CONCLUSION AND FUTURE WORK

The evaluation within two different use cases with different
data sets shows that fuzzy rules, generated by mixed fuzzy-rule
formation, can be optimized by using the proposed method.
The evolutionary strategy is primary based on mutation in
order to keep the changes assessable. The implemented control
mechanism while mutating ensures that the fuzzy partitioning
within the fuzzy rule were not violated. Currently, this opti-
mization is only possible with numerical type attributes within
the fuzzy rules.

In the future, it should be evaluated how to deal with string
and binary values during the mutation process as one minor
change already results in big changes to the fuzzy rule itself.
Future work includes the application to bigger data sets with
more attributes and records to see if the algorithm can scale
accordingly. At the same time, the implications of a bigger
data set on the trade of between accuracy and coverage of the
data set have to be evaluated. The impact on the computation
time has to be analysed as well for those cases. Additionally,
it must be evaluated if the algorithm can work for regression
problems, too. In general, the algorithm must be tested with
more use cases to be able to make comprehensible assumptions
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about generalisation potential and possibilities. The algorithm
will additionally be evaluated with machine data gathered from
grinding machines and lathes. This will be a similar use case
to the second use case described in this paper. But it should be
kept in mind that even simple changes, like slightly different
positioned sensors could already complicate the ability to
generalize well, even when using the exactly same types of
sensors. Furthermore, both use cases should be evaluated in a
detailed comparison with other machine learning algorithms,
e.g., artificial neural networks.
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