
Restraining technical debt when developing large-scale Ajax applications

Yoav Rubin, Shmuel Kallner, Nili Guy, Gal Shachor

IBM Research - Haifa

Haifa University Campus

Haifa, Israel

{yoav, kallner, ifergan , shachor}@il.ibm.com

Abstract - Addressing technical debt during the software

development process relies heavily on a refactoring phase, in

which automatic code transformations are used as a crucial

mechanism to reduce a system's technical debt. However,

automatic refactoring is not an option when developing Ajax

applications. Therefore, an approach that restrains the

accumulation of a system's technical debt is needed. In this

paper, we present and evaluate such an approach and its

reification as a framework. We conclude that our proposed

framework enables restraining technical debt in a large-scale

Ajax application without the need for automatic code

refactoring tools.

Keywords: software engineering; dynamic languages; code

reuse; technical debt; Ajax

I. INTRODUCTION

Software development is an engineering discipline, and
as such, it is composed of an ongoing process of decision
making on the one hand and acting upon these decisions on
the other. A key aspect in a project’s decision-making
process is handling technical debt [1]—the toll that
suboptimal decisions or actions impose on the future welfare
of that project. Technical debt is resolved using technical
means and resources.

The impact of suboptimal decisions on a project
resembles the impact of financial debt. In some cases,
incurring small debts can result in large future rewards. Yet,
debt usually comes with interest, which if not paid on time
can inflict severe consequences, including a complete halt of
the related activity [1].

Technical debt is considered one of the causes of
hatching a catastrophe [2] and may affect the eventual
success of a software project.

One of the most common technical debt payback
strategies, which endeavors to decrease, manage, and control
technical debt [3], is code refactoring [4]. This is a code
modification process, that can be done either manually or
using automatic tools. The essence of this process is to apply
behavior-preserving transformations to the code in a way that
the resulting code provides better reusability, compatibility
among different components, and simplicity of the iterative
software design process [5].

A. Refactoring dynamic languages codebase

Ever since the refactoring browser [6] was introduced,

targeting the Smalltalk-80 [7] programming language,

several attempts were made to create refactoring tools for

dynamic languages [8, 9]. These tools aimed at performing

automatic refactoring transformations on code written in a

dynamic language such as Ruby [10] or JavaScript [11].

Each such tool tried to overcome the lack of type

information, which is essential for correct refactoring

transformations [5], by using other sources of information.

In the refactoring of Smalltalk codebase, the automatic tool

used a combination of test-cases, results of dynamic

analysis, and method wrappers [6]. Another technique is

static pointer analysis, which was the vehicle that drove

automatic refactoring in JavaScript codebases [9]. Another

strategy was to rely not only on the analysis of a project's

codebase, but rather on additional information provided by

the developers, as was done in a Ruby codebase refactoring

mechanism [8].

However, automatic refactoring that is based on the

techniques described above does not always result in

behavior-preserving transformations. Basically, these tools

breach the complete correctness requirement that is assumed

by developers when using automatic tools. This partial

correctness is unavoidable. It can be attributed to the fact

that these tools rely on the existence of non-compulsory

information, such as a test suite with complete coverage [6],

or assume the absence of dynamic behavior [9].

The semi-automatic approach that relies on user input

also has its downsides, as it may lead to user errors and

suffers from occasional false-negative effects [8].

B. Constraints of Ajax development

The frontend development of web applications is a

special case of using a dynamic programming language.

In this domain, the software development is usually done

using a collection of technologies termed Asynchronous

JavaScript and XML—Ajax [12]. Ajax builds a complete

stack of technologies, from document structuring in HTML

[13] through its internal representation using Document

Object Model (DOM). APIs [14] and visual aspects are

modified using Cascading Style Sheets (CSS) [15].

Communication is usually done using the XmlHttpRequest

API [16], while interaction among all of the above

technologies (and many more) is done using the JavaScript

programming language [17].

All modern web browsers implement the stack of Ajax

technologies, though the implementations are not identical.

Therefore, in addition to understanding each of these

technologies, Ajax developers face the cross-browser

compatibility problem [18]. Each technology must be

13Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

executed within different browsers that might have slightly

different semantic interpretations of syntactic elements or

might simply have implementation bugs [19].

To reduce the efforts involved with using several

technologies and to address the problem of several

implementations for each technology, two main approaches

are used when developing Ajax-based software [20]:

• The first strategy is to write code in a non-Ajax
technology that compiles into Ajax code. One
example for this approach is using GWT [21], which
is based on Java technologies. Another example is
using the CoffeeScript [22] language, which
provides syntactic sugaring on top of JavaScript.

• The second strategy is to use a web development
library that buffers the different incompatibilities
among browsers. Examples for such libraries are
YUI [23] and Dojo [24].

Combining these two approaches is possible by using a

development platform that is not based on Ajax code but

rather compiles down to JavaScript code, which runs on top

of a JavaScript library, e.g., ClojureScript, [25] which is

compiled to run on top of Closure [26].

The main drawback of the first approach results from the

fact that another level of indirection has been added,

possibly making it difficult to trace problems in runtime

back to the appropriate location in the source code. The

main drawback of the second approach results from the fact

that libraries also define their own coding idioms, which are

different than those of pure JavaScript. Specifically,

libraries tend to provide their users mechanisms of object-

oriented programming (OOP). This is done in each library

by providing unique definitions of a metaobject and of

metaobject protocols [27]. This can be thought of as an

additional, ad-hoc programming language layer that is

specific for the defining library.

The inconsistency among the coding idioms of the

various JavaScript libraries results in the inability to create

automatic refactoring tools that are library-agnostic, as each

such library requires its own code analysis and refactoring

mechanisms.

Due to the dynamic nature of JavaScript alongside the

differences among the coding idioms of different Ajax

libraries, automatic refactoring tools that target Ajax code

base do not exist.

The absence of these tools results in a situation in Ajax

codebase in which resolving technical debt by using

refactoring is done manually. Thus, this process is

demanding, error-prone, and difficult to perform, especially

when large transformations are needed.

Based on the previously described constraints, along

with the innate nature of dynamic languages, using our

financial analogy, we can describe technical debt in an Ajax

application as a loan shark debt. This is due to the cost of

falling back on payments—using dynamic languages means

that many errors are detectable only at runtime. This type of

debt also leads to the almost impossibility of paying it off

once it starts to accumulate (no automatic refactoring tools

exist). Naturally, preventing such debt and restraining it

once it starts to accumulate should be a high priority.
The purpose of this work is to describe how a small

development team was able to use our framework to deliver
a large-scale web application in a relatively short time, while
facing the issue of technical debt in an Ajax application. Our
approach does not rely on automatic tools, but rather
proactively uses abstractions and patterns [28] and especially
adheres to the idea of lists as the skeleton of software
components [29]. Our approach resulted in a software project
that incorporated mechanisms to prevent and restrain
technical debt so as to enable the successful delivery of a
high-quality product.

The remainder of the paper is structured as follows:
Section 2 describes related work. Section 3 introduces the
project; Section 4 discusses the abstraction and the way that
it was reified. Section 5 presents the evaluations performed
with regard to the use of the abstraction. We present the
results of our evaluations in Section 6 and we explain them
in Section 7. Finally, Section 8 concludes the paper and
outlines possible future directions.

II. RELATED WORK

The idea of addressing technical debt as part of the

development process, though initially presented decades ago

[1], has just begun to resurface and has gained significant

interest in the software development community in recent

years [31]. As such, not much academic research has been

published on this issue to date. Moreover, most of the

existing work revolves around the management of technical

debt, with an "after the fact" approach, namely by

employing various code refactoring methods [4]. This is

accompanied with a decision-making process to optimize

debt reduction while facing the costs of the code refactoring

[32].

Amongst the work that was performed to date on

technical debt, we are not aware of any work that is focused

on approaches to restrain such debt in a "factor instead of

refactor" fashion. An iterative approach, which can be

thought of as a compromise between a "post-debt" and "pre-

debt" approach, was discussed by Nanette Brown, et al.

[33]. They suggested methods to assess the resulting

technical debt in an iterative architectural project planning

process by using dependency analysis. Such measurements

can help in making the right architectural decisions and thus

decrease the accumulating debt.

Handling technical debt in a large-scale web application

project was discussed by Israel Gat and John D. Heintz [34].

Their paper presents how the Cutter’s technical debt

assessment tool, which employs both static and dynamic

code analysis methodologies, was used to define a technical

debt reduction project—one that included a complete

rewrite of the frontend component in JavaScript.

Reassessment of the new frontend implementation showed

that the amount of code duplication remained significantly

high (40%).

14Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

III. USE CASE

A team needed to develop a web frontend component of

a case management [30] product using Ajax technologies,

particularly the Dojo toolkit [24]. The project was assigned

to a team composed of a lead developer experienced with

web application development and a few developers lacking

this expertise. The project itself had a tight schedule and

needed to be released as part of a larger product with strict

deadlines. It had to be developed using an agile

methodology, as most of the user interface and user

experience requirements were to be defined in an iterative

fashion. From day one of the project, the team could clearly

see that due to the time constraints, development friction

resulting from technical debt could cause the entire project

to fail and would have a severe impact on the entire product.

Technical debt cannot be overlooked and must be avoided.

A solution that prevents the future accumulation of technical

debt had to be devised before any other aspect of the

component could be developed.

IV. SOLUTION

A. Code and abstraction reuse

We designed a development strategy in light of the

experience gained by the team's technical leader in previous

web application development projects. Our strategy was to

base the software components on a single abstract idea,

whose essence is that an application's frontend is composed

of various manageable lists of repetitive items, each

consisting of another element. Within each list, the items are

identical in their list management behavior (adding,

changing location, removing), yet they may vary in

presentation as well as in the elements that each list item

contains.

To allow maximal reusability of this abstraction, we

needed to develop an implementation that was as flexible as

possible. As such, we developed an implementation that

could handle all the list management related aspects and the

entire lifecycle of the nested elements, all while remaining

presentation-agnostic.

A hidden design agenda of the manageable list

abstraction was to force its users to provide code that adapts

the abstraction's core functionality alongside the

presentation rules, within each use. This would result in

constructing a mental model of the abstraction's capabilities

from the beginning. Our intention was to verse the

developers in using the abstraction for all types of needs,

thus enabling them to compose much of an application's

frontend from building blocks that are extensions of this

idea.

B. The Wrapper/WrapperContainer framework

We turned the reification and implementation of the

managed list abstraction into a framework composed of

three classes. Two classes correspond to a list—one for a

general list and one that supports a drag and drop operation

among the list items. The third class corresponds to a list

item. We implemented the following responsibilities into

the framework:

• List management

• Event handler with callback hooks

• Lifecycle management of the list, items, and the
nested elements

The list item abstraction was implemented in a class

called Wrapper, as it acts as a general wrap for any kind of

element. The list abstraction was implemented in the class

WrapperContainer, as it acts as a container for wrappers,

and DndWrapperContainer, which stands for a

WrapperContainer that supports drag and drop operations.

The entire framework was implemented in six hundred

and forty lines of code (LOC), all in JavaScript and using

the Dojo toolkit APIs. The hooking up of the callbacks as

well as the possibility to manage the lifecycle of the

wrapped element was based on the dynamic nature of

JavaScript alongside its idiomatic usage of runtime time

inspection.

V. EVALUATION

A. Methodology

To understand the impact of using the abstraction and

framework we described above on the project, and

especially to determine if it stood up to its target of technical

debt restraint, we designed and performed two different

evaluations. The first is based on lines of code analysis and

the second on a review by a group of experts. This

combination of methodologies was picked so it would

provide a clear view as to whether the framework was used

appropriately, and if so, the extent of its usage.

B. Analysis of the project's codebase

We completed the first evaluation by performing a static

analysis of the project's code to measure the portion of reuse

that can be attributed to the framework in an attempt to

reveal the cost effectiveness of investing in designing,

implementing, and using it. Our results pointed out the

extent of the framework’s use, and hence its significance in

the overall codebase.

To perform this analysis, we divided the codebase into

three distinct components:

• Framework: the code that was used to develop the
Wrapper/WrapperContainer framework

• Extensions: the code that was used to develop the
widgets that extend the Wrapper/WrapperContainer
framework (a widget is a class, or other software
component, which also has a visual representation)

• Other: all the project's code that is not part of the
framework or extending it

In our analysis, we concentrated only on the portion of

the Ajax codebase that was written in JavaScript, as HTML

code is almost always tailored for a specific use. Also, most

of the CSS code was part of a library that was used

15Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

throughout the organization—one that was not developed as

part of the project. Another part of the project's codebase

that we ignored in this measurement was a small JavaScript

library that was developed in another project and was used

"as-is".

C. Review by experts

The second evaluation was done by having five software

engineers versed in the domain of large-scale web

application development perform reviews of the project.

These engineers were qualified as experts based on the

following "expert's threshold" criterion:

• More than 10 years of professional experience as a

software engineer

• Of which, at least 5 years working as a front-end

engineer
• Of which, at least 3 years working as part of a team that

develops large scale Ajax-based web application

We educated the evaluating engineers about the

Wrapper/WrapperContainer framework and asked them to

use the application and inform us of any place in the

application where they see fit for using our framework.

Their answers were later compared to their actual use of the

framework.

The analysis of the overlap between the reviewers'

answers to their actual use was performed to gain an

understanding on the use coverage of the framework, i.e.,

whether the team had used it as much as possible, thus

efficiently restraining the project's technical debt. This is

especially important in lieu of the hidden agenda behind the

design of the abstraction. Moreover, from the reviewers'

answers, we could see whether the abstraction indeed fits

the domain.

On top of that, as a side-effect of this measurement, we

can detect whether technical debt still exists in the system

due to not using the framework where it could have been

used.

VI. RESULTS

A. Analysis of the project's codebase

We present the results of our first evaluation in Table I,

showing that the Wrapper/WrapperContainer framework

was extended twenty times in the project, as each file

corresponds to a class. The forty files marked as extensions

are basically twenty pairs, with each such pair composed of

a class that extends Wrapper and a class that extends either

WrapperContainer or DndWrapperContainer, depending on

its need to provide a drag and drop behavior to the user.

TABLE I. PROJECT'S CODE BY COMPONENT

 Framework Extensions Other Total

Number of LOC 640 9054 13725 23419

Percentage of LOC

of entire project

2.73% 38.66% 58.61% 100%

Number of files 3 40 70 113

Percentage of files

of entire project
2.65% 35.39% 61.96% 100%

 In light of the large number of reusing classes,

especially when considering the fact that more then a third

of the project classes are extensions of the framework, we

can easily accept that the designed abstraction does play a

central role in the project.

Also of note is the fact that the portion of the code that

extends the framework attributes for more then 38% of the

application's code. When we look at the framework

alongside its extenders, we see that the list abstraction

covers more then 40% of the application code.

From these numbers, not using this abstraction and

solving each of the twenty usage scenarios differently would

clearly have enforced a large allocation of resources—such

as adding more time by delaying the project deadlines or

adding more developers. Needless to say, these solutions

were unacceptable.

Moreover, in cases in which technical debt is created as

part of a specific extension of the framework, it would be

secluded from other parts of the application. This results in

reduced code cohesiveness and minimal effect of each

scenario on the overall technical debt of the system.

B. Review by experts

The results of the second evaluation are presented in

Table II, which summarizes several review sessions that

were held with three experts. It is important to state that we

believe that the reviewers' high expertise and deep

knowledge in the domain of web applications development

more than compensates for the small number of reviews.

Table II shows how many locations in the application

each reviewer thought were applicable for using the

framework (the Found column). Such locations were

marked either as a location where the development team had

indeed used the framework (the In use column) or marked

as a location where the team did not use the framework (the

Not in use column).

Table II clearly shows that the abstraction that was

reified by the framework is indeed a natural fit for the

project. The table also hints that it can be used in other

frontend projects, as the five reviewers found a high number

of places to use it within the discussed application. This is

due to the reviewers’ familiarity with the usage of the

managed list abstraction in such applications.

Moreover, although not presented in this table, all of the

twenty places where the team used the framework were

detected by the experts (when we superpose their reviews).

16Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

TABLE II. REVIEWS SUMMARY

 Found In use Not in use

Reviewer-1 18 18 0

Reviewer-2 17 17 0

Reviewer-3 16 16 0

Reviewer-4 19 19 0

Reviewer-5 19 18 1

One usage location that was pointed out by Reviewer-5

was marked as Not in use. The framework was not used

there since it required a modification to the framework that

would change its semantics, a task that the team preferred

not to do at the time that that specific location in the

application was implemented.

VII. DISCUSSION

In addition to the results presented in the previous

section, it is important to state that the project was delivered

on time, with high quality, and was praised by its

stakeholders and clients. Thus, in light of the

aforementioned statements and based on the presented

results, we would like to address the idea of using the

managed list abstraction alongside its logical reification by

the Wrapper/WrapperContainer framework from several

perspectives.

A. Software design perspective

From a software design perspective, the

Wrapper/WrapperContainer framework, as reification of the

managed list abstraction, was a natural fit to act as a main

component in a large-scale Ajax project. This component

had proved itself as flexible enough to be used in numerous

contexts while preserving and reusing its core functionality.

The decision to provide a non-holistic component that

incorporates a complete logic implementation with callback

hooks and that lacks visual representation resulted in a

highly usable and flexible component as the apparent choice

in the trade-off between adaptiveness and rigorousness.

B. Developer's cognitive load perspective

We discovered that the use of a single abstraction as the

main workhorse of the frontend code had a twofold benefit:

• A lower learning curve: The project's novice developers

had to learn only one main abstraction and quickly

become proficient in using it and its reification. They

were able to do so after an almost insignificant portion

of time with respect to the entire project's duration. The

reviewing experts understood it after a thirty minute

educational session.

• The proficiency of the developers in using the

abstraction and the framework: Interpreting that the

large number of uses of the framework within the

project was a result of the assimilation of the

abstraction and the framework into the developers'

mental arsenal is sensible. Thus, the developers used it

in all appropriate situations. Even during times when

the deadline pressure increased, the developers still

thought of using the abstraction and the described

framework as the path of least resistance.

These two gains resulted in a lower mental burden on the

developers, which allowed them to free mental resources to

make better decisions and find better solutions in the overall

development process.

C. Debt accumulation perspective

As a result of the limitations imposed by the project's

technological domain, the development process of "first

code then refactor" was thought of as inadequate. The lack

of automatic refactoring tools forced developers to think

ahead about their solutions and code to come up with a

development flow that did not assume the existence of

automatic refactoring tools. This approach was nicknamed

"factor instead of refactor". The absence of such an efficient

debt payment mechanism resulted in the emergence of a

paradigm that minimizes the accumulation of technical debt.

This paradigm achieved its goal by focusing on a highly

useful abstraction with flexible implementation. This kind

of focus had an effect on the project's technical debt similar

to the effect of a highly rewarding investment. Basically,

since the framework was reused twenty times throughout

the project, we can say that the "factor instead of refactor"

approach was nineteen times more efficient then the "code

then refactor" approach.

We can conclude that using the managed list abstraction

and the Wrapper/WrapperContainer framework as a

mechanism to control and restrain technical debt in a large-

scale Ajax project has proven itself beyond any expectation

of the development team. Its contribution to the successful

delivery of the project, on time, and with high quality, is

highly significant.

VIII. CONCLUSIONS AND FUTURE WORK

Large-scale web applications are becoming abundant for

various reasons. An Ajax-based frontend is a crucial

component in cloud-based applications as well as in non-

native mobile applications. Moreover, users are expecting to

have the ability to access their once desktop-only

applications via web interfaces. However, the domain of

web application development is relatively young, and due to

its special constraints, traditional software development

processes and tools are rarely sufficient.

Mapping knowledge and ideas that are applicable for

static languages to be used in dynamic languages is in dire

need. Tools that rely on information that is extracted from a

programming language type system (such as automatic

refactoring tools) have a key role in the development

process of modern software. Since such information is not

found in Ajax-based applications, these tools are not

available for software developers, and thus standard

development processes become less effective up to the point

that a project's success can be jeopardized.

17Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

Methodologies and paradigms that handle problems that

occur in large software projects need to be adapted to web

application projects. One such problem, addressed in this

work, is how to restrain technical debt. In this paper, we

presented one solution—the abstraction of a managed list

and its implementing framework. However, other

abstractions may fit other types of projects. These

abstractions target not only JavaScript components but other

technologies as well, such as CSS or HTML.

Finding ways to track technical debt that originated from

components implemented using different technologies and

multiple programming languages, as part of a single

software project, is also necessary. Moreover, we also must

address the innate technical debt that is found due to the

cross browsers compatibility problem. As such, finding

ways to mitigate it into a debt-tracking system that does not

yet exist is also a worthy research direction.

ACKNOWLEDGMENT

The authors would like to thank Jayasimha S Kanakatte,
Kalaivanan Saravanan, Ravi Ray, Seema Meena, and
Susheel Ahuja for all the time they invested on the project.
We would also like to thank Maya Barnea, Yossi Mesika,
and Andrei Kirshin for the fruitful discussions.

REFERENCES

[1] W. Cunnigham, "The WyCash Portfolio Management System" in

Addendum to the proceedings on Object Oriented Programming
Systems, Languages, and Applications, pp. 29-30, 1992.

[2] F. P. Brooks Jr, "The Mythical Man-Month" (anniversary ed.).
Addison-Wesley Longman Publishing. 1995, pp. 66-69.

[3] A. Nugroho, J. Visser, and T. Kuipers, "An Empirical Model of
Technical Debt and Interest". In Proc. of the 2nd International
Wrokshop on Managing Technical Debt (MTD 2011), 2011.

[4] M. Fowler. "Refactoring: Imporving the Design of Existing Code".
Addison-Wesley Longman Publishing. 1999.

[5] W. F. Opdyke, "Refactoring Object Oriented Frameworks". PhD
thesis, University of Illinois at Urbana-Champaign, 1992.

[6] D. Roberts, J. Brant, and R. Johnson, "A Refactoring Tool for
Smalltalk". Theory and Practice of Object Systems. Vol 3, Issue 4,
1997. pp. 253-263.

[7] A. Goldberg and D. Robson, "Smalltalk-80: The Language and its
Implementation". Addison-Wesley Longman Publishing. 1983.

[8] T. Corbat, L. Felber, M. Stocker, and P. Sommerlad, "Ruby
Refactoring Plug-in for Eclipse. In proceedings of Object Oriented
Programming, Systems, Languages, and Applications. 2007. pp. 779-
780."

[9] A. Feldthaus, T. Millstein, A. Moller, M. Schafer, and F. Tip, "Tool-
supported Refactoring for JavaScript".In Proceedings of the ACM
International conference on object oriented programming systems
languages and applications. 2011. pp 119-138

[10] D. Flanagan and Y. Matsumoto, "The Ruby Programming Language,
first Edition". O'Reilly Media. 2008.

[11] ECMA. ECMAScript Language Specification, 5th edition, 2009.
ECMA-262 - accessed Aug. 13th, 2012.

[12] J.J Garret, "Ajax: a New Approach to Web Applications,
http://adaptivepath.com/ideas/ajax-new-approach-web-applications. -
accessed Aug. 13th, 2012.

[13] The World Wide Web Consortium (W3C), "HTML 4.01
Specification", http://www.w3.org/TR/REC-html40/ - accessed Aug.
13th, 2012

[14] The World Wide Web Consortium (W3C), "Document Object Model
(DOM) Level 2 Core Specification", http://www.w3.org/DOM/ -
accessed Aug. 13th, 2012

[15] The World Wide Web Consortium (W3C), "Cascading Style Sheets
",http://www.w3.org/Style/CSS/ - accessed Aug. 13th, 2012.

[16] The World Wide Web Consortium (W3C), "XMLHttpRequest",
http://www.w3.org/TR/XMLHttpRequest/ - accessed Aug. 13th, 2012

[17] A. T. Holdener III. "Ajax: The Definitive Guide". O'Reilly Media.
2008.

[18] A. Mesbah and M. R. Prasad, "Automated Corss-Borwser
Compatibility Testing". Proceedings of the 33rd International
Conference on Software Engineering (ICSE 2011).

[19] A. Taivalsaari, T. Mikkonen, D. Ingalls, and K. Palacz, "Web
Browser as an Application Platform: The Lively Kernel Experience".
Sun Microsystems Laborateries Technical Report TR-2008-175,
January 2008.

[20] T. Mikkonen and A. Taivalsaari. "The Mashable Challenge: Briding
the Gap Between Web Development and Software Engineering". In
Proceedings of the FSE/SDP workshop on Future of software
engineering research (FoSER '10). 2010.

[21] Google, Inc., "Google Web Toolkit Overview". http://code.google.
com/webtoolkit/overview.html - accessed Aug. 13th, 2012.

[22] http://coffeescript.org/ - accessed Aug. 13th, 2012.

[23] Yahoo! Developer Network, "YUI Library". http://developer.yahoo.
com/yui/ - accessed Aug. 13th, 2012.

[24] The Dojo Foundation, http://dojotoolkit.org/ - accessed Aug. 13th,
2012.

[25] S. Sierra, "Introducing ClojureScript". http://clojure.com/blog/2011/
07/22/introducing-clojurescript.html - accessed Aug. 13th, 2012

[26] Google, Inc. "Closure Tools". http://code.google.com/closure/ -
accessed Aug. 13th, 2012.

[27] G. Kiczales, J. des Rivieres, and D. G. Bobrow. "The Art of the
Metaobject Protocol". Cambridge, MA: The MIT Press, 1991.

[28] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. "Design Patterns:
Elements of Reusable Object-Oriented Software".Addison-Wesley,
1994.

[29] J. McCarthy, "Recursive Functions of Symbolic Expressions and their
Computation by Machine, Part I". Communications of the ACM, vol.
3 Issue 4, pp. 184-195, April 1960.

[30] M. Zisman, "Representation, Specification, and Automation of Office
Procedures". PhD thesis. Wharton Business School, University of
Pennsylvania, 1977.

[31] N. Brown, Y. Cai, Y. Guo, R. Kazman, M. Kim, P. Kruchten, E. Lim,
A. MacCormack, R.L. Nord, I. Ozkaya, R. Sangwan, C. Seaman, K.
Sullivan, and N. Zazworka. Managing technical debt in software-
reliant systems. In Proceedings of the FSE/SDP workshop on Future
of software engineering research (FoSER '10). 2010.

[32] N. Zazworka, C. Seaman, and F. Shull. "Prioritizing Design Debt
Investment Opportunities". In Proc. of the 2nd International
Wrokshop on Managing Technical Debt (MTD 2011), 2011.

[33] N. Brown, R.L. Nord, and I. Ozkaya,M. Pais. "Analysis and
Management of Architectural Dependencies in Iterative Release
Planning". In Proceedings of the Ninth Working IEEE/IFIP
Conference on Software Architecture (WICSA). 2011.

[34] I Gat, J. D. Heintz. "From Assessment to Reduction: How Cutter
Consortium Helps Rein in Millions of Dollars in Technical Debt". In
Proceedings of the FSE/SDP workshop on Future of software
engineering research (FoSER '10). 2010

18Copyright (c) IARIA, 2013. ISBN: 978-1-61208-248-6

WEB 2013 : The First International Conference on Building and Exploring Web Based Environments

