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Abstract—Cognitive radio is a promising choice to fulfill needs
of growing wireless applications in the future. Spectrum sensing
is beneficial in several circumstances when secondary user (SU)
search empty frequencies for a transmission. One interesting
choice for spectrum sensing is the localization algorithm based
on the double-thresholding (LAD) method. The LAD method
is based on the forward consecutive mean excision (FCME)
algorithm that calculates the used thresholds. Threshold setting
is based on the usage of the desired false alarm rate, which is
sensitive to issues like the length of the integration time. In the
real-time applications, integration time is limited. In this paper,
the false alarm rate of the FCME algorithm is studied. The false
alarm rates of the FCME algorithm in the noise-only case with
different integration times (sample vector lengths) are analyzed.
The minimum length of the sample vector is defined. The
simulation results are verified by the real measurement results
in the noise-only case, and a scenario that combines the results
is presented. It is also noted that in the noise measurements, the
achieved false alarm rates are somewhat lower than the desired
ones.
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I. INTRODUCTION

Cognitive radio technology [1] [2] [3] can be considered
as a revolution against the traditional, inflexible frequency al-
location. Cognitive radio (CR) enables both dynamic spectrum
management and flexible transmission bandwidth [4]. In CR,
secondary users (SU) may transmit if there is room aka empty
frequencies (white space) in the spectrum and if they are not
interfering primary users (PU). Interference-free transmission
is a privilege of the PUs. In cognitive radio, SUs may find out
empty frequencies using, for example, databases or spectrum
sensing [5] [6] [7] [8]. Sensing may be beneficial instead of
geolocation and databases, for example, in the wireless local
area network (WLAN)-type solutions when transmitters are
located close to each other and transmit powers are small. Also,
public safety applications when the connection to the outside
world is lost may use sensing. Spectrum sensing requires
ability to find unused frequencies, which can be done via
detecting existent signals.

Many detection methods are based on the use of a thresh-
old. The basic principle is that the threshold separates the
samples into two sets: noise and signal sets. Nowadays, most
of the methods use adaptive thresholds. Threshold setting is
a very demanding task, especially when the threshold is set
adaptively. As too high threshold causes missed detections,
too low a threshold leads to false detections. Missed detection
means that existing signals are not detected, as false detection
means that noise samples are falsely detected to be from a
signal.
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One of these detection methods is the localization algo-
rithm based on the double-thresholding (LAD) [9]. At the core
of the LAD method, the forward consecutive mean excision
(FCME) algorithm [10] provides the used detection thresholds.
The FCME algorithm sets the threshold iteratively based on
the mean of sample energies and a pre-selected threshold
parameter. This parameter depends on the statistical properties
of the noise-only case. Usually, Gaussian assumption is used
even though the measured noise is not purely Gaussian [9]. The
threshold parameter is defined using the desired false alarm
rate Pra pgrs. It defines how many samples are above the
threshold when there is only noise present. The FCME method
uses constant false alarm rate (CFAR) principle, so the false
alarm probability stays almost constant. However, it is sensitive
to the issues like the length of the considered sample vector
and noise properties. In the real-time applications, integration
time is limited, so the number of considered samples N can
not be as large as in the computer simulations.

The performance of the FCME algorithm is highly de-
pending on the false alarm rate. If the achieved false alarm
rate differs from the desired one, the performance of the
FCME method may degrade. Especially when the signal-to-
noise ratio (SNR) is low, the false alarm rate totally defines
the performance of the FCME algorithm, and, thus, the LAD
method. If the achieved false alarm rate is not close enough
to the desired one, the performance of the LAD method may
even totally degrade. It is very important to control Pra prs
because it is related to the caused interference as well as the
spectrum opportunity loss in cognitive radio applications [9].
Thus, it is very important to study and analyze the false alarm
rate of the FCME algorithm.

In this paper, the false alarm rate of the FCME algo-
rithm is studied in the noise-only case. That is, there are
no signals present. First, the effect of the length of the
considered sample vector (i.e., integration time) to the false
alarm rate of the FCME algorithm is analyzed using simulation
software generated AWGN noise. Mean, variance as well as
minimum and maximum values of achieved false alarm rates
are analyzed. Based on those, proper sample vector lengths
are recommended. The analysis results are verified by the real
measurement results in the noise-only case. The measurements
covering a wide range of the spectrum are used to find out
the differences in the achieved false alarm rate between the
measured and simulation software generated noise. Several
measurements up to 39 GHz are used to cover higher frequency
areas possible used in future applications as 5G and beyond.
The Kruskal-Wallis test is used to provide more statistical
information. In addition, a scenario that combines the analysis
and measurement results is presented.
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This paper is organized as follows. In Section II, the
used FCME algorithm is presented. Section III covers the
probability of false alarm analysis of the FCME algorithm,
and Section IV describes our scenario. Conclusions are drawn
at Section V.

II. THE FCME ALGORITHM

The FCME algorithm [9] [10] [11] was originally proposed
for impulsive interference suppression in the time domain.
Later on, it was noticed that the method can be used also
in other transform domains, e.g., in the frequency domain.
Its enhanced version called the LAD method [9], which uses
the FCME thresholds was developed to detect narrowband
information signals, e.g., for spectrum sensing purposes.

The FCME algorithm is blind and independent of modu-
lation methods, signal types and number of signals. The only
requirements are that the signal(s) can not cover the whole
bandwidth under consideration, and the signal(s) are above the
noise level.

The FCME algorithm is computationally simple but effec-
tive. It calculates the threshold iteratively based on the noise
properties.

Initial Preparation: When the noise is assumed to be
zero mean, independent, i.i.d. Gaussian noise, i.e., samples
x; follow the Gaussian distribution, the FCME algorithm
calculates the threshold parameter based on [10]

Teve = —In(Pra,pEs), (D

where Pp4 prs is the desired clean sample rejection rate
(the desired false alarm rate) [10]. For example, if the desired
clean sample rejection rate is 1% (= 0.01), Teyp = 4.6
[9]. After that, energy of samples is calculated. Now, samples
|;|? that follow the chi-squared distribution with two degrees
of freedom are rearranged in an ascending order according to
their sample energy. Then, m = 10% of smallest samples are
selected to form the initial set () (called also as a “’clean set”).

Algorithm: The FCME threshold is [10]

Ty =TemeQ, ()

where ) denotes the mean of (). Samples below the threshold
are added to the set () and new mean and threshold are
calculated. This is repeated until there are no new samples
below the threshold. Usually, it takes 3-4 iterations to get the
final threshold. In the end, samples above the threshold are
assumed to be signal samples, as samples below the threshold
are assumed to be noise samples.

The required false alarm rate Pra pgs is related to the
threshold. Small Pra pgps value leads to larger threshold.
Thus, the amount of false alarms is small. Large Pra pEs
value leads to smaller threshold and the amount of false
alarms is larger [12]. In cognitive radio applications, it is
important to control Pra pgrs because it is related to the
caused interference as well as the spectrum opportunity loss

[9].

It should be noted that (1) is valid when the noise is at
least approximately Gaussian. It is also possible to define the
used equation to other distributions [9]. Note, that the noise
variance has no influence [13].
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TABLE 1. ACHIEVED Pry4 WHEN Pry prs = 0.01.

N mean(Pr4) | diff var(Pr ») min max

64 0.025245 0.0152 | 0.0075937 0 0.9062
128 0.015415 0.0054 | 0.00062043 0 0.8984
256 0.0141 0.0041 | 7.505e —05 | O 0.0585
512 0.013526 0.0035 | 3.566e —05 | O 0.0390
1024 0.013313 0.0033 | 1.721e — 05 | 0.00195 | 0.0341
2048 0.013181 0.0032 | 8.356e — 06 | 0.00341 | 0.0268
4096 0.013139 0.0031 | 4.318e — 06 | 0.00659 | 0.0229
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Figure 1. Achieved Pr4 values for different values of N.

MC=100 sweeps. Results are sorted in an ascending order.
Matlab-generated noise. Pr4,prs = 0.01.

III. Pg4 ANALYSIS OF THE FCME ALGORITHM

Achieved Pr 4 values for different desired Pr 4, prs values
were studied. That is, how close the achieved Pr 4 values are
to the desired Pp 4 pgs value. This effects to the performance
of the FCME method, especially at low SNR values. Two
different commonly used desired Pr4 pgs values were used,
0.01 = 1% (Teyme = 4.6) and 0.001 = 0.1% ( Tepme = 6.9)
[9]. It means that according to the CFAR principle, when there
is only noise present, 1% or 0.1% of the samples should be
above the threshold, respectively. In the computer simulations,
the effect of the length of the samples NV, was considered. The
purpose was to find the smallest N when the FCME algorithm
is able to operate properly. Measurement results are compared
to the Matlab-generated AWGN noise results.

A. Matlab simulations

In the simulations, Matlab software was used. Computer-
generated AWGN noise was used as a noise. There were 10
000 Monte Carlo iterations. The length of the samples, N,
varied. This is because in the simulations we can use large
values of IV, but in the real-time implementations, /N may be
often smaller because of hardware limitations. The purpose
was to find smallest N so that the achieved Pr 4 values are in
the decent level.

In Table I, achieved Pr 4 values when desired Pra,prs =
0.01 = 1% and N varies are presented. Diff=|Prs pps —
Pr4|. As can be seen, means are close to each others when
N is large enough, that is, N >= 256. Achieved Pr 4 values
differ from the desired Pr4 pps value 152% (N = 64), 54%
(N = 128), 41% (N = 256), 33% (N = 512), 33% (N =
1024), 31% (N = 2014), and 31% (N = 4096). It can also
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Figure 2. Achieved Pr4 values when N = 64. MC=1000,
PFA,DES = 0.01.
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Figure 3. Achieved Pr4 values when N = 1024. MC=1000,
PFA,DES = 0.01.

been seen that the smaller N (the shorter data), the higher the
variance is.

In Figure 1, achieved Pr 4 values are presented for different
values of N. There were 100 iterations (sweeps) and the results
were sorted in an ascending order. Horizontal line presents
desired Pra prs value. It can be seen that the more samples,
the closer the achieved Pr,4 values stay with the desired
PFA,DES value (here, PFA,DES = 0.01).

In Figures 2 - 4, achieved Pr 4 values are presented when
N = 64, 1024 and 4096. It can be noticed that the achieved
mean of Pry is slightly higher than the desired Pra pEs
value. It can also be seen that when NN is small (Figure 2),
variance is very high.

In Figure 5, variances of the achieved Pr,4 values are
considered as in Figure 6, mean Pr 4, min Pr4 and max Pp4
values are studied. In both figures, IV varies. It can be seen
that when N >= 256, values are on acceptable level.

In Table II, achieved Pr 4 values when desired Pra pEs =
0.001 = 0.1% and N varies is presented. Diff=| Prs prs —
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Figure 4. Achieved Pry4 values when N = 4096. MC=1000,
Pra prs =0.01.
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Figure 5. Variance of Pry4 values for different sample lengths
N. Matlab-generated noise. Prg prs = 0.01.

TABLE II. ACHIEVED Pps WHEN Ppa pgrs = 0.001.

N | mean(Pp4) | diff | var(Ppa) | min | max

1024 0.0010574 5.74e — 05 | 1.1071le—06 | O 0.00683
2048 0.0010685 6.85e — 05 | 5.5935e —07 | O 0.00585
4096 0.0010708 7.08¢ — 05 | 2.7042¢ —07 | O 0.00341

Pral. Pra,pes = 0.1% means that when N = 1000, 1 sam-
ple is above the threshold. Thus, we considered N >= 1024
to get realistic results; therefore, smaller values for N were
not considered.

B. Measurements at 10 MHz-39.1 GHz

The measurements were performed in wide frequency
area to get reliable and wide-ranging results. Here, high-
performance spectrum analyzer (Agilent E4446A) [14] was
used as in [15]. Note, that the results depend on the used
equipment. We used Instrument Control Toolbox to connect
Matlab to the spectrum analyzer to enable direct results
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Figure 6. Mean Prp 4, min Prp4 and max Pp4 values for dif-
ferent sample lengths /N. Matlab-generated noise. Pra,pEs =

0.01.
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TABLE III. ACHIEVED Py WHEN Prj pps = 0.01.

freq. range mean(Pr4) | var(Pra) min max

10 — 110 MHz 0.006431 5.8612¢ — 06 | O 0.0149
1—-1.1 GHz 0.0061711 5.6578e¢ — 06 | 0.000624 | 0.0181
2.5 — 2.6 GHz 0.0070012 1.1744e —05 | O 0.0231
9—9.1 GHz 0.0070244 1.2441e—05 | O 0.0199
17— 17.1 GHz || 0.0060668 5.5949¢ — 06 | 0.000624 | 0.0149
39 —39.1 GHz || 0.0071974 1.103e — 05 0 0.0199
Matlab-noise 0.013229 9.7771le — 06 | 0.000624 | 0.0237

analysis. At frequency ranges 10-110 MHz, 1-1.1 GHz, 17-
17.1 GHz and 39-39.1 GHz, only internal noise level was
measured. In frequency ranges 2.5-2.6 GHz and 9-9.1 GHz,
broadband antenna was connected, so the noise consists of
internal noise and noise from antenna. There were 1 000
time domain sweeps and N = 1601 frequency points [15].
Energy of the samples was measured in the frequency domain.
Matlab-generated AWGN noise with same N was used for a
comparison.

In Table III, achieved Pgr,4 values when desired
Prapes = 0.01 = 1% and N = 1601 are presented. It
can be noticed that mean Pr4 values are very close to each
others. Variances are on the same level. It should be noted that
now the achieved Pr 4 values are slightly lower than desired
PFA,DES value.

In Figure 7, achieved Pr4 values are presented for dif-
ferent measured frequency bands. There were 1000 iterations
(sweeps) and the results were sorted in an ascending or-
der. Horizontal line presents desired Pr4 pgs value (=0.01).
Matlab-generated noise results are presented as a reference.
Here, N = 1601. It can be seen that the measured results are
almost on the same level, and lower than the reference results.

In Figure 8, variances of the achieved Pp4 values are
considered as in Figure 9, mean Pr 4, min Pr4 and max Pr4
values are studied for different measured frequency bands. In
both figures, N = 1601. It can be seen that there are only
small differences.
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Figure 7. Achieved Pr4 values for different frequency areas.
MC=100 sweeps. Results are sorted in an ascending order.
N = 1601. Measured noise.
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Figure 8. Variance of Pr 4 values for different frequency areas.
N=1601. Measured noise.
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Figure 10. Kruskal-Wallis test to Pr4 for several measured
groups at 10 MHz-17 GHz. P prs = 0.01

C. Kruskal-Wallis test

Kruskal-Wallis tests the null hypothesis that samples that
are independent and come from two or more groups follow
same distribution and their means are equal [16]. There is
no normality assumption nor assumptions about the mean
and variance. Here, Kruskal-Wallis test is used to produce
statistical boxplots.

In Figure 10, Kruskal-Wallis boxplots are presented to
achieved Pp 4 for several measured groups at 10 MHz-17 GHz.
One boxplot presents five statistics - from bottom to top those
are minimum, first quartile, median value (line in the middle
of the box), third quartile, and maximum value. This figure
confirms the results presented earlier.

IV. SCENARIO

Sensing can be verified using a spectrum analyzer. Here,
Agilent E4446A was used, but there are a lot of other equip-
ments, like the wireless open-access research platform (WARP)
[17]. The WARP is a platform used to test and prototype
wireless networks. The noise level (from internal noise) may
vary between the equipments. Therefore, adjusting is needed
if it is required that the achieved false alarm rate is controlled.
Assume that the LAD method which uses the FCME thresholds
is used to perform spectrum sensing. It is desired that the
Pr 4 is controlled so spectrum opportunities are not lost. It
is possible first to measure the noise in the desired frequency
area. As noticed here, the length of the noise vector has to
be at least 256 samples when Pr4. pgrs = 0.01. It does not
matter what is the used sampling rate, however, the same
rate should be used later. After measuring the noise level, the
FCME threshold can be fixed to correspond the theoretical one.
This can be done using a correction coefficient which can be
defined when Pra prs and Ppa are known. Note, that this
method is valid when the noise is not impulsive.

V. CONCLUSION

The false alarm rate of the FCME algorithm was studied
in the noise-only case. A proper length of the sample vector
was defined, and analysis results were compared with the
results from noise measurements. This result can be used in
future simulations and in real-time applications, for example,
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when implementing the FCME algorithm on the wireless open-
access research platform. It was also noted that as in the com-
puter simulations the achieved false alarm rates were slightly
higher than the desired ones, in the noise measurements, the
achieved false alarm rates were slightly lower than the desired
ones. Based on this information, used thresholds can be fixed
using a proper correction coefficient in the cases when the
achieved false alarm rate need to be as close as the desired
false alarm rate as possible. In the computer simulations, the
false alarm rate can be reduced as in the measurements and
real-time applications, the false alarm rate can be raised.
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