
Secure Communication Between OpenFlow Switches and Controllers

Dominik Samociuk

Silesian University of Technology
Institute of Informatics

Email: dominik.samociuk@polsl.pl

Abstract—We study the applicability of different protocols related
to authentication and access control for secure channel between
switches and controllers in Software Defined Networks communi-
cating with OpenFlow. We firstly show possible problems with the
lack of security mechanisms in OpenFlow architecture. Then we
analyze the usability, advantages, drawbacks and implementation
details of Transport Layer Security, Secure Shell and IPSec
protocols as the secure channel medium for OpenFlow commu-
nication between switches and controllers. Finally, we discuss
their possible extensions to authentication and access control
mechanisms.

Keywords–Network security; Secure architecture; OpenFlow,
Software Defined Network.

I. INTRODUCTION

OpenFlow protocol [1] has generated interest in academic
and business society due to the features it offers to architects
and developers of Software Defined Networks (SDN). By
creating a standardized interface to connect switches with
controllers, control-plane logic was moved to a centralized
controller (or controller group). However, even when strictly
adhering to the specification [2], OpenFlow does not enforce
the use of secure communication channel between a switch and
controller. Namely, the entry on the Transport Layer Security
(TLS) usage was introduced in the OpenFlow specification
and then modified. In the latest version, its usage is just
a recommendation (not a ”must-have” requirement). In the
the OpenFlow switch specification ver. 1.4.0 sec. 6.3.3. it
reads: ”The switch and controller may communicate through
a TLS connection”. Moreover, due to evolving nature of the
OpenFlow protocol, many vendors have not fully implemented
this recommendation. Lack of the TLS adoption and problems
with the implementation of the TLS infrastructure leave a
clear path for attackers to infiltrate OpenFlow networks, using
possible attacks described in the following sections. To worsen
the security case, there are no authentication nor access control
mechanisms (except for an ersatz of authentication in TLS).

Without forcing a secure communication channel, Open-
Flow risks repeating the mistakes of other management pro-
tocols, designed basing on the assumptions that the link
and infrastructure are secure (e.eg. Telnet, SNMPv2, TFTP).
Of course, in production environment they must have been
replaced with their safe versions (SSH, SNMPv3, SFTP, re-
spectively). One of the proposed solutions for OpenFlow is
controlling switches through the Internet in the architecture
of branch-office network or offering switch management as
”security-as-a-service”. If the secure communication channel,
authentication and access control are not enforced, OpenFlow
will not be able to develop into the above-described roles and
will be replaced by a secure protocol (like in the mentioned

transition from Telnet to SSH) or by another, secured version
of the protocol (like in transition from SNMPv2 to SNMPv3).

In this paper, we compare the possibility of implementing
different authentication and access control mechanisms over
a secure channel in OpenFlow communication with three
popular protocols, namely Transport Layer Security, Secure
Shell (SSH) and IPSec.

Transport Layer Security [3] and its predecessor, Secure
Sockets Layer (SSL), are cryptographic network protocols for
securing data communication. TLS provides confidentiality
and integrity of data, as well as the authentication of the
server, and sometimes of the client. It is based on asymmetric
encryption and can be deployed in two modes, namely as:

• X.509 certificates and Public Key Infrastructure cryp-
tosystem to provide authentication, encryption, in-
tegrity and non-repudiation using public and private
key cryptography and digital certificates;

• Web of Trust architecture – decentralized authentica-
tion method, in which there is no hierarchical structure
of the authenticating organizations and trust of each
certificate is the sum of the signatures by the other
members of the web, signed under this certificate.

SSH [4] is a common name for the whole family of
protocols, not just terminal. It is also used for file transfer (SCP,
SFTP), remote control of resources, tunneling and other appli-
cations. A common feature of all these protocols is identical
to the SSH data encryption technology and user recognition.
It is possible to configure SSH tunnels to transfer unencrypted
traffic on the network through an encrypted channel.

IPSec [5] is a set of protocols for implementing secure
connection and encryption exchange of keys between hosts.
IPSec can be used for protecting the transmission in three
modes:

• host-to-host – between pair of hosts;
• network-to-network – between pair of the security

gateways;
• network-to-host – between the gateway and a host.

IPSec consists of at least two channels of communication
between connected devices: (a) the exchange channel, through
which data associated with authentication and encryption
(keys) is transmitted and (b) the channel (one or more) that
carries packets transmitted over the already secured line.

This paper is organized as follows. In Section 2, we
discuss related works. Section 3 describes the secure channel
and authentication problems with OpenFlow in the recent
specification. It also presents some possible attacks and their

32Copyright (c) IARIA, 2015. ISBN: 978-1-61208-428-2

AFIN 2015 : The Seventh International Conference on Advances in Future Internet

effects. In Section 4, we present technical details about the
proposed solutions, including Transport Layer Security with
PKI architecture, Secure Shell tunneling and IPSec protocol.
In Section 5, a brief security analysis of the security of the
proposed solutions is carried out. Section 6 concludes the paper
and presents our planned future work on the subject, including
the implementations of new solutions and experiments on PL-
LAB2020 - a large testbed and experimental network being
built in Poland right now.

II. RELATED WORK

So far, the following works have been focused on the secure
SDN architecture using OpenFlow.

FlowVisor [6] acts as a transparent proxy between con-
trollers and switches in order to apply limitations to the rules
created by controllers. It creates slices (combinations of switch
ports, MAC addresses, IP addresses, port addresses or ICMP
type) of network resources and delegates the control of slices
to different controllers. The role of FlowVisor is to isolate the
effect of rewritten rules to the specific slice of the network i.e.,
one slice cannot control another’s traffic.

A similar concept is FortNOX [7] – a software extension
developed on NOX controller to check the flow rule contradic-
tions in real time. It uses the role-based authorization on Open-
Flow applications (in this case, something that wants to modify
the network traffic using the OpenFlow protocol, e.g., fire-
walls, intrusion prevention systems). The difference between
FortNOX and FlowVisor is that FortNOX is a single controller
software, that executes parallel applications, while FlowVisor
runs apart from controllers (usually on a different host). Both
of these solutions restrict intrusted controllers/applications
from introducing security threats. However, they rely on the
assumption that the OpenFlow protocol and its communication
channel are secure.

Another approach is to provide the security to Software
Defined Networks using OpenFlow. NICE [8] Distributed
Denial of Service protection infrastructure-as-a-service is a
distributed vulnerability detection tool based on attack graph-
based analytical models and reconfigurable countermeasures.

Moving Target Defense [9] in an OpenFlow environment is
a mechanism to change internal hosts’ IP addresses frequently
and to mitigate attacks and reconnaissance from external
network.

All the mentioned works are meant to provide the security
to an OpenFlow-based SDN architecture, but their underlying
assumption is that there are no network design vulnerabilities
with the protocol. A comprehensive OpenFlow vulnerability
assessment was presented in [10]. The list of vulnerabilities
contain the lack of TLS adoption, flow enforcement, denial
of service risk and controller vulnerabilities. The first three
of them can be fully mitigated (or significantly weakened at
least) by using authentication and access control mechanisms,
which are examined in this paper.

III. OPENFLOW SECURE CHANNEL PROBLEMS

The OpenFlow specification in version 1.0 contains the
requirement about the use of TLS [11]. However, the next
version changed this requirement from ’must’ to ’should’.
This is also the case of the current version (1.4). There
is a noticeable lack of support for TLS in current SDN

switches and controllers. Table I shows TLS support offered
by OpenFlow equipment vendors [10][12].

TABLE I. TLS SUPPORT IN OPENFLOW BY VENDORS.

VENDOR TLS Support
HP switch No
Brocade switch Controller port only
Dell switch No
NEC switch Partial
Indigo switch No
Pica8 switch Only new versions
Open vSwitch Yes
NOX controller No
Brocade Vyatta controller Yes
POX controller No
Beacon controller No
Floodlight controller No
MuL controller No
FlowVisor No
Big Network controller Yes
Open Source controllers (f.e. Ryu, OpenDaylight) Yes

The usage of Transport Layer Security has also its impact
on the preparation and maintenance of Software Defined
Networks based on the OpenFlow protocol. In particular, this
includes generating controller and switch certificates, signing
certificates with private keys, installing correct keys and certifi-
cates on devices. Assuming a topology distributed in different
locations, though not connected to the Internet, technicians
must prepare all components of Public Key Infrastructure and
provide its security.

While the lack of TLS support is feasible in secured
networks (such as data centers) where the access to physical
devices is difficult, it becomes a serious security vulnerability
in architectures similar to campus-style or branch-offices de-
ployments, in which access to the network is less restricted.
In the role of the management protocol in the ”security-as-a-
service”, it can be the case when OpenFlow is transmitted by
an untrusted ISP (e.g., the client is in the country interested
in intercepting transmission). In such scenarios we cannot
neglect the possibility of an attacker placing a device on
communication path between the switch and the controller, or
simply copy the flow to his/her machine (Figure 1). He/she
is able then to get the configuration, insert or delete rules
to modify/record sensitive data flow (configured using the
OpenFlow device). Additionally, an attack can be performed
without any observable differences from normal transmission,
i.e., the attacker acts as a transparent proxy (compare this
with the FlowVisor proxy modification of the rules through
the process of forwarding messages). This type of attacks
(so called ’man-in-the-middle’ attacks) were very popular and
successful before, [13][14]. The Software Defined Networking
may decrease the difficulty of a full exploitation and may allow
the attacker to automate the process. In the SDN, the man-
in-the-middle attacks are arguably worse than in non-software
defined networks, due to the lack of necessity to the sniff traffic
to obtain plain-text credentials or the possibility to reconfigure
all groups of devices in a single attack.

It is important to note that assuring a secure communication
between the switch and controller is not enough – we should
also authenticate all devices connected to the controller or
switch. For instance, for the following two reasons the au-
thentication and access control may be needed:

• to limit the possibility of adding a bogus device (e.g.,

33Copyright (c) IARIA, 2015. ISBN: 978-1-61208-428-2

AFIN 2015 : The Seventh International Conference on Advances in Future Internet

Figure 1. Man-in-the-middle attack scenario.

adding a new switch or controller to the OpenFlow
domain);

• to group devices in federation (compare e.g., the
Ofelia project, [15]), when different groups should be
configured with different rules.

With full TLS implementation and authentication mech-
anism we can assure safety of the hosts and messages in
transmission. We are unable, however, to detect switches that
operate erroneously on rules in databases. The only solution
to maintain the same view of traffic that flows through the
network on the controller and switch seems to be dumping
regularly and inspecting the flow tables on all hosts in the
OpenFlow architecture. A potential solution described in [10]
is based on generating keep-alive messages with checksums of
flow tables that switches sent to controller.

IV. SECURE CHANNEL CREATION AND AUTHENTICATION

In this section, we describe three possibilities of creating
the secure channel for communication between switches and
controllers using OpenFlow. We also investigate how to fur-
ther secure the OpenFlow architecture with an authentication
mechanism that reduces the possibility of spoofing a device
with a rogue switch or controller instead of any mitigation of
eavesdropping.

A. Transport Layer Security
Deploying Transport Layer Security as an authentication

and access protocol in the OpenFlow-based architectures was
done by vendors using the public key infrastructure (PKI).
The Web of trust architecture was neglected due to the small
amount of devices in the authentication domain which could
result in the vulnerabilities described in [16].

The proposed solution is an example of the peer encryption.
The number of exchanges of the keys in such systems is
proportional to the square of the number of users of the system
(precisely, proportional to n(n−1)

2 , where n is the number of
users of the system). As already discussed, the reliability of the
key distribution is essential for the credibility of the system.
The solution to the number of the needed exchanges of keys
and the need to ensure their authenticity was an application of
the principle of the implied trust.

In cryptographic systems, there might be available some
certification institutions, to which we have trust. This trust is
supported by, for example, their protection level, their regular
auditing, etc. If all users of the system have trust in the
certification center, it is assumed that they also have trust in
each other. In practice, this means that a user should know
the address of the certification center and have its public key.
In this way the user can reliably verify the authenticity of the

received documents or exchange encrypted information with
a reliable key from the communication partners, published by
the certification center. In the PKI infrastructure, the trusted
certification center is known as the Certificate Authority (CA).

To provide an opportunity to exchange keys between
different systems, the cryptographic standard X.509 has been
introduced also for certification. A certificate contains not only
the owner of the public key signed by a certification authority,
but also the information about the owner and other fields
predicted by the standard X.509. Not only must CA be able to
issue the certificate, but also to public and cancel the certificate,
for example due to a theft or other security breach.

Equally important, as the implementation of the infrastruc-
ture, is developing and implementing the procedures for han-
dling of the certificates. These procedures are called Certificate
Practice Statement and include, among others:

• rules for issuing, verification and control the distribu-
tion of certificates;

• rules for cancellation of certificates;
• ability to recover private keys;
• methods for securing the infrastructure.

Especially in the case of PKI systems, the procedures are pillar
of security.

In order to implement a TLS based secure channel and
authentication mechanism, the administrator must build all the
infrastructure to support it, i.e. the PKI (Figure 2). It will
consist of elements such as:

• Each user of the system (in the case of an OpenFlow
architecture, each switch and controller) posses key
pair of private and public, stored in a secure space.

• Users of the system adopt a standard for certificate to
the exchange keys.

• The existence of the certifying authority (internal or
external, when developing OpenFlow in security-as-
a-service manner) providing the issuance, invalidation
and publication of certificates.

• Implementation of procedures to ensure the safety of
the system.

Figure 2. Architecture of the secured channel based on TLS protocol.

A simple connection between the switch and the controller
illustrating the handshake with authentication by means of the
Transport Layer Security mechanism consists of the following
steps (by C we denote the controller; by S – the OpenFlow
switch):

• S to C: sends ClientHello

34Copyright (c) IARIA, 2015. ISBN: 978-1-61208-428-2

AFIN 2015 : The Seventh International Conference on Advances in Future Internet

The switch sends to the controller a message contain-
ing, inter alia, supported version of TLS protocol, sup-
ported methods of data encryption and compression,
and session ID. This message also contains a random
number which later will be used for key generation.

• C to S: sends ServerHello
The controller responds with a similar message, in
which it returns to the switch the selected parameters
of the connection: TLS protocol version, supported
types of encryption and compression, and a random
number.

• C to S: sends Certificate
The controller sends its certificate allowing the switch
to verify its identity.

• C to S: sends ServerKeyExchange
The controller sends its public key. The type and
length of the key is determined by the type of al-
gorithm in the previously sent message.

• C to S: sends ServerHelloDone
The controller notifies that the switch can move to the
next phase of the secure channel creation setup.

• S to C: sends ClientKeyExchange
The switch sends to the controller an initial session
key encrypted with the public key of the controller.
Using the previous messages, the two random numbers
(one for switch and another for controller) as well
as pre-determined by the switch session key, both
sides generate a session key used for the actual data
exchange. The key is generated using a symmetric
algorithm (typically DES). However, it is set in a safe
way and known only for communicating parties.

• S to C: sends ChangeCipherSpec
The switch informs the controller that it can switch to
encrypted communication.

• S to C: sends Finished
The switch sends this messages to report readiness to
receive encrypted messages.

• C to S: sends ChangeCipherSpec
The controller notifies that it obeyed the request -
from now on the controller will only send encrypted
information.

• C to S: sends Finished
The message is sent over the secure channel to check
reliability of the used mechanism.

As shown in the steps in the previous section, the default
TLS mechanism provides only server authentication, resulting
in authenticating the OpenFlow controller and leaving the
possibility of spoofing the OpenFlow switches (grabbing con-
figuration or modifying rules and sending them not so secured
switch if possible). However, there are methods to authenticate
the client switch. For this purpose, three additional messages
can be used:

• C to S: sends CertificateRequest
After submitting controller’s certificate server notifies
the client that it would like to receive a certificate from
the OpenFlow switch

• S to C: sends Certificate
After receiving the message ServerHelloDone the
switch sends its certificate

• S to C: sends CertificateVerify
The switch must confirm that it actually has the private
key corresponding to the transmitted certificate. To
prove this, the switch signs with its private key digest
of all previously established connection parameters
and sends it using this message.

B. Secure Shell
Another approach to encryption and authentication can be

using the automatically generated keys and trust-of-first-use
method as in the Secure Shell protocol. All switches are treated
as SSH clients and the controller is treated as their server.
The client connects to the server, authenticates with the key.
In the process, it authenticates also the server key. Then the
secure tunnel is created between OpenFlow’s communication
port on the server side (the controller) and configured port on
switch. The switch sends unencrypted traffic to a local port (it
is assumed that insecure architecture starts when a packet is
leaving the network card and the device itself is trusted), and
then the traffic is transmitted to the right port on the controller
using the encrypted and secure tunnel (Figure 3). In this way,
we limit the possibility of eavesdropping messages directly
to the locally bugging switch and controller. We also use the
authentication against the possibility of spoofing devices.

Figure 3. Secure SSH tunnel transporting the OpenFlow data.

We propose two similar authentication-related solutions,
but with different level of security and configuration required.
The first one is the usage of automatically generated keys
and automatic acceptation of the connection by a client before
the typical SSH authentication process. This will reduce the
possibility of performing and attack on the transmission to
the small window of the first communication between the
switch and controller, but it does not require any additional
configuration. Alternatively, the more secure (but requiring
the involvement of the administrator) solution would be to
verify the public key thumbprint of each device when con-
necting to the server for the first time. Additional overhead
of the administrative work when adding a new switch to
the OpenFlow topology will completely reduce the possibility
of eavesdropping transmission of the OpenFlow messages
tunneled via SSH.

C. IPSec
The last analyzed option of authentication and creation of

a secure channel between the switch and controller over the
OpenFlow communication is the IPSec protocol, in particular
the host-to-host architecture. IPSec in the host-to-host configu-
ration (which connects two hosts without the need of additional
devices, see Figure 4), creates the secure channel between them
and allows to authenticate each other, while the only needs are
connections dedicated to the other side. The process can be
summarized in the following five steps:

35Copyright (c) IARIA, 2015. ISBN: 978-1-61208-428-2

AFIN 2015 : The Seventh International Conference on Advances in Future Internet

1) Configuring switches and controllers.
In this phase the network administrator must prepare
the information (IP addresses of both hosts, encryp-
tion key generator, pre-shared key used to initiate
the connection and exchange generated keys during
secure transmission) and then use them during config-
uration of each device. This configuration generally
will be prepared once and then copied between hosts.

2) IKE phase one.
The purpose of this phase is to authenticate hosts
and set up the first secure channel for IKE exchanges.
Following functions are performed: the authentication
and protection of the hosts identities, the negotiation
of the IKE policy to protect the exchange, the usage
of Diffie-Hellman authenticated exchange to obtain
matching shared keys, the setting up of the first
secure channel for IKE phase two. Phase one has two
operational modes: main and aggressive. The main
mode consists of three exchanges (agreement of the
algorithm and hashes used to secure communication,
generation of secret keys components used to pass-
ing random numbers - nonces to prove identities,
last exchange is the verification of the other side’s
identity). The aggressive mode has fewer exchanges
(we obtain second IKE phase quicker) but some of
the information must be exchanged before there is a
secure channel available.
Due to the security aspect of the work, we prefer the
main mode in the planned implementations.

3) IKE phase two.
In this step the IPSec tunnel is created. The fol-
lowing functions are performed: the negotiation of
protected parameters, establishing of security asso-
ciations, renegotiation IPSec SA to ensure security
(additional authenticated Diffie-Hellman exchanges
can be performed).

4) Data transfer.
After the IKE phase two, the IPSec tunnel is cre-
ated and OpenFlow packets can be encrypted and
decrypted using the encryption mechanism specified
in the configuration, resulting in authenticated secure
channel transmission.

5) IPSec tunnel termination.
After the successful transmission, the tunnel can be
terminated by deletion or by timing-out.

Figure 4. Secure IPSec tunnel transporting the OpenFlow data over an
encrypted channel.

While TLS and SSH operate in the application layer,
IPSec is a scheme operating in the network layer. Hence,
only IPSec protocol protects any application traffic over an
IP network. Therefore, an implementation for the OpenFlow
protocol can be relatively easily migrated to another protocol
or (due to evolving nature of OpenFlow) next specifications
requirements.

V. SECURITY ANALYSIS

We analyzed benefits and drawbacks in the area of security
of the proposed solutions. TLS, SSH and IPSec reduce or
prevent the possibility of performing the following attacks:

• sniffing (lack of confidentiality),
• data modification,
• identity spoofing, password-based and application-

layer attacks,
• man-in-the-middle attacks,
• denial-of-service attacks.

However, there are a few concerns regarding each of the
solutions.

Transport Layer Security relies on secrecy of private keys
and Certificate Authority trust, so assuring the security of these
parts is the mission-critical aspect of maintaining this type
of architecture. Some significant attacks against TLS include
FREAK [17], BEAST [18] and CRIME and BREACH [19]
attacks. However, assuming a proper implementation of TLS
and its newest version, it is regarded as safe. Theoretically
TLS can be compromised using SSL-Striping and SSL-Spitting
attack, [20], but due to the newness of software-defined net-
working with TLS-secured OpenFlow, the attacks has not been
confirmed and sufficiently researched yet.

As mentioned above, Secure Shell can be deployed using
public and private keys or pre-shared key. Regardless of the
option used, secrecy of keys (and CA if used) is the crucial
security aspect. As regards possible attacks, using the revised
version SSH-2 is assumed to be secure, however, theoretical
vulnerability was discovered in [21] for the default encryption
mode CBC. Therefore, we recommend the usage of CTR mode
in the implementation. Another security concerns are that some
institutions are able to decrypt the SSH traffic (see [22]). The
details associated with such attacks were not released.

IPSec, similar to TLS and SSH relies on the secrecy of pre-
shared key. However, the critical aspects are the randomness
of the encryption key generator and security of the encryption
and hash algorithm. As for this work, from available in IPSec
implementation algoritms we assume sha1 as hash algorithm
and 3DES, AES as encryption algorithms are secure. There
are known attacks on IPSec when other than recommended
solutions were applied [23]. Similar to SSH, there are alle-
gations that some institutions have been working actively to
insert vulnerabilities into IPSec implementations, [24].

VI. CONCLUSION AND FUTURE WORK

In this paper, some possible solutions to the lack of au-
thentication, access control and creation of the secure channel
over the OpenFlow protocol were investigated. As argued,
implementing TLS (as in the OpenFlow specification rec-
ommendations) does not address configuration problems for
network operators. With the core idea of increased security
of the OpenFlow transmission, a novel utilization of known
Internet security systems was proposed.

By comparing TLS, SSH and IPSec, it was demonstrated
that, in relation to the OpenFlow architecture usage, each
of the proposed protocols has its own strengths (i.e. the
ease of implementation in IPSec, or conformation with the
specification in TLS) and weaknesses (possible attacks). The

36Copyright (c) IARIA, 2015. ISBN: 978-1-61208-428-2

AFIN 2015 : The Seventh International Conference on Advances in Future Internet

paper showed that implementing any of the proposed solutions
will result in increased security and reduction or prevention
against numerous attacks on the OpenFlow protocol.

As for the future work, we are planning to utilize the PL-
LAB2020 laboratory, [25], to implement each solution and
analyze the security concerns mentioned in the article while
verifying the performance of the protocols. The PL-LAB2020
laboratory, which is under construction now, will consist of six
geographically dispersed nodes associated with leading Polish
research and academic centers:

• National Institute of Telecommunication (NIT),
• Warsaw University of Technology (WUT),
• Poznan Supercomputing and Networking Center

(PSNC),
• Silesian University of Technology (SUT),
• Gdansk University of Technology (GUT),
• Wroclaw University of Technology (WrUT),

connected via dedicated 2*10Gb/s fiber links. The nodes
will be equipped with specialized devices for carrying out
research in several directions, including the Software Defined
Networking. In particular, there will be over 30 OpenFlow
switches from at least 3 different vendors and a few OpenFlow
controllers creating different technology domains distributed
over 5 locations of PL-LAB2020 infrastructure (Figure 5). To
validate the performance and analyze security of the studied
solutions, PL-LAB2020 will also consist of several servers
with Data Plane Development Kit and three network traffic
generators and analyzers with 10Gb/s interfaces, placed in
different locations.

Figure 5. Architecture of PL-LAB2020.

ACKNOWLEDGMENT

This work has been supported by the National Centre
for Research and Development under the European Regional
Development Fund, Grant No. POIG.02.03.01-00-104/13, PL-
LAB2020 project.

REFERENCES

[1] N. McKeown and et al., “Openflow: enabling innovation in campus net-
works,” ACM SIGCOMM Computer Communication Review, vol. 38,
no. 2, 2008, pp. 69–74.

[2] “Openflow switch specification: Version 1.4.0,” URL:
https://www.opennetworking.org/images/stories/downloads/specification/
openflow-spec-v1.4.0.pdf [accessed: 2015-02-28].

[3] T. Dierks, “The transport layer security (tls) protocol version 1.2,” 2008,
pp. 4–68.

[4] T. Ylonen and C. Lonvick, “The secure shell (ssh) protocol architec-
ture,” 2006, pp. 4–26.

[5] N. Doraswamy and D. Harkins, IPSec: the new security standard for
the Internet, intranets, and virtual private networks. Prentice Hall
Professional, 2003.

[6] R. Sherwood and et al., “Flowvisor: A network virtualization layer,”
OpenFlow Switch Consortium, Tech. Rep, 2009, pp. 1–13.

[7] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu, “A
security enforcement kernel for openflow networks,” in Proceedings of
the first workshop on Hot topics in software defined networks. New
York: ACM, 2012, pp. 121–126.

[8] C.-J. Chung, P. Khatkar, T. Xing, J. Lee, and D. Huang, “Nice: Network
intrusion detection and countermeasure selection in virtual network
systems,” IEEE transactions on dependable and secure computing, no. 4,
2013, pp. 198–211.

[9] J. H. Jafarian, E. Al-Shaer, and Q. Duan, “Openflow random host
mutation: transparent moving target defense using software defined
networking,” in Proceedings of the first workshop on Hot topics in
software defined networks. New York: ACM, 2012, pp. 127–132.

[10] K. Benton, L. J. Camp, and C. Small, “Openflow vulnerability assess-
ment,” in Proceedings of the second ACM SIGCOMM workshop on
Hot topics in software defined networking. New York: ACM, 2013,
pp. 151–152.

[11] “Openflow switch specification: Version 1.0.0,” URL:
https://www.opennetworking.org/images/stories/downloads/sdn-
resources/onf-specifications/openflow/openflow-spec-v1.0.0.pdf
[accessed: 2015-02-28].

[12] Y. Patil, “Vulnerability analysis of openflow control channel,” 2014, pp.
1–2.

[13] F. Callegati, W. Cerroni, and M. Ramilli, “Man-in-the-middle attack to
the https protocol,” IEEE Security and Privacy, vol. 7, no. 1, 2009, pp.
78–81.

[14] K. Ouafi, R. Overbeck, and S. Vaudenay, “On the security of hb# against
a man-in-the-middle attack,” in Advances in Cryptology-ASIACRYPT
2008. Springer, 2008, pp. 108–124.

[15] “OFELIA PROJECT homepage,” URL: http://www.fp7-ofelia.eu/ [ac-
cessed: 2015-02-28].

[16] N. Ferguson and B. Schneier, Practical cryptography. Wiley New York,
2003, vol. 141.

[17] B. Beurdouche and et al., “A messy state of the union: Taming the
composite state machines of tls,” in IEEE Symposium on Security and
Privacy. IEEE, San Jose, 2015, pp. 1–16.

[18] T. Duong and J. Rizzo, “Here come the ninjas,” Unpublished
manuscript, 2011, p. 4.

[19] D. Goodin, “Crack in internets foundation of trust allows https session
hijacking,” Ars Technica, 2012, pp. 1–2.

[20] M. Marlinspike, “New tricks for defeating ssl in practice,” BlackHat
DC, February, 2009, pp. 1–114.

[21] “SSH Vuln Note,” URL: http://www.kb.cert.org/vuls/id/958563 [ac-
cessed: 2015-02-28].

[22] “Prying Eyes: Inside the NSA’s War on Internet Security,” URL:
http://www.spiegel.de/international/germany/inside-the-nsa-s-war-on-
internet-security-a-1010361.html [accessed: 2015-02-28].

[23] J. P. Degabriele and K. G. Paterson, “Attacking the ipsec standards in
encryption-only configurations.” in IEEE Symposium on Security and
Privacy, vol. 161, Oakland, 2007, pp. 335–349.

[24] “Secret Documents Reveal N.S.A. Campaign Against Encryption,”
URL: http://www.nytimes.com/interactive/2013/09/05/us/documents-
reveal-nsa-campaign-against-encryption.html [accessed: 2015-02-28].

[25] URL: http://http://www.pllab.pl/ [accessed: 2015-02-28].

37Copyright (c) IARIA, 2015. ISBN: 978-1-61208-428-2

AFIN 2015 : The Seventh International Conference on Advances in Future Internet

