
Distributed Simulation for Evolutionary Design of Swarms of Cyber-Physical Systems

Micha Rappaport,
Melanie Schranz

Lakeside Labs GmbH
Klagenfurt, Austria

Email: lastname@lakeside-labs.com

Davide Conzon,
Enrico Ferrera

Pervasive Technologies
Istituto Superiore Mario Boella

Torino, Italy
Email: lastname@ismb.it

Midhat Jdeed,
Wilfried Elmenreich

Institue of Networked and Embedded Systems
Alpen-Adria-Universität Klagenfurt

Klagenfurt, Austria
Email: firstname.lastname@aau.at

Abstract—Swarms of Cyber-Physical Systems (CPSs) can be used
to tackle many challenges that traditional multi-robot systems fail
to address. In particular, the self-organizing nature of swarms
ensures they are both scalable and adaptable. Such benefits
come at the cost of having a complex system that is extremely
hard to design manually. Therefore, an automated process is
required for designing the local interactions between the agents
that lead to the desired swarm behavior. In this work, the authors
employ evolutionary design methodologies to generate the local
controllers of the agents. This requires many simulation runs and,
as a consequence, distributed simulation. The paper first proposes
a network-based Application Programming Interface (API) that
employs a publish / subscribe broker architecture to distribute
simulations among multiple Simulation Servers (SSs). Following
this, a file-based API is proposed, which exports the agent
controller to the simulator enabling deployment of the evolved
solution on CPSs. Both approaches are compared in terms of time
needed for the evolutionary optimization process with the support
of simulations. A proof of concept demonstrates the portability
to CPSs using TurtleBot robots. The results suggest that for
most scenarios it is beneficial to export the agent controller to
the simulator to avoid the vast communication overhead. The
presented network-based approach currently lacks this feature
but is well suited to offload computation-heavy simulations to a
cluster of SSs.

Keywords–Swarms; Evolution; Optimization; Cyber-Physical
Systems (CPSs); Simulation; Architecture; Robot Operating System
(ROS).

I. INTRODUCTION

Over the last decade, the phenomenon of self-organizing
systems has gained significant traction in the research com-
munity, being observed in disciplines as diverse as physics
and biology. Inspired by nature, swarm robotics is also seeing
increased interest. On the one hand, coordinating multi-robot
systems using swarm approaches offers many opportunities,
such as self-organization, self-learning and self-reassembly
[1]. On the other hand, it necessitates the difficult process of
designing the individual agents to achieve the desired swarm
behavior.

Designing swarms of Cyber-Physical Systems (CPSs)
poses two main challenges. First, selecting the hardware that
best suits the requirements of the swarm (see [2]–[5] for a
further examination of this problem), and second, designing the
control algorithm defining the behavior of the individual swarm
agents. This paper focuses on the latter problem because many
platforms for swarm research already exist, e.g., Spiderino [6]
and Colias [7].

Approaches for designing local controllers of swarm
agents, or more generally self-organizing systems [8], can be

categorized into two approaches. First, hierarchical top-down
design starting from the desired global behavior of the swarm
and second, bottom-up design by defining the swarm agents
and observing the resulting global behavior [9]. The design
using either approach is still a difficult process as neither can
predict the resulting swarm behavior based on the complex
interactions between the agents [10]. This is especially true in
dynamic environments. Evolutionary methods can be used to
tackle such design challenges.

In this paper, we employ the bottom-up design process
based on evolutionary algorithms. Generally, evolutionary al-
gorithms aim to mimic the process of natural selection by
recombining the most successful solutions to a defined problem
[11]. In the context of swarm robotics, a solution refers to
a control algorithm of individual agents that is gradually
improved during the optimization process. As experiments
with real robots require an extensive amout of time, such meth-
ods typically employ accurate and fast simulation to evaluate
the performance of candidate solutions in the evolutionary
process [12]. The evaluation of algorithms in evolutionary
optimzation can be easily executed in parallel, which is for
example supported in the FRamework for EVOlutionary design
(FREVO) [13] by using multiple cores on the same machine.
A further step would be the distribution of evolutionary
optimization with a client-server-protocol, as exemplified by
Kriesel [14]. This work introduces an architecture for parallel
distributed simulations on remote Simulation Servers (SSs) and
shows how the resulting agent controllers can be deployed
on actual Robot Operating System (ROS)-based hardware
platforms using TurtleBots [15]. Finally, the paper describes a
performance analysis of the presented implementation.

The paper is organized as follows: In Section II, the evolu-
tionary approach for designing swarms is reviewed. Section III
introduces the proposed architecture and two implementations
are described in Section IV. The performance of the different
approaches is analyzed in Section V. Section VI provides a
discussion and concludes the paper.

II. DESIGNING SWARMS BY EVOLUTION

As described in the previous section, design by evolution
can be used to tackle challenges such as scalability and
generality [16], as well as adaptive self-organization [17].
Both issues are not easy to handle, especially in changing
environments and with dynamic interactions among individual
agents of a system or a swarm.

Designing a swarm by using evolution is an automatic
design method that creates an intended swarm behavior in
a bottom up process starting form very small interacting
components. This process modifies potential solutions until

60Copyright (c) IARIA, 2018. ISBN: 978-1-61208-610-1

ADAPTIVE 2018 : The Tenth International Conference on Adaptive and Self-Adaptive Systems and Applications

a satisfying result is achieved. Such an evolutionary design
approach is based on evolutionary computation techniques [18]
[19] and mimics the Darwinian principle [20]. It describes the
process of natural selection by recombining the most proper
solutions to a defined problem. Evolution can be done either on
individual or on swarm level. Typically, the process of evolving
a behavior starts with the generation of a random population
of individual behaviors. Each of these individual swarm-level
behaviors is evaluated, typically through simulations. This
evaluation is performed by a fitness function that allows to rank
the behavior’s performance. The higher a behavior is ranked,
the higher is the chance for the behavior to be modified with
genetic operators, like cross-over or mutation, to form a next
generation of agent behaviors. These serve as input for the next
iteration. Finally, through multiple iterations an agent behavior
is evolved that exhibits the desired global swarm behavior.

Nevertheless, designing by evolution poses several chal-
lenges, including no guaranteed, predictable convergence,
complex data structures, and the high costs of evolutionary
computation itself.

Design by evolution asks for several tasks a designer must
face during designing a system model. Adapted from Fehervari
and Elmenreich [21], we distinguish six tasks: (i) The problem
description gives a high abstracted vision of the problem.
This includes constraints and the desired objectives for such
a problem. (ii) The simulation setup transfers the problem
description into an abstracted problem model. This model
specifies the system components, i.e., details about the agents
and the environment. (iii) The interaction interface defines
the interactions among agents and their interactions with the
environment. For instance, the agents sensors and actuators as
well as the communication protocols should be specified here.
(iv) The evolvable decision unit represents the agent controller
and is responsible for achieving the desired objectives, i.e.,
the global behavior of a swarm to achieve a common goal.
Such a decision unit must be evolvable to allow genetic
operations as cross over or mutation. It is most commonly
represented by an Artificial Neural Network (ANN). There
are different types of ANNs, e.g., fully-meshed ANNs, feed-
forward ANNs, HebbNets, or Neuroevolution of Augmenting
Topologies (NEAT) ANNs [22]. (v) The search algorithm
performs the optimization using evolutionary algorithms by
applying the results from the above steps. During this task, an
iterative mathematical model will be used to find the optimal
solution. The optimization result is dependent on the fitness
function of the problem. (vi) The fitness function represents
the quality of the optimization result in a numerical way. There
is no specific way or rule to design such a function as it
highly depends on the problem description. The main purpose
of this function is to guide the search algorithm to find the
best solution.

This paper describes how the evolutionary design process
is performed using the architecture proposed in the EU H2020
CPSwarm project [23]. In this architecture, the Algorithm
Optimization Environment (AOE) is responsible for generating
the individual agent controllers that lead to the desired global
swarm behavior. This architecture is described in detail in the
next section.

III. ARCHITECTURE

The following requirements exist for the design of the
AOE:

• Multiple SSs, even remotely located, offer simulation
capabilities to the Optimization Tool (OT) through a
broker.

Simulation Server 3

Simulation
Wrapper

Optimization
Simulator

Simulation Server 2

Simulation
Wrapper

Optimization
Simulator

Simulation Server 1

Simulation
Wrapper

Optimization
Simulator

Optimization
Tool

2. server
5., 7., …, n-2. sensor

n. fitness

1. discovery
3. parameters

4. control
6., 8., …, n-1. Actuator

Broker

Figure 1. Network-based API.

• Each SS offers one or more Optimization Simulators
(OSs).

• An OS exhibits certain characteristics but is also
configurable to some extent by the OT.

• Candidate controllers of one generation can be evalu-
ated in parallel.

• The OT can respond to requests from the OS at any
point in time.

To fulfill these requirements, the AOE consists of two
components: The OT, which is responsible for evolving candi-
date controllers using the mechanisms explained in Section II
and the OS, which evaluates the behavior of each candidate
through simulation. These two components are interconnected
to each other through a set of interfaces called the Simulator
Application Programming Interface (API), which allows them
to communicate during the optimization process. Employing an
OS as opposed to OT internal simulations gives the opportunity
to build on well established simulators that support accurate
simulation of swarms of CPSs with different levels of detail.

This section introduces two different approaches for the
Simulator API. The first one leverages network socket-based
inter-process communication to allow multiple simulations to
be remotely run in parallel OSs. Since executing such a large
number of simulation runs requires a significant amount of
time, parallel distributed execution enhances the scalability and
performance of the optimization process. The second approach
is a file system-based inter-process communication technique
which hands over full control to the OS. This approach requires
no further communication between the tools and is therefore
well-suited for deploying the generated candidate controllers
on CPSs.

A. Network-based Approach
The network-based approach aims to improve scalability

and performance through parallelization of simulations during
the optimization process. This is achieved from two sides: on
OT side, the candidates belonging to the same generation are
evaluated in parallel using multi-threading. Each thread uses a
different OS to perform the required simulation. The OSs are
run in parallel, possibly on different, remote SSs.

The network communication is managed by a broker that
offers a publish / subscribe infrastructure to the subscribing
clients: OT and SS. Figure 1 gives an overview of the func-
tional architecture of this approach, indicating the messages
exchanged, numbered by the order in which they are sent (see
Section IV for more details). The SS is decoupled from the
OT via the broker. In this way, every SS can be on a dedicated
machine with the hardware requirements needed to execute the
simulations.

Every SS offers one or more OSs that communicate with
the broker through a Simulation Wrapper (SW). The SW is a

61Copyright (c) IARIA, 2018. ISBN: 978-1-61208-610-1

ADAPTIVE 2018 : The Tenth International Conference on Adaptive and Self-Adaptive Systems and Applications

Optimization
Tool

Optimization
Simulator

1. Parameters
2. Representation

3. Log

Figure 2. File-based approachAPI.

software layer installed on the SS that implements the Simu-
lator API and acts as a client connecting to the broker. This
allows the OT to communicate with the SS without knowing
what type of OS is actually used. After the OT has created
one generation of controller candidates, it can send different
candidates to different SSs, which perform the simulation and
calculate the fitness. When the fitness is returned from every
SS, the OT can perform the evolutionary steps to create the
candidates for the next generation.

Several SSs can work in parallel to reduce the time
required to complete the simulations in one generation of the
evolutionary optimization. Through the SW, different OSs can
be employed, also if the OSs are heterogeneous among each
other. Importantly, a SS can be used by several OT instances,
but only by one at a time.

B. File-based Approach
Figure 2 shows the file-based approach and the files ex-

changed, numbered by the order in which they are sent. This
solution aims to reduce the communication between OT and
OS by passing a generated candidate controller as a file from
the OT to the OS. The following three files are passed between
the tools:

• Parameters: The parameters that need to be transferred
from the OT to the OS to setup the OS.

• Representation: The representation of the candidate
controller exported by the OT. The OS implementation
includes this source code file to enable the agents
in the simulation making decisions by translating the
sensor readings to actuator commands.

• Log: Every agent in the simulation generates a log
file containing the metrics for measuring the perfor-
mance of a candidate. The log files are used by the
fitness function to calculate the fitness of a candidate
controller.

IV. IMPLEMENTATION

A set of existing tools was extended to implement the
architecture presented in the previous section. These tools are
interconnected using the two approaches of the Simulator API,
the network-based approach and the file-based approach. This
section first introduces the concepts and tools used for the
development of the proposed solutions and then details the
specifics of the Simulator API.

FREVO is selected as the OT since it is a very modular
optimization tool that satisfies the principles addressed in
Section II [13].

The current implementation of FREVO relies on simula-
tions implemented in the problem component. This implies
that each problem needs an implementation of the simulation
including models of the agents. This can be avoided by using
state-of-the-art robotics simulators that build on standard mod-
els. The integration of these tool into the CPSwarm architecture
requires the current implementation to be improved, enabling

it to use multiple SSs, as addressed in the list of requirements
in Section III.

A. Network-based Implementation
As mentioned in Section III-A, the network-based approach

is implemented using a broker architecture. The broker em-
ploys the Message Queue Telemetry Transport (MQTT) pro-
tocol [24] which is based on the publish / subscribe paradigm.
In recent times, this solution has been recognized as the de-
facto standard for event-driven architectures in the Internet of
Things (IoT) domain. MQTT has been chosen because of its
extreme simplicity. Its design principles attempt to minimize
network bandwidth and device resource requirements whilst
also ensuring reliability and some degree of assurance of
delivery. Therefore, both FREVO and the SW implement a
client for the MQTT protocol.

FREVO implements the client as a helper class called
simMQTT that contains the MQTT callbacks for receiving
messages from the broker. The class is instantiated by the
problem component in FREVO that evaluates a candidate
controller through simulation. The simMQTT class handles all
the communication with the broker.

As described above, the SS consists of an OS and a
SW. The OS evaluates a specific candidate controller in the
optimization process. The SW serves as client that handles the
connection to the MQTT broker. The SW is implemented as a
Java library. It embeds the MQTT Paho client [25] for MQTT
communication. The library exports an abstract class called
SimulationWrapper, which implements the behavior that
is common to all the simulators. It provides a set of API
functions to be used by the SS to handle the messages received
from and to sent to FREVO. To test the implementation,
the SimulationWrapper has been integrated with a very
basic Java simulator called Minisim, which is a command-line,
multi-agent simulator simulating a capture-the-flag game with
multiple robots on a two-dimensional grid. Minisim has been
specifically developed for testing the network communication
between FREVO and the SS [26].

The messages exchanged between FREVO and the SS
through the Simulator API are explained in the following.
When FREVO needs to evaluate a candidate, it queries for
available SSs by sending a discovery message containing
the requirements for the OS. Every SS that has an OS fulfilling
these requirements and has enough resources available answers
the request with a server message. The server message
contains the OS capabilities and ID. FREVO selects a suitable
SS and initiates the simulation by sending a parameters
message to setup the OS followed by a control message to
start the simulation. The parameters message contains the
parameters that describe the models as well as the necessary
configuration parameters for the simulation environment. As
a direct reaction to the control message, the addressed OS
starts the simulation with the model parameters received earlier
and publishes the sensor messages of the first simulation
time step. The sensor message transmits the sensor readings
of one agent to FREVO, which uses this information to
compute the next actuator commands for this agent and replies
with an actuator message to transmit the corresponding
actuator commands. The process continues until the end of
the simulation is reached. The fitness message is the final
message of a simulation run, calculated by the SS once the
maximum number of simulation steps has been reached. Every
message contains a server ID and a simulation hash that can
be used to uniquely identifying the OS and the simulation it
is running.

62Copyright (c) IARIA, 2018. ISBN: 978-1-61208-610-1

ADAPTIVE 2018 : The Tenth International Conference on Adaptive and Self-Adaptive Systems and Applications

B. File-based Implementation
With the file-based approach, FREVO communicates with

the OS through the file system. The OS is based on ROS,
a middleware that can control CPSs in simulation and on
physical hardware. Hence, all simulators that are compatible
with ROS can be used with this implementation. Two very
popular simulators, namely Stage [27], a low-fidelity two-
dimensional robot simulator and Gazebo [28], a high-fidelity
three-dimensional robot simulator have been tested success-
fully with this implementation.

To perform the ROS simulations, FREVO first exports the
candidate representation of the agent controller and problem
specific parameters into the ROS workspace. Then FREVO
executes a script that compiles and runs the simulation. When
the simulation terminates, FREVO reads the log files created
by ROS to compute the fitness of the simulated candidate. The
API is implemented in the helper class simROS of FREVO,
allowing every problem component to access ROS.

The three files described in the previous section are imple-
mented as follows:

• Parameters: The parameters that need to be transferred
from FREVO are written into parameter files in the
YAML Ain’t Markup Language (YAML) [29] format
that is used by ROS. These are problem specific
parameters such as description of the agents in terms
of hardware or positioning.

• Representation: The candidate controller is repre-
sented as a fully meshed ANN. It is exported by
FREVO into a C source code file. ROS includes this
file into the source code of the package that imple-
ments the agent behavior. Once this file is exported to
ROS, a recompilation of the ROS package becomes
necessary.

• Log: The performance of a candidate is measured by
performance metrics defined in FREVO. The simu-
lator measures the metrics and writes them to log
files in text format. FREVO reads these log files and
applies the fitness function to calculate the fitness of
a candidate controller.

This implementation uses a simple multi agent simulation
called EmergencyExit [26]. On one hand, this implementation
enables the communication between FREVO and ROS for
evolving a controller using ROS-based simulations. On the
other hand it allows the evolved result, i.e. the ANN, to be
exported from FREVO and run in ROS standalone on actual
CPS. As a proof of concept, an evolved ANN is used to
guide TurtleBot robots in Gazebo simulations and in real world
experiments.

V. PERFORMANCE ANALYSIS

The previous sections presented two different approaches
for distributed simulation during the optimization process.
The main difference between the presented approaches is
that with the network-based approach the agent controllers
reside within the OT FREVO and communicate with the
simulator by exchanging messages, whereas with the file-based
approach the agent controller is exported to the simulator and
communication takes place only at the beginning and the end
of the simulation. This section compares both approaches in
terms of scalability. The relevant parameters for this analysis
are the number of parallel threads nthreads, the number of
agents nagents, and the length of a simulation in terms of
steps nsteps. First, a theoretical comparison is performed that
is complemented by simulation results using FREVO with

the above mentioned Minisim and EmergencyExit simulations.
The performance is measured in time to perform a complete
optimization.

A. Theoretical Comparison
For the first part of this analysis the approaches are

abstracted to represent the different locations where the agent
controller can reside. This is either internal within the OT
(network-based implementation) or external within the sim-
ulator (file-based implementation).

In the evolutionary optimization process, there is a popu-
lation of npop candidate controllers that can be evaluated in
parallel. They are evaluated through simulation consisting of
nstep steps. When all candidates have been evaluated, a new
generation is created using evolutionary operators. The total
number of generations is ngen. This results in a total number
of simulations for a complete optimization of

nsim = ngen · npop · neval (1)

where each candidate is evaluated in neval simulations. When
simulations are parallelized on nthreads, the number of simu-
lations that need to be performed sequentially results to

nsim =
ngen · npop · neval

nthreads
(2)

given that nthread is within the range [1, npop · neval].
In general, the time topt needed for one optimization run

consists of the time needed for performing the evolutionary
calculations tevo, the time needed for performing the simula-
tions tsim, and the overhead toverhead

topt = ngen · tevo + nsim · (tsim + toverhead) (3)

where tsim = nstep · tstep. The difference between both
approaches lies in the overhead toverhead.

With the OT internal controller, the number of messages
that need to be exchanged between the OT and the simulator
depends on the number of agents nagent in the simulation.
The discovery, server, parameters, control, and
fitness messages are only transmitted once for every simu-
lation. The sensor and actuator messages are transmitted
in every simulation step for every agent. Therefore, the number
of messages exchanged in each simulation is

nmsg = 5 + 2 · nstep · nagent (4)

which gives us an overhead based on the communication time
between the OT and the simulator:

toverhead,int = (5 + 2 · nstep · nagent) · tmsg. (5)

For the external controller, the overhead is

toverhead,ext = texport + tcompile + tfitness (6)

based on the time needed for exporting representation and
simulation parameters texport, the time needed for recompiling
the simulator tcompile, and the time for reading the log files
and computing the fitness tfitness.

The total optimization time of both approaches is therefore

topt,int =ngen · tevo +
ngen · npop · neval

nthreads

· (nstep · tstep + (5 + 2 · nstep · nagent) · tmsg) (7)

topt,ext =ngen · tevo +
ngen · npop · neval

nthreads

· (nstep · tstep + texport + tcompile + tfitness) . (8)

63Copyright (c) IARIA, 2018. ISBN: 978-1-61208-610-1

ADAPTIVE 2018 : The Tenth International Conference on Adaptive and Self-Adaptive Systems and Applications

TABLE I. Optimization parameters measured through simulations.

parameter value
ngen 200
npop 50
neval 1
tevo 12 ms
tmsg 30 ms

texport 5.35 ms
tcompile 8833 ms
tfitness 0.69 ms
tstep 100 ms

100 101 102 103

0

1

2

3

1

2

48163264128

number of simulation steps

ra
tio

r

Figure 3. Ratio of optimization times between OT internal agent controller
and OT external controller for different numbers of agents.

Table I shows specific parameters and execution times
measured on a dual Intel Xeon X5675 3.07 GHz system
with 16 GB memory and 12 cores in total, supporting up
to 24 threads with hyper-threading. The operating system is
Debian 9. The evolutionary parameters were chosen to yield
good results. The times are measurements of the MQTT broker
implementation and the ROS-based implementation.

Using these values with (7) and (8) the specific optimiza-
tion times are

topt,int =2.4 s

(
1 +

250

nthread
(2.5 + nstep (1.67 + nagent))

)
(9)

topt,ext =2.4 s

(
1 +

416.67

nthread
(88.39 + nstep)

)
. (10)

To decide whether to run optimization with internal or
external agent controller, the ratio between both optimization
times is a suitable metric.

Figure 3 shows the ratio r =
top,int
topt,ext

. A value of r > 1
means that the external approach performs better whereas a
value of r < 1 means that the internal approach is favorable.
As both approaches can use parallelization, the resultant ratio
is independent of the number of parallel threads used. It can be
seen that for most cases the controller should reside externally
within the simulator. This is due to the fact that if all agent
controllers are executed in a single tool it creates a bottleneck
situation. This is not so crucial for small swarms but already
for a swarm size of eight agents, the optimization with internal
control takes longer when simulations last more than 18 steps.

B. Scalability of the network-based approach
This study analyzes the scalability of the network-based

approach where the agent controller resides locally within
FREVO. The optimization is performed with a population size

100 101 102 103

101

102

103

104

number of simulation steps

tim
e

in
s

1 SS
2 SSs
3 SSs

Figure 4. Optimization time using the network-based approach for varying
number of SSs and 8 agents.

of npop = 4 and ngen = 4 generations. Figure 4 shows the
time needed for optimization with nagent = 8 agents. As
expected, the time needed for a complete optimization run
scales linearly with the length of a single simulation. Only
for extremely short simulations the overhead introduced from
discovering available SSs renders the parallelism pointless.
In fact, the discovery process limits the scalability of the
proposed implementation. As the broker is the central point
that enables the discovery, the optimization time does not scale
for more than two SSs, because the discovery and server
messages already account for most of the traffic. Therefore,
the discovery procedure needs improvements as described in
Section VI. Nevertheless, using two SSs rather than one speeds
up the optimization significantly. The speed-up continues to
increase as the number of simulation steps increases as longer
simulations decrease the relative time spent in the discovery
phase.

VI. CONCLUSION AND FUTURE WORK

This paper presents a solution for the evolutionary design
of swarms of CPSs based on remote simulation tools. The
architecture designed for this solution is composed of three
main components: The OT that is responsible for evolving
candidate controllers, the OS evaluating the behavior of each
candidate through simulation, and the Simulator API that
connects the OT and the OS. For the latter component,
two different approaches and related implementations are
presented: A broker-based approach, which parallelizes the
simulations of the optimization process to improve scalability
and performance, and a file-based approach, which is used to
prove the compatibility with CPSs.

A performance analysis shows that the broker-based ap-
proach does not scale well for more than two SSs because
of network congestion at the OT when it discovers the SSs.
Therefore, the current implementation cannot exploit the full
potential of this approach. Furthermore, in this approach all
agent controllers are executed in a single OT which creates
a bottleneck. Hence, this implementation of the broker-based
approach is suitable for simple simulations. This could be
either short simulations with few time steps or simulations
with only a small number of agents, e.g., swarms of up to
eight agents and up to 18 time steps. The file-based approach
is a viable alternative where the agent controller is exported
to the OS and is especially suited for large swarms of robots
as the messaging overhead is drastically reduced. In any case,
the broker-based solution is the better choice if simulations
are performed where OT and OS are not located on the same

64Copyright (c) IARIA, 2018. ISBN: 978-1-61208-610-1

ADAPTIVE 2018 : The Tenth International Conference on Adaptive and Self-Adaptive Systems and Applications

machine.
Considering this, further improvements could be made to

increase the performance of the broker-based approach. First,
the optimization process could be split into two phases. In
the first phase, a handshake between OT and SS would take
place, where the OT would discover the SSs fulfilling the
requirements and would select one of them for simulations.
In the second phase, the OT would perform the optimization
and would execute the simulations using the selected SSs. This
approach is expected to reduce the number of discovery
and server messages and to avoid the congestions that
inhibit the scalability with more than two SSs. Second, the
controller candidate represented as ANN could be exported
to the SS as done in the file-based approach. In this way, it
would be possible to avoid the use of sensor and actuator
messages, reducing the overall number of messages exchanged
and the time required to complete the optimization drasti-
cally. The drawback of the file-based implementation of this
approach is the time required for recompiling the simulator
code to include the ANN source code. This could be avoided
by creating a generic ANN wrapper that would only read the
ANN parameters from a configuration file avoiding the need
for recompilation. Hence, a combination of both the presented
approaches is needed for a distributed and scalable network
architecture that can support the large amount of simulations
during the optimization process.

ACKNOWLEDGMENT

We thank Robotnik Automation S.L.L. for porting the
implementation to TurtleBot robots and the Gazebo simulator.
We also thank Arthur Pitman for proofreading the text. The
research leading to these results has received funding from
the European Union Horizon 2020 research and innovation
program under grant agreement no. 731946.

REFERENCES

[1] M. Patil, T. Abukhalil, S. Patel, and T. Sobh, “UB robot swarm –
design, implementation, and power management,” in Proc. 12th IEEE
International Conference on Control and Automation (ICCA), Jun.
2016, pp. 577–582, ISBN: 978-1-5090-1738-6.

[2] I. Fehérvári, V. Trianni, and W. Elmenreich, “On the effects of the
robot configuration on evolving coordinated motion behaviors,” in Proc.
IEEE Congress on Evolutionary Computation, Jun. 2013, pp. 1209–
1216, ISBN: 978-1-4799-0452-5.

[3] R. Goldsmith, “Real world hardware evolution: A mobile platform for
sensor evolution,” in Proc. 5th International Conference on Evolvable
Systems: From Biology to Hardware (ICES), Mar. 2003, pp. 355–364,
ISBN: 978-3-540-36553-2.

[4] J. Bongard, “Exploiting multiple robots to accelerate self-modeling,” in
Proc. 9th Annual Conference on Genetic and Evolutionary Computation
(GECCO), Jul. 2007, pp. 214–221, ISBN: 978-1-59593-697-4.

[5] D. Floreano and F. Mondada, “Hardware solutions for evolutionary
robotics,” in Proc. European Workshop on Evolutionary Robotics
(EvoRobot), 1998, pp. 137–151, ISBN: 978-3-540-49902-2.

[6] M. Jdeed, S. Zhevzhyk, F. Steinkellner, and W. Elmenreich, “Spiderino
– A low-cost robot for swarm research and educational purposes,” in
13th Workshop on Intelligent Solutions in Embedded Systems (WISES),
Jun. 2017, pp. 35–39, ISBN: 978-1-5386-1157-9.

[7] F. Arvin, J. Murray, C. Zhang, and S. Yue, “Colias: An autonomous
micro robot for swarm robotic applications,” International Journal of
Advanced Robotic Systems, vol. 11, no. 7, Jul. 2014, pp. 1–10, DOI:
10.5772/58730.

[8] W. Elmenreich, R. D’Souza, C. Bettstetter, and H. de Meer, “A survey of
models and design methods for self-organizing networked systems,” in
Proc. 4th International Workshop on Self-Organizing Systems (IWSOS),
Dec. 2009, pp. 37–49, ISBN: 978-3-642-10865-5.

[9] V. Crespi, A. Galstyan, and K. Lerman, “Top-down vs bottom-up
methodologies in multi-agent system design,” Autonomous Robots,
vol. 24, no. 3, Apr. 2008, pp. 303–313, ISSN: 1573-7527.

[10] I. Fehérvári and W. Elmenreich, “Evolving neural network controllers
for a team of self-organizing robots,” Journal of Robotics, vol. 2010,
2010, pp. 1–10, DOI: 10.1155/2010/841286.

[11] C. M. Fernandes and A. C. Rosa, “Evolutionary algorithms with
dissortative mating on static and dynamic environments,” in Advances
in Evolutionary Algorithms. InTech, Nov. 2008, pp. 181–206, ISBN:
978-953-7619-11-4.

[12] L. Winkler and H. Wörn, “Symbricator3D – A distributed simulation
environment for modular robots,” in Proc. 2nd International Conference
on Intelligent Robotics and Applications (ICIRA), Dec. 2009, pp. 1266–
1277, ISBN: 978-3-642-10817-4.

[13] A. Sobe, I. Fehervari, and W. Elmenreich, “FREVO: A tool for evolving
and evaluating self-organizing systems,” in Proc. 1st International
Workshop on Evaluation for Self-Adaptive and Self-Organizing Systems
(Eval4SASO), Sep. 2012, pp. 105–110, ISBN: 978-0-7695-4895-1.

[14] D. Kriesel, “Verteilte, evolutionäre Optimierung von Schwärmen [Dis-
tributed, evolutionary optimization of swarms],” Diplomarbeit, Rheinis-
che Friedrich-Wilhelm-Universität Bonn, Mar. 2009.

[15] Open Source Robotics Foundation, Inc., “Turtlebot,”
http://www.turtlebot.com/, accessed: 2017-12-07.

[16] M. Dorigo et al., “Evolving self-organizing behaviors for a swarm-bot,”
Autonomous Robots, vol. 17, no. 2, Sep. 2004, pp. 223–245, ISSN:
1573-7527.

[17] Y. Yao, K. Marchal, and Y. Van de Peer, “Improving the adaptabil-
ity of simulated evolutionary swarm robots in dynamically changing
environments,” PLOS ONE, vol. 9, no. 3, Mar. 2014, pp. 1–9, DOI:
10.1371/journal.pone.0090695.

[18] J. H. Holland, Adaptation in Natural and Artificial Systems. Cam-
bridge, MA, USA: MIT Press, Mar. 1992, ISBN: 9780262082136.

[19] I. Rechenberg, Evolutionsstrategie – Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution [Evolution strategy – Opti-
mization of technical systems according to the principles of biological
evolution]. Stuttgart, Germany: Fromman-Holzboog, 1973, ISBN: 978-
3772803734.

[20] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo, “Swarm
robotics: a review from the swarm engineering perspective,” Swarm
Intelligence, vol. 7, no. 1, Mar. 2013, pp. 1–41, ISSN: 1935-3820.

[21] I. Fehervari and W. Elmenreich, “Evolution as a tool to design self-
organizing systems,” in Revised Selected Papers from 7th IFIP TC
6 International Workshop on Self-Organizing Systems (IWSOS), Jan.
2014, pp. 139–144, ISBN: 978-3-642-54140-7.

[22] I. Fehervari, “On evolving self-organizing technical systems,” Ph.D.
dissertation, Alpen-Adria-Universität Klagenfurt, Nov. 2013.

[23] J. Liang et al., “D3.1 – initial system architecture & design specifica-
tion,” EU H2020 CPSwarm Consortium, Public deliverable, Aug. 2017.

[24] “Information technology – Message Queuing Telemetry Transport
(MQTT) v3.1.1,” Geneva, Switzerland, Standard ISO/IEC 20922:2016,
Jun. 2006.

[25] “Eclipse paho,” https://www.eclipse.org/paho/, accessed: 2017-12-07.
[26] M. Rappaport, D. Conzon, and E. Ferrera, “D6.1 – initial simulation

environment,” EU H2020 CPSwarm Consortium, Public deliverable,
Oct. 2017.

[27] R. Vaughan, “Massively multiple robot simulations in stage,” Swarm
Intelligence, vol. 2, no. 2-4, Dec. 2008, pp. 189–208, ISSN: 1935-3820.

[28] N. Koenig and A. Howard, “Design and use paradigms for Gazebo,
an open-source multi-robot simulator,” in Proc. IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), Sep. 2004, pp.
2149–2154, ISBN: 0-7803-8463-6.

[29] “YAML Ain’t Markup Language (YAML),” http://www.yaml.org/spec/,
Specification Version 1.2, Sep. 2009.

65Copyright (c) IARIA, 2018. ISBN: 978-1-61208-610-1

ADAPTIVE 2018 : The Tenth International Conference on Adaptive and Self-Adaptive Systems and Applications

