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Abstract—The objective of this paper is to design a vi-
sualization tool that can efficiently describe the execution of
complex quantum algorithms. Through prevailing methods, the
execution of many classical algorithms can be easily visualized.
For example, sorting algorithms utilize histograms to illustrate
the sorting operation in a step-by-step manner. However, a
similar technique does not exist for quantum algorithms, as
current visualization tools apply intricate quantum principles,
which are difficult to comprehend. Therefore, we developed a
visualization tool that can demonstrate the execution of said
algorithms through simpler methods. Our tool was capable of
visualizing the execution of popular quantum algorithms, such
as Shor’s and Grover’s, despite the complexity of the concepts
involved.

Index Terms—quantum computing; quantum visualization;
Bloch spheres; Shor’s algorithm; Grover’s algorithm.

I. INTRODUCTION

Quantum computing is a swiftly developing technology,
that is now changing the way computer scientists look at
classical algorithms. By exploiting the properties of quantum
mechanics, this field has begun to yield simple solutions
to once-complicated classical problems. Qubits along with
superposition, entanglement, and interference are merged to
form these solutions. An exponential speed-up in terms of
execution is possible for these problems when quantum com-
puting is utilized. While true quantum hardware is still a thing
of the future, current computers can simulate their quantum
counterparts. Computer scientists can use these simulators
to discover solutions that are too complex for conventional
hardware to solve in polynomial time.

With the development of IBM’s quantum hardware making
progress in the world of computer science, many researchers
are now developing quantum algorithms and applications [1]
[2]. For example, the concept of entanglement has been
integrated with classifier algorithms in ML (machine learning),
creating a new subset in the field known as quantum machine
learning algorithms [3]. Qubits along with superposition, are
being used to create evolutionary algorithms for search and op-
timization methods. These methods operate on the ’survival of
the fittest’ principle to select the best results before proceeding
further [4]. Quantum key distribution protocols for symmetric
encryption algorithms is another promising application of
quantum computing. Quantum gates are applied sequentially

to increase the capacity for transmission of data between a
sender and receiver and hence improve communications [5].

The visualization of numerous classical algorithms is done
through simple plots, e.g., bar graphs, scatter plots, histograms,
etc [19]. As the algorithm executes, the plots can be manipu-
lated to illustrate how the final result is obtained. However, to
visualize qubits and quantum states, specific tools which could
encapsulate quantum theory had to be built. Researchers have
applied these tools, namely, Bloch spheres, quantum circuits,
and decision diagrams to visualize popular quantum concepts,
i.e., Shor’s algorithm and Bell states [6] [7]. Despite these
tools being popular amongst experts, users unacquainted with
quantum computing required a simpler tool. Therefore, the
framework proposed in this paper is designed to allow users
to effortlessly recognize and explore the behavior of quantum
algorithms.

The paper is organized in the following manner. Section II
covers the basic quantum concepts and formulae. Section III
describes quantum visualization tools and the proposed visual-
ization framework. Section IV demonstrates the application of
the framework on popular quantum algorithms and performs
an analysis on the results of the framework. The conclusion
and acknowledgment close the paper.

II. BASIC QUANTUM CONCEPTS

The complex quantum algorithms currently being employed
today are built using the core quantum principles listed below:

• Superposition
• Qubits
• Entanglement
• Interference

Advanced quantum algorithms and applications are designed
using the strong foundation established by these integral
concepts.

A. Superposition

Superposition can be defined as an essential component of
quantum computing. Consider a system that exists with a cer-
tain number of mutually exclusive classical states. A quantum
state, in that system, is said to be in superposition, when it
is in all classical states at the same time [8]. Each classical
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state in this system has a specific amplitude associated with
it, giving the equation:

|γ >= α0|0 > +α1|1 > +...+ αn−1|n− 1 > (1)

where γ is the pure quantum state, αn represents the amplitude
of the nth state, and n represents the total number of classical
states. The quantum state γ can be thought of as a column
vector in an n-dimensional vector space with an inner product,
i.e., a Hilbert space [8] [9].

The concept of superposition is applied in quantum mea-
surement. By the nature of superposition, a quantum state
exists between multiple classical states at any given moment.
Therefore, when a quantum state is measured, it collapses into
a single classical state, which can then be translated or mapped
into classical bits. Additionally, any information related to
the collapsed states is lost, and only the resultant state’s
information is preserved. To accomplish this, a probability
distribution formula is applied across all involved states to
determine which state the others will collapse into. All of the
probability values must sum up to 1, giving the equation:

N−1∑
j=0

|αj |2 = 1 (2)

This is also known as the simplest form of Born’s rule [8]
[10].

The visualization of superposition in certain single-qubit
environments is possible. When qubits in a Hilbert space are
translated into a three-dimensional space, they are represented
as Bloch spheres [9] [14]. Consider a system with the basis
states |0 > and |1 >. If certain mathematical transformations
are applied to a qubit in this system, it is said to be in a
superposition of the basis states, which can be seen in Figure 1.
In Figure 1, the magenta arrow represents the qubit, the north
and south poles of the sphere are the basis states, while x and
y are axes labels from the two-dimensional space. As seen in
Figure 1 the qubit’s orientation is precisely midway between
the basis states. This implies that the qubit exists in both states
at the same time, and hence illustrates superposition.

B. Entanglement

When 2 qubits are correlated to each other in a quantum
sense, it is known as quantum entanglement. To demonstrate
this property, the EPR (Einstein, Podolsky, Rosen) pair of qubit
states are used [11], which are of the form:

1√
2
|00 > +

1√
2
|11 > (3)

To begin with, before measurement, both qubit states are said
to be in a superposition between the basis states |0 > and
|1 >. Once the measurement operation is applied to the 2-
qubit system, the unique properties of the EPR pair can be
perceived. Suppose, after measuring the first qubit state, the
result obtained was the classical state ‘0’. Then by the property
of entanglement, both states collapse into |00 >. Similarly, if
the result was the classical state ‘1’ then both states would
collapse into |11 >. Therefore, by measuring the first qubit,

Fig. 1. Bloch sphere depicting superposition. [20]

the second unmeasured qubit immediately collapses into the
same classical value.

Visualizing the concept of quantum entanglement is rela-
tively straightforward. Qubits in a Qsphere are represented by
multicolored dots, with the following properties: 1) The size
of the dot represents the probability of the qubit being in that
state 2) The color of the dot represents the phase angle that
the qubit vector makes with the axes and 3) The line indicates
the qubit states are correlated with each other. As can be seen
in Figure 2, the 2-qubit system has been visualized [12]. The
dots are of equal size and both share a deep purple color. This
implies that there is an equal probability of being in either state
with a phase angle of 45 degrees (π4 ), and the line connecting
the dots indicates they are entangled.

Fig. 2. Qsphere depicting entanglement. [20]

C. Interference

In wave patterns, when 2 waves overlap each other, they
can either combine to create a larger wave, or cancel each

2Copyright (c) IARIA, 2023.     ISBN:  ISBNFILL

VISUAL 2023 : The Eighth International Conference on Applications and Systems of Visual Paradigms



other out. This is known as interference and can be extended
to quantum mechanics as well. To illustrate this, the Hadamard
transformation is used. The Hadamard transformation is a
single qubit quantum gate, that sets a qubit in a superposition
between the basis states |0 > and |1 > [8] [13]. The
transformation is represented as a matrix of the form:

1√
2

(
1 1
1 −1

)
(4)

When the Hadamard transformation is applied to the basis
state |0 >, the following state is generated:

1√
2
|0 > +

1√
2
|1 > (5)

And similarly, if applied to the basis state |1 >, the result
obtained is:

1√
2
|0 > − 1√

2
|1 > (6)

For interference, the first step is to apply the Hadamard
transformation to the basis state |0 >. Next, the transformation
is applied to the result of the previous operation to obtain the
basis state |0 >. This implies that the amplitudes for the basis
state |1 > had the same value but opposite sign. Therefore,
the amplitudes canceled each other out, leaving |0 > behind.

Bloch spheres are used to visualize the concept of interfer-
ence [14]. First, the qubit is set in a superposition, as seen
in Figure 1. After the Hadamard transformation is applied to
the superposition qubit, the state reverts back to |0 >, as can
be seen in Figure 3. The magenta arrow, which represents the
qubit vector, points at the north pole of the sphere, indicating
the qubit is now in state |0 >.

Fig. 3. Bloch sphere depicting interference. [20]

III. QUANTUM VISUALIZATION TOOLS

Existing visualization tools can be applied to specific quan-
tum environments based on a number of criteria, largely by
the number of qubits involved. In the case of single-qubit
environments, Bloch spheres and Qspheres can be used to

visualize the quantum operation [12] [14]. One tool for multi-
qubit environments would be quantum circuits and gates.
However, quantum circuit diagrams are an example of a high-
level visualization tool, i.e., it is tough to explain a quantum
circuit to an observer who is unaware of basic quantum theory.

Therefore, the proposed solution is a visualization frame-
work, that uses Microsoft Quantum functions [15]. Using
functions from the diagnostic library, the information related
to the active qubits in the program can be dumped onto the
console. This information can then be collected into a JSON
file, and a bar graph can be constructed from this data. These
bar graphs can visually elucidate the execution of any multi-
qubit algorithm.

A. Bloch Spheres

A Bloch sphere is a visualization tool, that transforms a
two-dimensional Hilbert space into a three-dimensional rep-
resentation. To accomplish this, the basic representation of a
qubit state is used, along with the relative phase variable (eiϕ):

α0|0 > +eiϕα1|1 > (7)

This state formula is normalized, and the resulting equation
is compared with certain trigonometric identities, to give the
following form of the qubit state:

cos
θ

2
α0|0 > +sin

θ

2
eiϕα1|1 > (8)

Here, θ and ϕ are the variables used as input for the Bloch
sphere function [9] [14]. They represent the angle of the qubit
state vector with respect to the basis states.

Bloch spheres are powerful tools for visualizing single-qubit
operations, as abstract concepts in the two-dimensional envi-
ronment, become coherent in the three-dimensional environ-
ment. Additionally, Qspheres act as a secondary visualization
tool for two or three qubit operations [12]. Here, only the
relative phase variable between the qubits can be used to
illustrate the positions of the vectors in the sphere.

Therefore, the proposed solution of this paper is to design
a framework that can visualize quantum algorithms in such a
way that is easier to understand.

B. Proposed Solution

The domain-specific, open-source language used to develop
quantum algorithms and applications is Q# (Q Sharp). It was
developed in 2017, as a part of Microsoft’s Quantum Devel-
opment Kit [15]. The language draws coding components and
mechanisms from C# and Python. Q# supports essential mod-
ules such as defining data types, constructing methods, and
establishing flow control structures. Additionally, quantum-
specific data structures such as Hadamard transformations, and
Controlled NOT matrices can also be defined. Unlike quantum
circuits, the language uses code statements and expressions to
illustrate integral quantum concepts. By doing this, classical
programs can be easily mapped to their quantum equivalents,
with minimal change to the actual code.

Microsoft Quantum’s Diagnostic library is a specific func-
tion library, that allows the user to detect mistakes and debug
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errors in programs [15]. This library contains 3 functions that
allow the user to dump the information related to the current
qubits involved in the program, to the console. These functions
are:

• DumpOperation
• DumpMachine
• DumpRegister
The framework proposed in this paper utilizes the Dump-

Machine function to visualize the execution of the quantum
algorithm. To begin with, the user writes a quantum algorithm
that solves a certain problem. Next, the DumpMachine func-
tion is called at critical points in the algorithm, and the main
method of the program is executed. When the DumpMachine
function is called, the data related to the active qubits in the
program is collected and dumped onto the console. This data
can be aggregated into a single JSON file, and then sorted and
extracted into Python’s list data structures.

Specifically, the qubit amplitude data and the associated
qubit states in the JSON file are extracted into the list
structures. From this, a bar graph is plotted with the active
qubit states on the x-axis and the amplitude data on the y-axis.
The advantage of this framework is that the DumpMachine
function can be called multiple times, once for each crucial
execution step in the algorithm. This implies that multiple
entries will be made in the JSON file, allowing multiple
bar graphs to be constructed. Hence, the graphs illustrate
the execution of the algorithm, through the changes in the
amplitudes and states of the qubits. The final result of the
algorithm will be in a certain qubit state with a certain
amplitude, making it simpler to draw inferences about the
algorithm.

For example, suppose the algorithm being visualized is
trying to solve the problem of whether a function is constant
or balanced. As seen in Figure 4, the bar graph shows the final
state of the qubits after all the operations have been applied.
The graph shows the amplitude of the qubits as -1 in the
state |00 >. According to the properties of the algorithm, this
implies that the input function to the algorithm was balanced.
Similarly, if the amplitude had been -1 in the state |11 >,
this would imply that the function is constant. This example
demonstrates how the amplitude of the qubits is related to the
execution of the given algorithm.

IV. QUANTUM ALGORITHMS

The most systematic method to test the proposed framework
is to pass a quantum algorithm as input and observe the bar
graphs generated as output. This output along with the problem
statement can be used to draw conclusions on the execution
of the algorithm. For example, if a quantum algorithm had
the problem statement, “To find if a function is constant and
balanced” and an output bar graph of -1 in the state |11 >,
this would imply that the function is constant.

Similarly, this framework has been applied to 2 popular
quantum algorithms, namely, Shor’s and Grover’s algorithms
[16] [17]. In this section, the problem statements of the

Fig. 4. Final result of proposed framework after simulating quantum algo-
rithm. [20]

algorithms are explained, along with the conclusions drawn
from the bar graphs generated from the framework.

A. Shor’s Algorithm

Shor’s algorithm is a popular quantum algorithm, with
applications in cryptography [16]. Classical algorithms take
exponential time to solve integer factorization problems, hence
Shor’s algorithm was proposed to solve the same problems
in polynomial time. Since most cryptographic encryption and
decryption techniques require integer factorization in some
form, Shor’s has many powerful applications. As of today,
Shor’s can break a number of public-key cryptography meth-
ods, one of them being the Diffie-Hellman Elliptic Curve key
exchange protocol [18]. In the future, with adequate quantum
hardware, Shor’s algorithm may be able to break highly secure
cryptographic schemes, such as AES or SHA-256.

The basic concept behind Shor’s algorithm is to find the
period of 2 co-prime numbers. In other words, given 2 co-
primes, there exists a cycle of remainders when the mod of 1
co-prime is applied to increasing powers of the other co-prime.
This equation normally takes the form of: axmodb, where a
and b are co-primes and x is any integer value greater than 0.
For example, if the pair of co-primes 2 and 3 are taken, the
cycle obtained is 2, i.e., the remainders obtained from 2nmod3
repeat after every 2 values of n.

To achieve this, first, a register of qubits is put into a state
of superposition using the Hadamard transformation. Then, the
qubit’s state is transformed from |y > to |axmodb > through
a series of quantum adder and multiplier functions, which are
built using quantum Fourier transforms. Next, each of these
final states is measured so that the value ‘x’ correlated to that
qubit state can be tested against a mathematical cycle-checking
function. If that value of ‘x’ satisfies the cycle parameters,
as described before, the algorithm outputs that value, else it
continues measuring states and testing other values of ‘x’.

The algorithm can test multiple values of ‘x’ in a single
computation using quantum computing and its related quantum
concepts. In a classical algorithm, a single computation is
required to test every value of ‘x’. This leads to significant
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Fig. 5. Result of proposed framework of Shor’s algorithm at the second step
of execution. [20]

speed-up in terms of execution speed and overall time elapsed.
For this algorithm, the framework generated the graph as seen
in Figure 5. This bar graph represents all of the states currently
in the form |axmodb >, with a certain value of ‘x’ associated
with each state.

If the state contains the correct value of ‘x’, the state
collapses back into |0 > with an amplitude of 1, as can be seen
in Figure 6. If not the amplitude of this collapsed state would
be 0. Thus, the framework was able to concisely explain the
execution of the algorithm.

Fig. 6. Result of proposed framework of Shor’s algorithm at the final step
of execution. [20]

B. Grover’s Algorithm

Grover’s algorithm serves as a popular quantum search
algorithm, that can be used to solve problems such as finding
the shortest path in a graph or searching a minimum spanning
tree [17]. Classical search algorithms would need to check
at least half of the search space to find the solution with a
high probability. On the other hand, Grover’s algorithm can
accept any type of query as input and will find a solution in
polynomial time using quantum concepts.

The algorithm operates by using the concept of qubit
reflection through template states to find the solution. Just
as before, first, a register of qubits is placed in a state of

superposition between the basis states. Then, to transform the
qubits into the correct state, 2 operations are applied, namely:

1) Grover iterate matrix
2) Quantum reflection through a set of template states

The Grover iterate matrix takes the form of:

H⊗nR0H
⊗n (9)

Here, R0 refers to a reversible matrix operation that rotates
the qubit vector states, and H represents the Hadamard trans-
formation applied n times [8].

In this example, the algorithm is trying to find a state with
6 qubits in it, with each qubit in the state |1 >. If t represents
the number of possible solutions for the search element x, then
the template states for the problem are represented by:

|G⟩ = 1√
t

∑
i:x=1

|i⟩ (10)

|B⟩ = 1√
N − t

∑
i:x=0

|i⟩ (11)

Here, |G > and |B > represent the good and bad template
states for this specific search problem [8]. These template
states instruct the algorithm on which step to take next,
based on the qubits’ reflection through them. Finally, the
algorithm measures the register qubits and outputs the state
which contains the search element.

In this case, the states and their amplitudes after the reflec-
tion operations are shown in Figure 7. As can be seen, there
are numerous states which have a low amplitude value and
one state which has a high amplitude value. All of the states
represent possible solutions to the search problem. However,
the states with low amplitude values represent states where
the probability of the search element being present is also
low. Similarly, the states with high amplitude values represent
states with a greater chance of containing the search element.

Fig. 7. Result of proposed framework of Grover’s algorithm at the second
step of execution. [20]

After measuring the possible solution states, the bar graph
in Figure 8 is obtained. The state with 6 qubits, with all qubits
being in |1 >, has an amplitude of 1. This implies that the
algorithm found the search element, and the framework was
able to explain the execution of the algorithm in a systematic
manner.
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Fig. 8. Result of proposed framework of Grover’s algorithm at the final step
of execution. [20]

V. CONCLUSION AND FUTURE WORK

The execution of various quantum algorithms described in
this paper has been adequately visualized. By applying the
proposed visualization framework to multi-qubit algorithms,
we could effectively explain the execution of said algorithms
through the changes in their respective bar graphs. This
technique is relatively simple when compared to the existing
methods, thus satisfying the objectives we set for the frame-
work. Therefore, a visualization framework has been designed
which can elucidate the execution of quantum algorithms in a
straightforward manner. In the future, this framework should
be extended to accept any quantum algorithm and display the
related qubit data and graphs. This will allow multiple users
to be able to draw conclusions and provide feedback on the
clarity of the framework.
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