
Visualising Network Anomalies in an Unsupervised Manner Using Deep Network

Autoencoders

Matthew Banton, Nathan Shone, William Hurst, Qi Shi

Department of Computer Science

Liverpool John Moores University

Liverpool, UK

e-mail: m.d.banton@2017.ljmu.ac.uk, {n.shone, w.hurst, q.shi}@ljmu.ac.uk

Abstract—As network data continues to grow in volume, it

is important that network administrators have the tools to be

able to identify anomalous network flows and malicious

activity. However, it is just as important that tools allow the

administrator to visualise this activity in relation to other

benign activity. As such, this paper will propose a method to

not only identify malicious activity, but also visualise the

activity and how it relates to other network activity (both

benign and malicious).

Keywords-Autoencoder; Visualisation; k-NN; Deep Learning

I. INTRODUCTION

Computer networks are increasingly important to
people’s daily lives, and the rate of devices connecting to IP
networks is increasing. The Cisco Visual Networking Index
predicts that by 2021 there will be 3.5 networked devices per
capita, up from 2.3 per capita in 2016 [1]. Most of this
increase is coming from mobile devices and comes with a
corresponding increase in the volume of data being used,
with the amount of data in existence expected to increase to
44ZB by 2020 and 3.3ZB of data being transmitted across IP
networks per year by 2021 [1].

Visualising this data presents a challenge for the network
administrator, and visualising attacks presents an even bigger
challenge. It is not enough to simply know an attack is
happening, an administrator needs to know from where an
attack is originating, what kind of attack it is, what its target
is, and what other kind of systems may have been affected.
The 2018 Cost of a Data Breach Study [2] found that
companies that contained a breach within 30 days saved over
$1 million compared to those that took over 30 days. By
making data clearer, breaches can be contained faster, which
can save companies money. The mean time to contain a
breach was found to be 69 days.

Current systems allow the administrator to see an
overview of a network and can include statistics and relevant
details such as total network traffic, or even traffic over
certain connections. However, these graphs typically lack a
security view specifically, and are more focused on letting an
administrator see which services and equipment may be
under strain. Alternatively, security-focused services tend to
provide anomaly detection and alert administrators to the
presence of suspicious activity rather than providing clear
visualisation combined with the normal network activity
[3][4][7].

This paper will propose a method to visualise anomalous
network activity. Anomalous activity will be detected using
an Autoencoder network, which feeds into a k-NN (k-
Nearest Neighbour) classifier. The results of this will be
plotted onto a force-directed graph, which will highlight
anomalous nodes clearly for the network administrator.

Deep learning can aid with this significantly. k-NN has
been used in various methods of anomaly detection in the
past [5], however accuracy has frequently been an issue as
the noise of most network data means k-NN methods can fail
to adequately classify data [6]. The Autoencoder deep
network can aid with this by reducing the amount of noise in
the data and increasing classification accuracy.

As such this paper shall propose a novel deep network to
review network data and plot it in a form that allows a
network administrator to see any anomalous activity, along
with other relevant network details.

The rest of this paper is structured as follows. In Section
2, we will discuss other relevant work within machine
learning and visualisation. In Section 3, we will discuss the
methodology used within the experiment, including a brief
description of unsupervised methods and why they are being
used, as well as more detail about the Autoencoder and k-NN
methods that will be used. Section 4 includes more detailed
methodology and initial experimentation, including a
detailed discussion of the structure of the model and
rationale for any choices made, as well as initial results.
Section 5 includes conclusions and future work.

II. RELATED WORK

Several tools already exist to allow administrators to
view network activity, structure or alerts. However, many of
these are unintuitive or omit important information. For
instance, the OpenDaylight SDN (Software Defined
Network) Controller [7] comes with a visualisation tool that
allows the administrator to see a representation of all
switches and nodes connected to the network, and how they
are connected. It does not provide the administrator with any
additional useful information, such as traffic volume over
certain trunks, nor does it provide the administrator with any
security alerts as no kind of Intrusion Detection System
(IDS) is included. Alternatively, there are systems like Snort
[8], which do not include any visualisation at all, simply
alerting administrators that suspicious traffic has been
detected. While its popularity speaks to its usefulness, it is
purely text based, and sends alerts independent of other

25Copyright (c) IARIA, 2019. ISBN: 978-1-61208-724-5

VISUAL 2019 : The Fourth International Conference on Applications and Systems of Visual Paradigms

network conditions or traffic, making it easy for an
administrator relying on it to miss other important
information.

Researchers have tried to address this in several ways.
For instance, in [9], the authors propose a system to visualise
Snort logs by converting them into line graphs, showing the
victims, attackers and types of attacks. This improves on the
basic Snort logs, as it becomes easier to see which alerts are
related (by host, or system) and which may be completely
coincidental. However, it is dependent on the logs of Snort
and therefore misses other potentially important information
that may be needed (such as overall network load). In
addition to this, on larger systems the graphs start to become
harder to read as more and more data needs to be included
within them, an example is shown in Figure 1.

Within [10] the authors use k-means clustering to group
network data into groups (normal and anomalous), and then
take the data from the anomalous cluster and use the same
process to separate it into Transmission Control Protocol
(TCP), User Datagram Protocol (UDP) and Internet Control
Message Protocol (ICMP) traffic. After taking the cluster,
which contains a mix of all three protocols they finally
design a ruleset designed on this cluster and apply it to the
testing set, which results in a detection rate of attacks above
80% for all five data types (normal, Denial of Service (DoS),
Remote to Local (R2L), User to Root (U2R) and probe)
except for U2R.

For unsupervised learning, the authors of [11] use Robust
Autoencoders (RAE), which is an Autoencoder that splits the
training data (X) into normal and outlier elements (L and S),
such that X = L+S. The purpose of this is to avoid fitting
anomalous or rare data, which should prevent underfitting of
normal data, and help anomalous data be highlighted more
easily. They find that RAEs are an effective way to reduce
false positives and do have the benefit of not underfitting
normal data. However, the approach was only used for port
scan type attacks, and so may not scale as well when looking
for other attack types.

Potluri, et al. [12] evaluate Stacked Autoencoders and
Deep Belief Networks (DBN) as feature reducers, with
Softmax Regression and Support Vector Machine classifiers.
They found that the stacked Autoencoders achieve higher

levels of accuracy than the DBN when classifying fewer
classes, whilst DBN and Soft-max Regression achieved
higher accuracy with more classes.

Alom and Taha [13] look at attack detection using Auto
Encoders and Restricted Boltzmann Machine (RBM) for
feature extraction and dimensionality reduction, and combine
it with k-means clustering for classification. They show that
the combination can produce an accuracy of 92.12% with 9
features, or 90.86% with only 3 features. This compares to
using k-means alone with 39 features for 87.72% accuracy or
an Extreme Learning algorithm (again with 39 features)
gaining an accuracy of 89.17%. This shows the potential of
Autoencoders for categorising sets with extremely limited
data sets, something that becomes more important in SDN
environments with limited flow features.

Palomo et al. [14] decide to use a self-organising map to
group and highlight network data. Using real network data
captured from four subnets of a university network, they
create a dataset from 150,871 samples, where 1 sample is a
single packet. Each sample consisted of nine features,
namely IP source address, IP destination address, protocol,
source port, destination port, date, time, packet length and
delta time. They find that self-organising maps can be an
effective way to group similar network data, highlighting
suspicious network data clusters. While the clusters do
represent distinct network activity, the size of each node is
determined by the amount of traffic that cluster exhibits. This
means that the comparatively small amounts of anomalous
network activity could be confused with other benign
network protocols that generate low volumes of traffic if an
administrator were to not examine the details more closely.
For example, in Figure 2 nodes 18, 19 and 20 look very
similar, however node 19 represents benign Address
Resolution Protocol (ARP) traffic while nodes 18 and 20
represent suspicious activity from Russia and Italy.

III. PROPOSED METHODOLOGY

As we have seen, visualisation of network states is an
ongoing research area, with many papers and projects

Figure 1. Line Graph model produced from SNORT output.

Figure 2. Input data hits for the 5x5 SOM.

26Copyright (c) IARIA, 2019. ISBN: 978-1-61208-724-5

VISUAL 2019 : The Fourth International Conference on Applications and Systems of Visual Paradigms

proposing different ways to visualise the current state and
data being transmitted. However, research into visualising
network anomalies has not kept pace with this work. This
paper intends to propose a method to both detect and
visualise network anomalies, making it easier to see what
kind of attacks network administrators are dealing with, thus
allowing them to react quicker.

Our system proposes using an Autoencoder deep network
to reduce the features of the SDN, and then using k-Nearest
Neighbour to sort the resulting data. As has been shown by
[15] and [16], reducing noise in data can improve accuracy
for k-NN, and other shallow learning methods, and this is an
important stage in our model.

The k-NN can then classify the reduced data into groups,
allowing related data to be grouped together. This is then
placed into a force directed graph, which will show the
administrator the related flows in a clear and concise manner.

While other researchers have proposed similar
unsupervised models to this, results are only ever given in a
table or using a ROC curve. The method proposed allows the
administrator to quickly see which flows are malicious, and
which ones are benign.

A. Unsupervised Methods

The use of both Autoencoders and k-NN means that the
system is unsupervised. Unsupervised machine learning has
benefits in not needing labelled data to train the models.
Labelled data within network environments can be difficult
to access, and typically requires skilled administrators or
other Network Intrusion Detection System (NIDS) to label
the data appropriately. As such, many researchers have
proposed that using unsupervised methods is more
appropriate for intrusion detection. Unsupervised methods
tend to have lower accuracy and more false positives than
supervised methods, as shown by [17] and [18]. However,
this is not necessarily always the case, as shown by [11] and
[13], where the authors show an unsupervised method using
recurrent Autoencoders can be effective when attempting to
detect port scans and show that they can gain lower false
positives.

B. Autoencoders

An Autoencoder is a neural network designed to learn

the features of a set of data. Within an Autoencoder the

desired output is the input itself. So for input I and output O,

I = O. However, there are also one or more hidden layers

that are smaller than the input, forcing the network to

encode a representation of the input which can then be

decoded into the output.

This forces the model to learn a representation of the

input data that it can use to attempt to recreate the eventual

output. The goal of this is to reduce noise or unneeded

features in an automatic manner. This has shown to be

effective within network security, as network data tends to

include a lot of noise that is not relevant to classifying the

data [11] [19]. Within this context, noise refers to data that

is unimportant to the overall network wellbeing. Within

larger or more complete datasets this is often low level

network admin data (e.g., Dynamic Host Configuration

Protocol (DHCP) joins and parts), but within higher levels

this can persist with for example, benign retransmissions of

data.

C. k-Nearest Neighbor

As noted, the purpose of the Autoencoders is to reduce

the noise within the data, not to classify any data. To

classify the data we will use a k-NN algorithm. This

unsupervised algorithm classifies data based upon a

plurality vote of its nearest neighbours as to which class it

belongs in.

D. Plotting the Graph

The output of the model is a list of x, y coordinates for

each neighbour, on each flow (so for 5 neighbours, each

flow will have 5 sets of x, y coordinates). From here, each

coordinate can have its results averaged (creating an average

x, y coordinate for each flow) and these are added as nodes

to the graph. The final step is to create the links. The same

averages are run, however each time a node is created with

the same x, y coordinate as another flow, a link is made

between them. The result is a graph that joins similar flows

together, while dissimilar malicious flows will be separate,

making them easier to identify.

IV. INITIAL EXPERIMENTATION

In this section, we will describe the experiments
undertaken for this research, whilst detailing more about the
proposed method and reasoning behind the choices made.

A. The Dataset

The dataset used for this research is the real network

data from the University of Twente [20]. The dataset

consists of connection monitoring for multiple SSH servers,

which is organised into flows matching the IP Flow

Information Export (IPFIX) [21] standard. The data is not

labelled, however, with the use of the unsupervised learning

technique proposed this is not a problem. The dataset

consists of network flows recorded on four routers and

includes Date first seen, Duration, Protocol, Source IP

Address and Port, Destination IP Address and Port, Number

of Packets, Bytes and Number of flows. Also included is the

logs from the SSH servers, which allows us to create a

dataset of mixed log and flow data. Pre-processing was

performed in order to convert text data (protocol, date) into

a numerical form. Due to the size of the dataset, a 5% subset

was used. This was split into training and testing subsets,

with approximately 66.66% training to 33.33% testing, in

order to make twice as much training as testing data. Simple

random sampling was used to select the 5% of the dataset to

be used, as well as to determine whether the record would

be part of the training or testing datasets, and this was

accomplished using the Python random function. The

dataset consists of primarily benign data, however slightly

less than 2% are malicious flows that include brute force or

dictionary attacks. The dataset is therefore not evenly

27Copyright (c) IARIA, 2019. ISBN: 978-1-61208-724-5

VISUAL 2019 : The Fourth International Conference on Applications and Systems of Visual Paradigms

distributed, but is a fair representation of what other SSH

server network traffic may look like.

B. The Model

As stated, we took 66.66% split of the dataset and used it

to train the Autoencoder part of the network, whilst leaving

the remaining data for testing. The output from the

Autoencoder is fed to the k-NN algorithm. Again, k-NN

classifies the data it receives based upon a plurality vote of

its nearest neighbours. A representation of the model is

shown in Figure 3.

1) The Autoencoder

The Autoencoder network uses a size 8-7-7-7-8 in order

to reduce noise within the data, where the sizes 8 are the

input and output respectively, and the 7-7-7 is the middle

hidden layers. This is based off similar model shapes in

[15], who use a similar structure, in addition to our own

testing where we found adding more layers leads to

overfitting on the majority class. This structure should

allow the model to remove noise without losing valuable

data. Additionally, 500 epochs were chosen to train, along

with a batch size of 200 and a learning rate of 0.01. These

values were based off [11] and [22] who choose very similar

values for their models, however as these works were not

using the same datasets further optimisation could be done.

With additional testing on the dataset itself, a batch size of

200 and 500 epochs showed no signs of overfitting, so these

values were chosen as final values.

2) k-NN

After training within the Autoencoder network the

output was given to the k-NN algorithm to train and

classify. The dataset consists of both anomalous “brute

force” access attempts and regular access attempts (with

occasional legitimate access attempts rejected due to admin

errors). As such, the k-NN model should produce two

primary clusters, one of legitimate access attempts and one

(significantly smaller) of illegitimate access attempts. The

model was set to give the five closest neighbours to the

input. A larger value could have been set; however, this

would increase the amount of time it takes to process the

model, and would increase the complexity of the final

graph. There is a possibility that having too many

neighbours would produce a graph that does not show the

different outputs as the similarities of the benign and

malicious data would work to pull them together.

3) Tools Used

GPU-based Tensorflow running on an NVIDIA

RTX2080 Ti 11GB GPU was used to construct the

Autoencoder, with the results of the Autoencoder going to

train the k-NN. The k-NN was coded using sklearn, and

processed on an i9-9900 CPU. The output of the k-NN was

a text file with the node and nearest neighbors to it. This is

converted into a JSON file and then imported into the

NVD3 generated graph.

Finally, some areas of the model have not been fully

optimised and further accuracy could be gained as a result

of further optimisation. In particular, the number of epochs

and learning rate were chosen based upon common values

in other works, which used different datasets. Some testing

was done to ensure these values were still relevant, but

could still be optimised further. The number of epochs

could likely be increased above 500, without signs of

overfitting, but this will come with a corresponding

increase in the amount of time to train and test the model.

As has been noted in Sections 1 and 2, time is an important

aspect in intrusion detection, and the quicker intrusions can

be detected and contained, the more money can be saved.

C. Results

In Figure 4 we can see the result of the graph that came

from the k-NN without the use of the Autoencoder network.

As can be seen, anomalous results are not as easy to

identify, they are separate nodes, however due to the loose

clustering of benign flows, and it could be easy to miss

malicious flows. Figure 5 shows the results from the model

using the Autoencoder network to reduce the noise. The

malicious flows are more notable due to the aggressive

clustering of benign flows, and a busy administrator would

be able to note them and gain useful and additional

information from the suspicious flows. In Figure 5 benign

nodes have clearly joined up, while the malicious nodes are

separate, while in Figure 4 the benign nodes are not as

joined up, making them harder to identify at a glance.

Shown is the result for flows found within a 2 hour period

on 1st Feb, as the NVD3 process used had trouble managing

more flows than this.

Figure 3. A representation of the model being used.

28Copyright (c) IARIA, 2019. ISBN: 978-1-61208-724-5

VISUAL 2019 : The Fourth International Conference on Applications and Systems of Visual Paradigms

Figure 5. Deep learning graph.

V. CONCLUSIONS AND FURTHER WORK

In this Section, we will provide further discussion on the

results, as well as outlining the future direction of our work.

A. Conclusions

As Figure 5 shows, Autoencoder networks are an

effective method to reduce noise in network data, and

highlight anomalies that can then be detected by a shallow

learning algorithm, in this case k-NN. We have shown that

by mapping the output of the k-NN onto a force directed

graph, we can more easily visualise the malicious flows, and

how they interact with other flows. Additionally, this graph

allows mouse rollover to give more information about the

flow, allowing the administrator to quickly identify

malicious flows, flows that are related to it, and gain

additional information, such as IP address of the source and

destination, ports and volume of data. Force graphs are

clearly an effective method of conveying this information to

the administrator in a clear and concise manner, which if

implemented in a production environment could reduce the

risk of administrator error and speed up response time.

Figure 4 shows the equivalent shallow learning graph.

B. Further Research

Other types of unsupervised learning could be used for

classification and noise reduction. We chose k-NN as the

classifier due to its speed and ability to gain accurate results.

However, k-means could offer similar benefits and results,

and has been shown to be effective when paired with

models that reduce the dimensionality of the data it is

classifying.

Unsupervised versions of DBN could also be effective.

When being used to classify data in a supervised manner,

DBNs have been shown to produce highly accurate results

on common datasets, but DBNs do not have to be trained in

a supervised manner. Using a RBM network instead of

Autoencoder might result in higher accuracy, although again

the amount of time to train and test the network would need

to be considered.

This paper has focused on unsupervised methods, and it

is the authors’ belief that unsupervised machine learning is

preferable over supervised methods, simply because of the

difficulty in obtaining fully labelled datasets for production

environments. Obtaining labelled data typically requires

highly skilled administrators to manually review the training

data, and label accordingly. This is a time consuming and,

given the expertise required, often expensive process, that is

still prone to error. However, often supervised methods do

provide higher accuracy, and in a world where some

breaches are detected over a year from the initial attack

(and, it must be assumed, some are never detected) it could

be argued that the extra cost of supervised methods is worth

the extra accuracy. With this in mind, methods such as

Support Vector Machines or Softmax classifiers could be

considered, especially Softmax where the output

Figure 4. Shallow learning graph.

29Copyright (c) IARIA, 2019. ISBN: 978-1-61208-724-5

VISUAL 2019 : The Fourth International Conference on Applications and Systems of Visual Paradigms

probabilities could be mapped directly onto the force

directed graph.

REFERENCES

[1] Cisco, “Cisco Visual Networking Index : Forecast and
Methodology , 2016 – 2021 Investor relations Search jobs,” p.
2021, 2017.

[2] P. Institute, “2018 Cost of a Data Breach Study: Global
Interview,” no. July, p. 15, 2018

[3] “SIEM | LogRhythm.” [Online]. Available:
https://logrhythm.com/products/siem/. [Accessed: 30-May-
2019]

[4] W. C. Lin, S. W. Ke, and C. F. Tsai, “CANN: An intrusion
detection system based on combining cluster centers and
nearest neighbors,” Knowledge-Based Syst., vol. 78, no. 1,
2015

[5] B. Xu, S. Chen, H. Zhang, and T. Wu, “Incremental k-NN
SVM method in intrusion detection,” Proc. IEEE Int. Conf.
Softw. Eng. Serv. Sci. ICSESS, vol. 2017-Novem, pp. 712–
717, 2018

[6] T. O. Project, “OpenDaylight,” 2019. [Online]. Available:
https://www.opendaylight.org/. [Accessed: 30-May-2019].

[7] Cisco, “Snort.” [Online]. Available: https://www.snort.org/.
[Accessed: 30-May-2019].

[8] Cisco, “Snort.” [Online]. Available: https://www.snort.org/.
[Accessed: 30-May-2019]

[9] A. Azodi, F. Cheng, and C. Meinel, “Towards better attack
path visualizations based on deep normalization of
host/network IDS alerts,” Proc. - Int. Conf. Adv. Inf. Netw.
Appl. AINA, vol. 2016–May, pp. 1064–1071, 2016.

[10] B. Langthasa, B. Acharya, and S. Sarmah, “Classification of
network traffic in LAN,” 2015 Int. Conf. Electron. Des.
Comput. Networks Autom. Verif., pp. 92–99, 2015.

[11] G. Kotani and Y. Sekiya, “Unsupervised Scanning Behavior
Detection Based on Distribution of Network Traffic Features
Using Robust Autoencoders,” 2018 IEEE Int. Conf. Data
Min. Work., pp. 35–38, 2018.

[12] S. Potluri, N. F. Henry, and C. Diedrich, “Evaluation of
hybrid deep learning techniques for ensuring security in

networked control systems,” 2017 22nd IEEE Int. Conf.
Emerg. Technol. Fact. Autom., pp. 1–8, 2017.

[13] M. Z. Alom and T. M. Taha, “Network Intrusion Detection
for Cyber Security using Unsupervised Deep Learning
Approaches,” in 2017 IEEE National Aerospace and
Electronics Conference (NAECON), 2017, vol. 2017–June,
pp. 2379–2027.

[14] E. J. Palomo, J. North, D. Elizondo, R. M. Luque, and T.
Watson, “Visualisation of network forensics traffic data with
a self-organising map for qualitative features,” Proc. Int. Jt.
Conf. Neural Networks, pp. 1740–1747, 2011.

[15] P. Vincent and H. Larochelle, “Stacked Denoising
Autoencoders: Learning Useful Representations in a Deep
Network with a Local Denoising Criterion Pierre-Antoine
Manzagol,” J. Mach. Learn. Res., vol. 11, pp. 3371–3408,
2010.

[16] G. E. Hinton and R. R. Salakhutdinov, “Reducing the
Dimensionality of Data with Neural Networks,” vol. 313, no.
July, pp. 504–508, 2006.

[17] P. Laskov, P. Dussel, C. Schafer, and K. Rieck, Learning
intrusion detection: Supervised or unsupervised?, vol. 3617 of
Le. Springer Berlin / Heidelberg, 2005.

[18] R. C. Staudemeyer, “Applying long short-term memory
recurrent neural networks to intrusion detection,” Sacj, no. 56,
pp. 136–154, 2015.

[19] S. M. Erfani, S. Rajasegarar, S. Karunasekera, and C. Leckie,
“High-dimensional and large-scale anomaly detection using a
linear one-class SVM with deep learning,” Pattern Recognit.,
vol. 58, 2016.

[20] R. Hofstede, L. Hendriks, A. Sperotto, and A. Pras, “SSH
Compromise Detection using NetFlow/IPFIX,” ACM
SIGCOMM Comput. Commun. Rev., vol. 44, no. 5, pp. 20–
26, 2014.

[21] R. Hofstede et al., “Flow monitoring explained: From packet
capture to data analysis with NetFlow and IPFIX,” IEEE
Commun. Surv. Tutorials, vol. 16, no. 4, pp. 2037–2064, 2014

[22] Y. Chuan-long, Z. Yue-fei, F. Jin-long, and H. Xin-zheng, “A
Deep Learning Approach for Intrusion Detection using
Recurrent Neural Networks,” IEEE Access, vol. 3536, no. c,
pp. 1–1, 2017.

30Copyright (c) IARIA, 2019. ISBN: 978-1-61208-724-5

VISUAL 2019 : The Fourth International Conference on Applications and Systems of Visual Paradigms

