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Abstract—In swarm robotics research, simulation is often used to
avoid the difficulties of designing swarm behavior in the real
world. However, designing the controller of swarm members
remains a non-trivial task due to the complex interactions
between members and the emerging behavior itself. In this paper,
FRamework for EVOlutionary design (FREVO) is used as tool
for the design, simulation and optimization of swarm behavior for
a given problem. This paper demonstrates how FREVO can be
used to develop and optimize the behavior of the entire swarm
simultaneously by applying an evolutionary algorithm. A case
study consisting of twenty robots given the task of gathering
near a light source while keeping a minimum distance from each
other based solely on local information from simplistic sensors
is presented. Considering the need of a fitness function to guide
any evolutionary process which is a problem-specific function,
the robots’ controller is evolved according to a fitness function
depending on two factors: the robots’ proximity to the light source
and the ability to keep a minimum distance between the robots.
We examine in particular how the problem can be modeled and
how evolution can be applied to create a suitable controller for
the swarm members.

Keywords–Swarm robotics; Spiderino; Evolutionary optimiza-
tion;.

I. INTRODUCTION

Inspired by the fascinating collective behavior of fish,
birds, ants and bees, swarm robotics have gained an increasing
interest in the research community. The defining characteristic
of these groups is that the emerging swarm behavior is
significantly more complex than that of any individual member
[1][2].

Research in swarm robotics can be classified into two main
groups. The first one is concerned with hardware and considers
aspects, such as locomotion, size, communication and cost [3].
Examples for such hardware platforms for swarm research
are Kilobot [4], Colias [5], e-Puck [6], Jasmine [7] and the
Spiderino platform [8]. The second group deals with swarm
design using software simulation. The behavior and the inter-
actions among swarm members remain a complex topic [9]
especially in environments where dynamic interactions occur.
In particular, it is often difficult to derive the requirements for
an individual robot within a swarm from the desired global
behavior. This work focuses on modeling and designing swarm
behavior using the FREVO [10] software and tackles the
challenge of constructing robot behavior using evolutionary
principles which try to develop an optimal solution based on
a fitness function.

In the evolutionary process, the main challenge is defining
an objective (or fitness) function that is designed to reward
a desired behaviour of a swarm, which is highly based on
each problem individually. The applicability and performance
of a fitness function depends on the employed optimizer, thus,

there are no universally suitable fitness functions [11]. Never-
theless, many studies in the field of evolutionary optimization
have considered generic methods for fitness function design
[12][13]. The author in [13] categorized such methods into
a three-dimensional fitness space: Functional vs. behavioural,
Global vs. local, and Explicit vs. implicit. For instance, an
explicit function rewards the way in which a certain goal is
achieved, while implicit fitness is focused on how much the
goal is reached (e.g., a distance).

Furthermore, in the evolutionary process, moving the
evolved controller from simulation to real robots is still a big
challenge due to differences between the simulation environ-
ment and the real world, an issue is known as the reality gap
[14]. Within this paper the reality gap is partially addressed by
evolving behavior that can be run as code on real robots, and
by the definition of a fitness function that can be also evaluated
in an experiment with real robots. Further techniques for
addressing this problem include intermittently involving real
robots in the evolution process [15] and developing accurate
models for sensors and actuators [8]. However, a particular
assessment of real hardware behavior is outside the scope of
this paper.

Designing swarm behaviour by using evolution is mostly
an automatic design method that creates an intended swarm
behaviour as a result of a bottom up process starting from
interactions between very small components. The process
gradually modifies potential solutions until a satisfying result
is achieved. Such an evolutionary design approach is based on
evolutionary computation techniques and can be done either
on individual or on a swarm level. In [16], six components are
presented for consideration while designing swarm robotics
using evolution:

1) The task description: A highly abstract vision of the
problem should be created.

2) The simulation setup: The task description must be
transformed into an abstracted problem model.

3) The interaction interface: This interface defines the
interaction among agents, i.e., the swarm, as well as
their interaction with the environment.

4) The evolvable decision unit: The representation of
the system or the agent controller, for example an
artificial neural network or finite state machine.

5) The search algorithm: In this task, an optimization
method will be applied to the results from the above
steps like evolutionary algorithms.

6) The objective function: A problem-specific function,
often known as a fitness function, that guides the
search algorithm to a (semi) optimal solution.

Our approach in this paper is to evolve a controller for
a swarm consisting of 20 robots using evolutionary design
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that follow the six mentioned tasks above. The task is to
move within a threshold distance of a light source guided
only by simplistic sensors. The process is done in a simulated
environment using FREVO. Thus, the main contribution of this
paper is to demonstrate our approach using FREVO and how
it may be applied to solve tasks related to swarm robotics.

The paper is organized as follows: The next section pro-
vides a review of related work. Section III outlines the archi-
tecture of Spiderino platform, and FREVO tool is introduced in
Section IV. Sections V and VI describe the case study, the
implementation process and discuss the results. Conclusions
are drawn in Section VII, together with an outline of future
work.

II. RELATED WORK

Swarm robotics draws inspiration from nature and seeks
to offer novel capabilities, such as self-organization, self-
learning and self-reassembly [17]. Much research has been
conducted to study different behaviours that can be performed
using swarm robotics, such as aggregation, flocking, disper-
sion, foraging, object clustering and sorting, navigation, path
formation, deployment, collective transport of objects [18]–
[20]. For example, in [21], the authors present a higher multi-
robot organism that is capable of autonomous aggregation and
disaggregation. Consequently, evolutionary methods gained
an increased interest in the research community as it is an
approach to deal with design problem in swarm robotics [22].
Nevertheless, the main challenges remain to overcome open
issues, such as scaling in complexity, and having a smooth
transition from simulation to the real world [23].

There are several software and frameworks supporting
evolutionary design in swarm robotics. AutoMoDe [23] is a
software for automatic design which generates modular control
software in the form of a probabilistic finite state machine.
JBotEvolvern is a Java-based versatile open-source platform
for education and research-driven experiments in evolutionary
robotics [24], which has been used in many studies [25]–
[27]. FREVO, a tool for creating and evaluating swarm be-
haviour, has been used in several studies as an evolution tool
including robotics [28] and pattern generation [29]. In [9],
a simulated robot soccer game was implemented to evaluate
the capabilities of evolutionary algorithms and artificial neural
networks. Moreover, a comparison of two different evolvable
controller models based on their performance for a simple
robotic problem was presented in [30], where a robot has to
find a light source using two luminance sensors. The paper
compared the relative advantages of Mealy machines, a type
of finite state machine, and a fully meshed artificial neural
network.

Nevertheless, several works have been succeeded in ex-
ploring the use of evolutionary design for generating a robot
controller to perform a task. For example, the authors in
[31] introduced an evolutionary approach that demonstrates
emergent collective in a swarm of simulated Kilobots. The task
was to evolve behaviors of phototaxis and clustering. Also,
in [32], an embodied evolution method was introduced and
it was shown that using evolved controllers can outperform a
hand-designed controller in applications like phototaxis from a
random location in an environment. Similar works have been

carried out to perform phototaxis using evolution processes
[33]–[35].

III. SPIDERINO PLATFORM

This section describes the Spiderino platform in terms of
hardware following by the corresponding software framework
to develop a controller using simulated evolution:

A. Hardware

Spiderino is a low-cost research robot based on the smaller
variant of the Hexbug Spider toy [36]. Figure 1 depicts the
Spiderino robot [8], used for the simulation presented in this
work. The main aim of designing Spiderino is to be used in
swarm research and education. To provide space for sensors, a
larger battery, and a Printed Circuit Board (PCB) with Arduino
microcontroller, Wi-Fi module, and motor controller, the toy’s
head was replaced with a 3D-printed adapter. In terms of
locomotion, Spiderino has two degrees of freedom: It may turn
its head left or right, with a full turn requiring approximately
3 seconds, and it can move forward or backward relative to
the direction it is facing by cycling its legs at 0.06 m/s.

Each Spiderino has 6 four-pin interfaces that generically
support a variety of sensors. For the experiments in this paper,
we assume that each Spiderino is equipped with 6 CNY70
reflective optical sensors [37], positioned at 45◦offsets, each
consisting of an infrared emitter and a photo-transistor. By
turning on and off the infrared LEDs, a Spiderino may dis-
tinguish between light sources and obstacles, such as other
Spiderinos or walls.

Each robot is equipped with a lithium polymer battery with
a capacity of 750 mAh. Spiderino robots consume between
6 mA and 60 mA, with walking being the most expensive
operation. Further details of energy consumption are provided
in [8].

Figure 1. Spiderino robots equipped with CNY70 sensors

B. Software model

We created a software framework for the Spiderino plat-
form to allow the robot’s controller to be developed using
simulated evolution. Attention was paid to modeling the robot
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Figure 2. An illustrations model of the sensing phase in Spiderino

accurately to allow validation of the simulation results using
actual hardware.

In simulation, each Spiderino is modeled as a solid circular
object of radius spiderinoRadius (0.06m) moving on a walled
flat plane of dimensions worldWidth and worldHeight. After
consideration of the robot’s size, weight and locomotion, both
friction and momentum were neglected. As outlined in Fig-
ure 2, simulation proceeds through maximumSteps iterations
carried out in two phases:

1) Sense phase: By tracing rays emitted from each of the
Spiderino’s sensors, the simulator calculates values
for both modes of each of the CNY70 sensors.

2) Locomotion phase: Based on the sensor values, a con-
troller may move a Spiderino’s head left or right, or
walk forwards or backwards. Each movement occurs
at speeds given by spiderinoWalkSpeed (0.06 m/s) and
spiderinoTurnSpeed (120◦/s) for a period of stepTime
milliseconds.

To construct a model of the CNY70 sensors, we used
the sensor’s datasheet [37] as a reference point and gathered
empirical evidence about its effectiveness as both a light and
proximity sensor. When acting as light sensor, light sources
may be detected within a range of few meters depending
on factors, such as the light’s intensity and ambient light
levels (see Figure 3a). When acting as a proximity sensor, the
sensor’s value is proportional to distance to the closest object
(see Figure 3b). Objects may be sensed within a more limited
range of approximately 3 cm. If pointed at a light source
while measuring proximity, the sensor functions as a light
sensor. Objects off-axis up 60◦ produce amplified readings as
described in Figure 3c. For each of the two modes, each sensor
value was calculated as the minimum of the values determined
for each ray.

IV. FREVO ARCHITECTURE

FREVO is a tool for creating and evaluating systems using
evolutionary methods. In order for it to develop a solution,
FREVO needs an input consisting of several components as
illustrated in Figure 4. First, it is necessary to define the
problem where the evaluation context of the agent has to be
implemented. Second, a controller representation should be
selected that describes the structure of a possible solution.
Third, the optimization method must be selected to optimize

the chosen controller representation to maximize the fitness
returned from the problem definition. Finally, the ranking
module is configured to evaluate all agents in a problem and
return a ranking of the candidates based on their fitness.

Two types of problem may be modeled in FREVO. The
first, a so called SingleProblem, where a single candidate
controller is evolved, is used in this paper and requires im-
plementations for three functions:

• evaluateCandidate() typically utilizes a simulator to
evaluate a candidate controller a returns a fitness value
that is used to rank the candidate within the population
of the generation.

• replyWithVisualization() it is called to replay an eval-
uation with visualization.

• getMaximumFitness() specifies the maximum fitness
value that can be achieved.

The second type, a MultiProblem, evaluates multiple can-
didates simultaneously, for example, two soccer teams playing
against each other as described in [9]. Additional details
about using FREVO and constructing a simple simulation are
presented in the project’s official online tutorial [38].

V. CASE STUDY

To perform the case study, a problem component named
SpiderinoSim has been implemented in FREVO. It is written
in Java and models an area where the Spiderinos can move
around, a light source, some obstacles and multiple Spiderino
robots. The light source can be placed in a specified position,
either in the center of a world or at a random location. Spideri-
nos are placed randomly. SpiderinoSim has been modeled as a
SingleProblem in FREVO, which means that the performance
of a Spiderino team is evaluated by an absolute fitness value.
In the experiment presented in this paper, twenty Spiderinos,
initially placed at random locations, were given the task of
keeping a distance of 2 cm from each other and approaching
a light source (diameter 0.3 m) in a random location in a
walled rectangular world of 3 by 2 meters with obstacles. Each
simulation consisted of 1500 steps of 100 milliseconds and,
thus, lasted 200 seconds and tested the ability of a candidate
controller to guide the Spiderinos to the light source.

To rank various candidates during the evolution process,
FREVO requires a fitness function. The designed fitness func-
tion in this case study depends on two components:

• Final distance to the light source: Candidate con-
trollers were rewarded for getting closer to the light.

• Distance between each other: Candidate controllers
were rewarded for keeping a distance of 0.02m be-
tween each other and penalized for violating such a
distance.

The controller produces two outputs, corresponding to
driving one motors for moving forward/backward and turning
left or right. A diagram of the Spiderino architecture is given
in Figure 5. The inputs of the ANN are twelve values from
the six CNY70 sensors, each of them giving a proximity and
luminance value.
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Figure 3. CNY70 responsiveness

Figure 4. FREVO architecture [10]

FREVO offers many evolutionary and representation meth-
ods as documented in [10]. ANNs were used as the basis of the
controller in all instances. In particular, we utilized FREVO’s
Fully Meshed Network component with 6 hidden nodes and 2
iterations. Furthermore, in this work we used Cellular Evolu-
tionary Algorithm with two-dimensional Population (CEA2D),
a 2-dimensional cellular evolution algorithm, for optimization.

VI. RESULTS AND DISCUSSION

Figure 6 illustrates the performance of the Spiderino swarm
in after different number of generations. Case 1 shows the
initial position, Case 2 shows a partial successfully results
where only about half of Spiderinos reach the goal. Case
3 and 4 (Figure 6c and 6d) show a are more successful

Figure 5. High-level model of a Spiderino in the case study

behavior where eventually all Spiderinos get to the goal.
Figure 7 shows the improvement of performance, expressed by
the fitness function value over several generations. Evolving
300 generations took about 12 hours on an 8-core machine.
While the result, as shown in Figure 6d is satisfactory, there
were still small improvements in the achievable fitness after
300+ generations, which is most likely reflecting in small
adjustments in robot distribution. Most importantly, the results
obtained support that notion that it is possible to evolve a
controller for the task using evolution.

VII. CONCLUSION

In this paper, we have described a method for designing
swarm behavior using evolution. In the case study, a swarm
of twenty robots evolved the skills required to gather at
a light source while keepeing a distance from each other.
More specifically, the neural network learnt to interpret its
twelve sensory inputs to control its motors. While the task
introduced in this paper is rather simplistic it is analogous to
the homing task in swarm robotics. Moreover, the evolutionary
approach may be applied to a wide variety of problems that
may be expressed through a fitness function. In a simulated
environment, we evolved controllers for 20 robots to approach
a light source by utilizing a fitness function depending on two
factors: distance from the light source as well as the distance
between each other.

In future work, we hope to cross the reality gap and
apply the evolved controllers to real hardware. To extend
the case study, we intend to compare the performance of
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(a) Case 1: Before Running The
Evolution, Initial Positions

(b) Case 2: After 118 Generations,
1500 Steps, Fitness 57.7

(c) Case 3: After 307 Generations,
750 Steps

(d) Case 4: After 307 Generations,
1500 Steps, Fitness 69.5

Figure 6. Sample final simulation states

Figure 7. Fitness function values over 361 generation

such controllers with hand-written algorithms and consider
factors, such as the time required to reach the light, as well
as key swarm properties, such as flexibility and robustness.
Another potential work is to rank various candidates during
the evolution process using different fitness functions, such as,
implementing a multiple-objective function that also takes the
energy consumption resulting from locomotion into account.
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