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Abstract—As network data continues to grow in volume, it 

is important that network administrators have the tools to be 

able to identify anomalous network flows and malicious 

activity. However, it is just as important that tools allow the 

administrator to visualise this activity in relation to other 

benign activity. As such, this paper will propose a method to 

not only identify malicious activity, but also visualise the 

activity and how it relates to other network activity (both 

benign and malicious).  
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I.  INTRODUCTION 

Computer networks are increasingly important to 
people’s daily lives, and the rate of devices connecting to IP 
networks is increasing. The Cisco Visual Networking Index 
predicts that by 2021 there will be 3.5 networked devices per 
capita, up from 2.3 per capita in 2016 [1]. Most of this 
increase is coming from mobile devices and comes with a 
corresponding increase in the volume of data being used, 
with the amount of data in existence expected to increase to 
44ZB by 2020 and 3.3ZB of data being transmitted across IP 
networks per year by 2021 [1]. 

Visualising this data presents a challenge for the network 
administrator, and visualising attacks presents an even bigger 
challenge. It is not enough to simply know an attack is 
happening, an administrator needs to know from where an 
attack is originating, what kind of attack it is, what its target 
is, and what other kind of systems may have been affected. 
The 2018 Cost of a Data Breach Study [2] found that 
companies that contained a breach within 30 days saved over 
$1 million compared to those that took over 30 days. By 
making data clearer, breaches can be contained faster, which 
can save companies money. The mean time to contain a 
breach was found to be 69 days. 

Current systems allow the administrator to see an 
overview of a network and can include statistics and relevant 
details such as total network traffic, or even traffic over 
certain connections. However, these graphs typically lack a 
security view specifically, and are more focused on letting an 
administrator see which services and equipment may be 
under strain. Alternatively, security-focused services tend to 
provide anomaly detection and alert administrators to the 
presence of suspicious activity rather than providing clear 
visualisation combined with the normal network activity 
[3][4][7]. 

This paper will propose a method to visualise anomalous 
network activity. Anomalous activity will be detected using 
an Autoencoder network, which feeds into a k-NN (k-
Nearest Neighbour) classifier. The results of this will be 
plotted onto a force-directed graph, which will highlight 
anomalous nodes clearly for the network administrator. 

Deep learning can aid with this significantly. k-NN has 
been used in various methods of anomaly detection in the 
past [5], however accuracy has frequently been an issue as 
the noise of most network data means k-NN methods can fail 
to adequately classify data [6]. The Autoencoder deep 
network can aid with this by reducing the amount of noise in 
the data and increasing classification accuracy. 

As such this paper shall propose a novel deep network to 
review network data and plot it in a form that allows a 
network administrator to see any anomalous activity, along 
with other relevant network details. 

The rest of this paper is structured as follows. In Section 
2, we will discuss other relevant work within machine 
learning and visualisation. In Section 3, we will discuss the 
methodology used within the experiment, including a brief 
description of unsupervised methods and why they are being 
used, as well as more detail about the Autoencoder and k-NN 
methods that will be used. Section 4 includes more detailed 
methodology and initial experimentation, including a 
detailed discussion of the structure of the model and 
rationale for any choices made, as well as initial results. 
Section 5 includes conclusions and future work. 

II. RELATED WORK 

Several tools already exist to allow administrators to 
view network activity, structure or alerts. However, many of 
these are unintuitive or omit important information. For 
instance, the OpenDaylight SDN (Software Defined 
Network) Controller [7] comes with a visualisation tool that 
allows the administrator to see a representation of all 
switches and nodes connected to the network, and how they 
are connected. It does not provide the administrator with any 
additional useful information, such as traffic volume over 
certain trunks, nor does it provide the administrator with any 
security alerts as no kind of Intrusion Detection System 
(IDS) is included. Alternatively, there are systems like Snort 
[8], which do not include any visualisation at all, simply 
alerting administrators that suspicious traffic has been 
detected. While its popularity speaks to its usefulness, it is 
purely text based, and sends alerts independent of other 
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network conditions or traffic, making it easy for an 
administrator relying on it to miss other important 
information. 

Researchers have tried to address this in several ways. 
For instance, in [9], the authors propose a system to visualise 
Snort logs by converting them into line graphs, showing the 
victims, attackers and types of attacks. This improves on the 
basic Snort logs, as it becomes easier to see which alerts are 
related (by host, or system) and which may be completely 
coincidental. However, it is dependent on the logs of Snort 
and therefore misses other potentially important information 
that may be needed (such as overall network load). In 
addition to this, on larger systems the graphs start to become 
harder to read as more and more data needs to be included 
within them, an example is shown in Figure 1. 

Within [10] the authors use k-means clustering to group 
network data into groups (normal and anomalous), and then 
take the data from the anomalous cluster and use the same 
process to separate it into Transmission Control Protocol 
(TCP), User Datagram Protocol (UDP) and Internet Control 
Message Protocol (ICMP) traffic. After taking the cluster, 
which contains a mix of all three protocols they finally 
design a ruleset designed on this cluster and apply it to the 
testing set, which results in a detection rate of attacks above 
80% for all five data types (normal, Denial of Service (DoS), 
Remote to Local (R2L), User to Root (U2R) and probe) 
except for U2R. 

For unsupervised learning, the authors of [11] use Robust 
Autoencoders (RAE), which is an Autoencoder that splits the 
training data (X) into normal and outlier elements (L and S), 
such that X = L+S. The purpose of this is to avoid fitting 
anomalous or rare data, which should prevent underfitting of 
normal data, and help anomalous data be highlighted more 
easily. They find that RAEs are an effective way to reduce 
false positives and do have the benefit of not underfitting 
normal data. However, the approach was only used for port 
scan type attacks, and so may not scale as well when looking 
for other attack types. 

Potluri, et al. [12] evaluate Stacked Autoencoders and 
Deep Belief Networks (DBN) as feature reducers, with 
Softmax Regression and Support Vector Machine classifiers. 
They found that the stacked Autoencoders achieve higher 

levels of accuracy than the DBN when classifying fewer 
classes, whilst DBN and Soft-max Regression achieved 
higher accuracy with more classes. 

Alom and Taha [13] look at attack detection using Auto 
Encoders and Restricted Boltzmann Machine (RBM) for 
feature extraction and dimensionality reduction, and combine 
it with k-means clustering for classification. They show that 
the combination can produce an accuracy of 92.12% with 9 
features, or 90.86% with only 3 features. This compares to 
using k-means alone with 39 features for 87.72% accuracy or 
an Extreme Learning algorithm (again with 39 features) 
gaining an accuracy of 89.17%. This shows the potential of 
Autoencoders for categorising sets with extremely limited 
data sets, something that becomes more important in SDN 
environments with limited flow features. 

Palomo et al. [14] decide to use a self-organising map to 
group and highlight network data. Using real network data 
captured from four subnets of a university network, they 
create a dataset from 150,871 samples, where 1 sample is a 
single packet. Each sample consisted of nine features, 
namely IP source address, IP destination address, protocol, 
source port, destination port, date, time, packet length and 
delta time. They find that self-organising maps can be an 
effective way to group similar network data, highlighting 
suspicious network data clusters. While the clusters do 
represent distinct network activity, the size of each node is 
determined by the amount of traffic that cluster exhibits. This 
means that the comparatively small amounts of anomalous 
network activity could be confused with other benign 
network protocols that generate low volumes of traffic if an 
administrator were to not examine the details more closely. 
For example, in Figure 2 nodes 18, 19 and 20 look very 
similar, however node 19 represents benign Address 
Resolution Protocol (ARP) traffic while nodes 18 and 20 
represent suspicious activity from Russia and Italy. 

III. PROPOSED METHODOLOGY 

As we have seen, visualisation of network states is an 
ongoing research area, with many papers and projects 

 
Figure 1. Line Graph model produced from SNORT output. 

 
 

Figure 2. Input data hits for the 5x5 SOM.  
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proposing different ways to visualise the current state and 
data being transmitted. However, research into visualising 
network anomalies has not kept pace with this work. This 
paper intends to propose a method to both detect and 
visualise network anomalies, making it easier to see what 
kind of attacks network administrators are dealing with, thus 
allowing them to react quicker. 

Our system proposes using an Autoencoder deep network 
to reduce the features of the SDN, and then using k-Nearest 
Neighbour to sort the resulting data. As has been shown by 
[15] and [16], reducing noise in data can improve accuracy 
for k-NN, and other shallow learning methods, and this is an 
important stage in our model.  

The k-NN can then classify the reduced data into groups, 
allowing related data to be grouped together. This is then 
placed into a force directed graph, which will show the 
administrator the related flows in a clear and concise manner. 

While other researchers have proposed similar 
unsupervised models to this, results are only ever given in a 
table or using a ROC curve. The method proposed allows the 
administrator to quickly see which flows are malicious, and 
which ones are benign. 

A. Unsupervised Methods 

The use of both Autoencoders and k-NN means that the 
system is unsupervised. Unsupervised machine learning has 
benefits in not needing labelled data to train the models. 
Labelled data within network environments can be difficult 
to access, and typically requires skilled administrators or 
other Network Intrusion Detection System (NIDS) to label 
the data appropriately. As such, many researchers have 
proposed that using unsupervised methods is more 
appropriate for intrusion detection. Unsupervised methods 
tend to have lower accuracy and more false positives than 
supervised methods, as shown by [17] and [18]. However, 
this is not necessarily always the case, as shown by [11] and 
[13], where the authors show an unsupervised method using 
recurrent Autoencoders can be effective when attempting to 
detect port scans and show that they can gain lower false 
positives. 

B. Autoencoders 

An Autoencoder is a neural network designed to learn 

the features of a set of data. Within an Autoencoder the 

desired output is the input itself. So for input I and output O, 

I = O. However, there are also one or more hidden layers 

that are smaller than the input, forcing the network to 

encode a representation of the input which can then be 

decoded into the output. 

This forces the model to learn a representation of the 

input data that it can use to attempt to recreate the eventual 

output. The goal of this is to reduce noise or unneeded 

features in an automatic manner. This has shown to be 

effective within network security, as network data tends to 

include a lot of noise that is not relevant to classifying the 

data [11] [19]. Within this context, noise refers to data that 

is unimportant to the overall network wellbeing. Within 

larger or more complete datasets this is often low level 

network admin data (e.g., Dynamic Host Configuration 

Protocol (DHCP) joins and parts), but within higher levels 

this can persist with for example, benign retransmissions of 

data. 

C. k-Nearest Neighbor 

As noted, the purpose of the Autoencoders is to reduce 

the noise within the data, not to classify any data. To 

classify the data we will use a k-NN algorithm. This 

unsupervised algorithm classifies data based upon a 

plurality vote of its nearest neighbours as to which class it 

belongs in. 

D. Plotting the Graph 

The output of the model is a list of x, y coordinates for 

each neighbour, on each flow (so for 5 neighbours, each 

flow will have 5 sets of x, y coordinates). From here, each 

coordinate can have its results averaged (creating an average 

x, y coordinate for each flow) and these are added as nodes 

to the graph. The final step is to create the links. The same 

averages are run, however each time a node is created with 

the same x, y coordinate as another flow, a link is made 

between them. The result is a graph that joins similar flows 

together, while dissimilar malicious flows will be separate, 

making them easier to identify.  

IV. INITIAL EXPERIMENTATION 

In this section, we will describe the experiments 
undertaken for this research, whilst detailing more about the 
proposed method and reasoning behind the choices made. 

A. The Dataset 

The dataset used for this research is the real network 

data from the University of Twente [20]. The dataset 

consists of connection monitoring for multiple SSH servers, 

which is organised into flows matching the IP Flow 

Information Export (IPFIX) [21] standard. The data is not 

labelled, however, with the use of the unsupervised learning 

technique proposed this is not a problem. The dataset 

consists of network flows recorded on four routers and 

includes Date first seen, Duration, Protocol, Source IP 

Address and Port, Destination IP Address and Port, Number 

of Packets, Bytes and Number of flows. Also included is the 

logs from the SSH servers, which allows us to create a 

dataset of mixed log and flow data. Pre-processing was 

performed in order to convert text data (protocol, date) into 

a numerical form. Due to the size of the dataset, a 5% subset 

was used. This was split into training and testing subsets, 

with approximately 66.66% training to 33.33% testing, in 

order to make twice as much training as testing data. Simple 

random sampling was used to select the 5% of the dataset to 

be used, as well as to determine whether the record would 

be part of the training or testing datasets, and this was 

accomplished using the Python random function. The 

dataset consists of primarily benign data, however slightly 

less than 2% are malicious flows that include brute force or 

dictionary attacks. The dataset is therefore not evenly 
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distributed, but is a fair representation of what other SSH 

server network traffic may look like. 

B. The Model 

As stated, we took 66.66% split of the dataset and used it 

to train the Autoencoder part of the network, whilst leaving 

the remaining data for testing. The output from the 

Autoencoder is fed to the k-NN algorithm. Again, k-NN 

classifies the data it receives based upon a plurality vote of 

its nearest neighbours. A representation of the model is 

shown in Figure 3. 

1) The Autoencoder 

The Autoencoder network uses a size 8-7-7-7-8 in order 

to reduce noise within the data, where the sizes 8 are the 

input and output respectively, and the 7-7-7 is the middle 

hidden layers. This is based off similar model shapes in 

[15], who use a similar structure, in addition to our own 

testing where we found adding more layers leads to 

overfitting on the majority class.  This structure should 

allow the model to remove noise without losing valuable 

data. Additionally, 500 epochs were chosen to train, along 

with a batch size of 200 and a learning rate of 0.01. These 

values were based off [11] and [22] who choose very similar 

values for their models, however as these works were not 

using the same datasets further optimisation could be done. 

With additional testing on the dataset itself, a batch size of 

200 and 500 epochs showed no signs of overfitting, so these 

values were chosen as final values. 

2) k-NN 

After training within the Autoencoder network the 

output was given to the k-NN algorithm to train and 

classify. The dataset consists of both anomalous “brute 

force” access attempts and regular access attempts (with 

occasional legitimate access attempts rejected due to admin 

errors). As such, the k-NN model should produce two 

primary clusters, one of legitimate access attempts and one 

(significantly smaller) of illegitimate access attempts. The 

model was set to give the five closest neighbours to the 

input. A larger value could have been set; however, this 

would increase the amount of time it takes to process the 

model, and would increase the complexity of the final 

graph. There is a possibility that having too many 

neighbours would produce a graph that does not show the 

different outputs as the similarities of the benign and 

malicious data would work to pull them together. 

3) Tools Used 

GPU-based Tensorflow running on an NVIDIA 

RTX2080 Ti 11GB GPU was used to construct the 

Autoencoder, with the results of the Autoencoder going to 

train the k-NN. The k-NN was coded using sklearn, and 

processed on an i9-9900 CPU. The output of the k-NN was 

a text file with the node and nearest neighbors to it. This is 

converted into a JSON file and then imported into the 

NVD3 generated graph.  

Finally, some areas of the model have not been fully 

optimised and further accuracy could be gained as a result 

of further optimisation. In particular, the number of epochs 

and learning rate were chosen based upon common values 

in other works, which used different datasets. Some testing 

was done to ensure these values were still relevant, but 

could still be optimised further. The number of epochs 

could likely be increased above 500, without signs of 

overfitting, but this will come with a corresponding 

increase in the amount of time to train and test the model. 

As has been noted in Sections 1 and 2, time is an important 

aspect in intrusion detection, and the quicker intrusions can 

be detected and contained, the more money can be saved. 

C. Results 

In Figure 4 we can see the result of the graph that came 

from the k-NN without the use of the Autoencoder network. 

As can be seen, anomalous results are not as easy to 

identify, they are separate nodes, however due to the loose 

clustering of benign flows, and it could be easy to miss 

malicious flows. Figure 5 shows the results from the model 

using the Autoencoder network to reduce the noise. The 

malicious flows are more notable due to the aggressive 

clustering of benign flows, and a busy administrator would 

be able to note them and gain useful and additional 

information from the suspicious flows. In Figure 5 benign 

nodes have clearly joined up, while the malicious nodes are 

separate, while in Figure 4 the benign nodes are not as 

joined up, making them harder to identify at a glance. 

Shown is the result for flows found within a 2 hour period 

on 1st Feb, as the NVD3 process used had trouble managing 

more flows than this. 

 
Figure 3. A representation of the model being used. 
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Figure 5. Deep learning graph. 

 

 

V. CONCLUSIONS AND FURTHER WORK 

In this Section, we will provide further discussion on the 

results, as well as outlining the future direction of our work. 

A. Conclusions 

As Figure 5 shows, Autoencoder networks are an 

effective method to reduce noise in network data, and 

highlight anomalies that can then be detected by a shallow 

learning algorithm, in this case k-NN. We have shown that 

by mapping the output of the k-NN onto a force directed 

graph, we can more easily visualise the malicious flows, and 

how they interact with other flows. Additionally, this graph 

allows mouse rollover to give more information about the 

flow, allowing the administrator to quickly identify 

malicious flows, flows that are related to it, and gain 

additional information, such as IP address of the source and 

destination, ports and volume of data. Force graphs are 

clearly an effective method of conveying this information to 

the administrator in a clear and concise manner, which if 

implemented in a production environment could reduce the 

risk of administrator error and speed up response time.  

Figure 4 shows the equivalent shallow learning graph. 

B. Further Research 

Other types of unsupervised learning could be used for 

classification and noise reduction. We chose k-NN as the 

classifier due to its speed and ability to gain accurate results. 

However, k-means could offer similar benefits and results, 

and has been shown to be effective when paired with 

models that reduce the dimensionality of the data it is 

classifying.  

Unsupervised versions of DBN could also be effective. 

When being used to classify data in a supervised manner, 

DBNs have been shown to produce highly accurate results 

on common datasets, but DBNs do not have to be trained in 

a supervised manner. Using a RBM network instead of 

Autoencoder might result in higher accuracy, although again 

the amount of time to train and test the network would need 

to be considered. 

This paper has focused on unsupervised methods, and it 

is the authors’ belief that unsupervised machine learning is 

preferable over supervised methods, simply because of the 

difficulty in obtaining fully labelled datasets for production 

environments. Obtaining labelled data typically requires 

highly skilled administrators to manually review the training 

data, and label accordingly. This is a time consuming and, 

given the expertise required, often expensive process, that is 

still prone to error. However, often supervised methods do 

provide higher accuracy, and in a world where some 

breaches are detected over a year from the initial attack 

(and, it must be assumed, some are never detected) it could 

be argued that the extra cost of supervised methods is worth 

the extra accuracy. With this in mind, methods such as 

Support Vector Machines or Softmax classifiers could be 

considered, especially Softmax where the output 

 
Figure 4. Shallow learning graph. 

 

29Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-724-5

VISUAL 2019 : The Fourth International Conference on Applications and Systems of Visual Paradigms



probabilities could be mapped directly onto the force 

directed graph. 
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