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Abstract—As autonomous driving becomes increasingly feasi-
ble, the German government has introduced a legal framework
to enable the operation with Level 4 automated driving func-
tionality. A key requirement is the maintenance of a continu-
ous connection between such vehicles and a remote technical
supervisor. If this link is lost, the vehicle must transition into a
safe state by bringing itself to a controlled stop. To mitigate the
risk of connection loss, accurate forecasting of mobile network
availability along routes is essential. This paper presents an
Exploratory Data Analysis (EDA) based on 38 measurement
runs collected over ten months along a rural 64 km route in
Germany. The dataset includes passive mobile network signal
quality parameters, Global Navigation Satellite System (GNSS)
position and precision data, as well as contextual features, such as
speed, driving direction, day of the week, weather, and distance to
the connected base station. Although mean values capture overall
tendencies for areas with consistently good or poor coverage, they
fail to capture the variability necessary for reliable prediction
on a per-trip basis. Notably, some route segments show high
variance in signal quality across different measurement runs.
This variability is assumed to result from changing environmental
influences, such as weather or traffic conditions at different times.
Our analysis reveals weak but statistically relevant correlations
between several contextual features (e.g., temperature ~ -0.2) and
network quality indicators. The inclusion of weather parameters
or the day of the week has been shown to lower the Mean
Absolute Error (MAE) compared to a prediction based only
on measurements from the past. These findings underscore the
importance of contextual information and localized modeling to
predict network availability for safety-critical systems, such as
autonomous vehicles.

Keywords-autonomous driving; mobile network; connectivity
forecasting; signal quality indicators; rsrp.

I. INTRODUCTION

Even though recent forecasts are more cautious regarding
the future proliferation of automated driving vehicles, it is
evident that they will gradually become part of everyday
life as technology evolves [1]. In this context, emerging
automated driving functions and Vehicle-to-Everything (V2X)
communication systems highlight the growing importance of
robust and reliable vehicular connectivity [2].

A key motivation for this work comes from recent reg-
ulatory developments in Germany. According to legislation,
automated vehicles classified under Society of Automotive
Engineers (SAE) Level 4 (high driving automation [3]) must
maintain a permanent connection to a technical supervisor
(§ le para. 2 Nr. 10 StVG [4]). This supervisor must receive
real-time status information and can intervene, for example,
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by enforcing a safety stop or assisting in complex scenarios
[4]. One such case involves construction zones, where the
vehicle may need to cross continuous lane markings, an action
typically prohibited by internal rules.

Network connection quality is influenced by various dy-
namic factors, including environment, time of day, and vehicle
motion. Open areas near base stations usually offer strong
coverage, while remote or forested areas do not. To investigate
this variability, 38 test drives along a predefined 64 km
rural route, recording passive mobile network parameters
and Global Navigation Satellite System (GNSS) data, were
conducted. During post-processing, additional context, such
as weather conditions and metadata, was integrated.

This paper identifies contextual parameters that influence
mobile network quality. Through feature selection and an
Exploratory Data Analysis (EDA), metrics with predictive
power for future Machine Learning (ML) applications are
uncovered. The overall goal is to forecast network conditions
along a planned route prior to the trip. Such capabilities would
enable automated vehicles to make informed decisions, such
as rerouting to avoid areas with weak or volatile connectivity.

We examine how spatial location, temporal factors, weather
conditions, and vehicle motion affect signal metrics. However,
the analysis is based on historical measurements collected
along a fixed route and restricted to linear correlations between
contextual and network parameters. Urban environments and
larger datasets, beyond the 38 measurement drives used here,
remain for future work and are expected to further improve
prediction performance.

Unlike prior studies that focused on static coverage maps,
short-term datasets, or urban areas, our work presents a long-
term measurement campaign on a rural route and explicitly
integrates contextual factors (e.g., time of the day, ambient
temperature). To our knowledge, this is among the first studies
to target pre-trip forecasting of Long-Term-Evolution (LTE)/
5G quality for Level 4 driving scenarios.

This paper is organized as follows: Section II discusses
the state of the art and related work. Section III introduces
the fundamentals of mobile networks and describes the target
parameters. Section IV outlines the data collection process
and cleaning methodology. Section V presents insights derived
from an EDA. Section VI introduces our initial contextual
model, demonstrating how external parameters can influence
predictions of mobile network performance. Finally, Sec-
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tion VII concludes the paper and outlines directions for future
work.

II. RELATED WORK

Several studies have addressed the prediction and analysis
of mobile network quality, particularly in vehicular contexts.
These efforts vary in scope, methodology, and focus, often
targeting real-time diagnostics or static coverage mapping,
rather than the pre-trip forecasting required for autonomous
vehicle planning.

Torres et al. [5] propose a method to forecast congestion in
LTE networks using data analytics and ML techniques. Their
model supports Self-Organizing Network (SON) optimization
for real-time traffic management, but it does not incorporate
contextual factors, such as weather or time of day, nor is it
designed for trip-specific predictions.

Madariaga et al. [6] adopt a time series perspective, demon-
strating that meteorological conditions significantly affect mo-
bile Quality of Service (QoS). By combining ML models with
temperature, humidity, and rainfall data from crowdsourced
Android measurements, they show that context-aware models
outperform purely historical averages, particularly in urban
areas. In another related work, they address the spatial aggre-
gation of signal strength data through advanced interpolation
methods [7]. Their approach produces statistically robust spa-
tial estimations in urban environments. However, their studies
are restricted to this setting and do not consider long-term
temporal variability or predictions along rural routes.

Sahin and Sathya [8] present a classification model that
estimates mobile network quality in a given area using only
Global Positioning System (GPS) data. While computation-
ally lightweight, their model omits dynamic environmental
influences, such as weather or time, limiting its utility for
predictive, context-aware applications. Similarly, Rahman et
al. [9] use reinforcement learning with Unmanned Aerial
Vehicles (UAVs) to detect mobile coverage holes in urban
environments. Their infrastructure-focused approach is not
intended for vehicle-specific planning or prediction.

Hultman et al. [10] introduce a route planner, which selects
navigation routes based on static mobile signal coverage maps
derived from publicly available data. Although useful for high-
level connectivity-aware navigation, their approach lacks the
temporal and contextual sensitivity required for dynamic, real-
world scenarios.

More recently, Schippers et al. [11] introduced the DoNext
dataset, a large-scale open-access 5G measurement campaign.
Designed to support ML research, the dataset includes multiple
regions and contexts. However, the focus lies on general-
purpose mobile network analysis, rather than route-specific
forecasting or context-weighted trip planning. As their study
confirms, the signal quality can vary significantly at the same
location depending on the time, e.g., signal degradation during
rush hours due to network congestion from many connected
devices.

Prior work has addressed many important parts of mobile
network prediction, including data aggregation, spatial mod-

eling, and urban QoS forecasting. Nevertheless, these studies
often neglect the specific requirements of autonomous driving.
Furthermore, most previous research is either limited to urban
areas or lacks incorporation of temporal and environmental
context. In contrast, this study combines:

o contextual modeling with signal metrics,

« spatiotemporal pre-trip forecasting on fixed vehicular
routes,

o and a long-time measurement campaign over several
months.

III. BACKGROUND AND FUNDAMENTALS

To support our analysis, this section introduces key mobile
network concepts and signal quality metrics used in LTE and
5G systems.

A. Principles of Mobile Networks

Mobile communication networks consist of wireless links
between User Equipment (UE) and base stations, which
connect to a core network. The transition from LTE to 5G
enhances bandwidth, latency, and reliability [12], which are
critical for autonomous driving applications [13]. LTE pro-
vides high data rates and reduced latency through techniques
such as Multiple Input Multiple Output (MIMO), handovers,
and advanced radio resource management [14]. 5G builds on
LTE by adding capabilities, such as beamforming and network
slicing. It operates across low-, mid-, and high-frequency
bands, including millimeter waves [15]. Research has also
investigated the fundamental performance limits of millimeter-
wave systems for cooperative localization, underlining the
relevance of advanced 5G [16]. Moreover, 5G offers even
lower latency and increased capacity supporting safety-critical
automotive applications [13]. In both LTE and 5G networks,
signal quality plays a central role in determining the perfor-
mance and reliability of a connection [17].

B. Mobile Network Signal Quality Metrics

Signal quality in LTE and 5G networks is assessed using a
set of key radio frequency indicators. These metrics help to
evaluate the reliability and performance of the wireless link
between the UE and a cellular base station [18]. The most
commonly used parameters are as follows:

o Received Signal Strength Indicator (RSSI) represents the
total received power observed by the device within the
channel bandwidth [17]. This value includes not only the
desired signal but also background noise and interference
from neighboring cells. Measured in decibel-milliwatt
(dBm), RSSI serves as an indicator of signal presence
but lacks specificity for signal quality [19] [20].

« Reference Signal Received Power (RSRP) quantifies the
average power of reference signals transmitted by a
serving cell [17]. Unlike RSSI, it excludes interference
and noise, offering a more accurate measure of usable
signal strength. RSRP is expressed in dBm and is used by
UE for tasks, such as cell selection, handover decisions,
and radio link monitoring [19].
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o Reference Signal Received Quality (RSRQ) is the ratio
of RSRP to RSSI, normalized by the number of resource
blocks [17]. It reflects both the signal strength and the
level of interference within the channel. It is particularly
useful in scenarios with heavy network load or high
interference levels, where a strong signal may still result
in poor quality due to congestion. RSRQ is commonly
measured in decibel (dB) [19].

« Signal-to-Interference-plus-Noise Ratio (SINR) indicates
the quality of the wireless communication channel by
comparing the power of the desired signal to the sum
of interference and background noise [17]. It directly
impacts achievable data rates and overall link perfor-
mance. SINR is also measured in dB and is a parameter
for evaluating network efficiency and optimizing system
performance [19].

TABLE I. SIGNAL QUALITY METRICS FOR LTE AND 5G NETWORKS [17]

Quality
Interpretation

> -65: Excellent
-65 to -75: Good
-75 to -85: Fair
< -85: Poor
> -80: Excellent
-80 to -90: Good
-90 to -100: Fair
< -100: Poor
> -10: Excellent
-10 to -15: Good
-15 to -20: Fair
< -20: Poor
> 15: Excellent
10 to 15: Good
5 to 10: Fair
< 5: Poor

Parameter | Unit

RSSI

Range
-120 to -30

dBm

RSRP dBm | -140 to -60

RSRQ dB -20 to -3

SINR dB -20 to +30

Table I summarizes the value ranges for each of the four
metrics based on industry standards and field experience,
including recommendations provided by the applied router’s
manufacturer [17]. In general, higher values of these metrics
correspond to better network quality and more stable connec-
tvity.

IV. DATA COLLECTION AND FEATURE ENGINEERING

This section describes the methodology used for data ac-
quisition and the subsequent processing steps taken to prepare
a clean and contextually enriched dataset suitable for analysis
and modeling.

A. Measurement Campaign

The dataset used in this study was collected during a
series of 38 real-world measurement drives along a 64 km
segment of the rural road B16 in southern Germany. The test
drives were performed in both directions, ensuring a balanced
spatial and directional coverage of the route. The measurement

campaign extended over 10 months to capture a broad range of
temporal and environmental variability. In total, about 60,000
measurement points along the route were collected.

For the data acquisition, a custom-built mobile measurement
unit was used. The system consists of the hardware parts as
illustrated in Figure 1.

e
D [m)

(=] (s} Active GNSS

ublox ZED-FOR Antenna

GNSS Receiver

Touchscreen Monitor

Teltonika RUTX50
LTE/SG Router

Mobile Power Supply

Figure 1. Setup of the custom-built mobile measurement unit

The collected mobile network parameters as presented in
Section III-B were logged continuously throughout each drive.
In addition, the GNSS receiver provided geographical co-
ordinates (latitude, longitude, altitude), metrics like Position
Dilution of Precision (PDOP), and the number of visible
satellites. The vehicle speed and its course were also recorded
to capture the motion context of the measurements.

B. Data Cleaning and Preprocessing

In the following data collection phase, the raw measure-
ments were processed to ensure consistency, completeness,
and analytical utility. These steps were implemented using the
programming language Python and applied uniformly for all
drives:

o Validation and Cleaning: The routers placeholder values
(-32768) were converted to Not a Number (NaN). De-
scriptive statistics (means and medians) and correlations
were computed with pairwise deletion, which means that
only valid observations are used for each metric and
section. This rule keeps cell-edge situations in the dataset.
They only reduce the effective sample size but do not bias
the analysis by removing low-signal points.

o Merging and Structuring: All individual drive data were
merged into a single consolidated dataset. A unique
measurement identifier was assigned to each session to
later enable distinction between the drives.

e Temporal and Categorical Features: Based on the times-
tamp data, additional contextual attributes like the day
of the week and the week of the year were calculated.
This information helps capture time-dependent variations
in network performance.

« Base Station Proximity: The dataset was enriched with
the distance to the connected mobile base station at each
point. The base station locations were obtained from
the open-source platform CellMapper [21], and distances
were computed using haversine-based geospatial calcula-
tions.
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o Weather Data Integration: Historical weather data were
added to each measurement point using the Open-
Meteo Application Programming Interface (API) [22].
The weather attributes (e.g., temperature, wind speed,
precipitation, ground fog) were matched based on times-
tamp and geographical coordinates, allowing for the in-
clusion of environmental context in the analysis process.

As a result of this process, a spatiotemporally tagged
dataset that combines passive network parameters, location,
and environmental conditions was created.

V. EXPLORATORY DATA ANALYSIS

To gain insights into the structure and variability of the
collected dataset, an EDA was conducted. This analysis aims
to find spatial and contextual patterns in the signal measure-
ments and to identify the most relevant features for subsequent
modeling tasks.

As shown in Figure 2, the measurement route was seg-
mented into Reference Points (RPs) based on a 200-meter
radius clustering approach. Each recorded data point was as-
signed to its nearest RP. This segmentation enabled consistent
spatial comparisons by aggregating measurements at the same
location. For each RP, average values of the target parameters
were calculated. This helps to mitigate the influence of mea-
surement noise and to improve the robustness of comparisons
between different test runs.

Figure 2. Clustering of the route into reference points

An initial analysis confirms observations also noted in
the related work discussed in Section II. While the spatial
location is a dominant factor, the measured mobile network
parameters vary significantly between different test drives at
the same location. The largest fluctuations were observed at
locations with average reception quality. In contrast, spots with
consistently high or consistently poor connectivity showed
lower variability from time to time. These findings show the
importance of incorporating additional contextual features into
predictive modeling for signal quality.

A. Correlations with Contextual Factors

To improve the prediction of mobile network performance
indicators, especially in areas with weak or inconsistent cover-
age, it is important to account for environmental and temporal
context. It could be identified which contextual parameters
affect which signal metrics, and to what extent.

temperature 0.08
distance bs - -0.06 -0.10
hdop -0.09 0.10 -0.06 -0.10
humidity - 0.09 0.04
pdop - -0.09 -0.08 -0.06
rms range - -0.10 -0.05 -0.07
ground fog - 0.08 0.09 0.03 - 0.05
wind speed -0.07 -0.08 -0.06
altitude -0.06 -0.03
vdop - -0.10 -0.08 -0.06 -0.06 | 0.00
week of year-  -0.09 -0.02 -0.09 -0.04
std longitude - -0.07 -0.07 -0.05 -0.05
std minor - -0.07 -0.07 -0.05 -0.05
day of week - 0.08 0.04 0.07 0.04 - -0.05
atmosp. pressure - 0.06 0.08 0.02 0.05
std altitude - -0.06 -0.06 -0.04 -0.04
std major - -0.03 -0.06 -0.01 -0.04
rain-  0.06 0.02 0.05 -0.00 --0.10
std latitude - -0.03 -0.06 0.00 -0.04
precipitation - 0.06 0.02 0.05 -0.00
#visible sats gps-  -0.04 0.00 -0.07 0.01 015
cloud cover - 0.04 0.00 0.04 0.01
angle majer -  -0.01 0.02 -0.01 -0.02
speed - 0.01 -0.02 0.02 0.00
rs:'p rs:'q rslsi si‘nr

Figure 3. Heatmap showing the correlations between environmental
parameters and the received signal quality metrics

Figure 3 presents a correlation heatmap between contextual
features and the four target signal metrics. The variables
include weather data, temporal features, distance to base sta-
tion, GNSS precision metrics (e.g., PDOP, number of visible
satellites), and speed of the vehicle.

The following trends can be observed in the heatmap:

o Temperature shows a negative correlation with RSRP
and RSSI, indicating that higher temperatures may be
associated with reduced signal strength.

¢ Distance to base station, PDOP, and Horizontal Dilution
of Precision (HDOP) also exhibit negative correlations
with signal strength indicators. This aligns with the
expectation that increasing distance and positioning un-
certainty can degrade radio wave propagation.

o Humidity and ground fog show moderate positive correla-
tions with RSRP, RSRQ, and RSSI, potentially indicating
the energy absorbing effects of water in the air.

o Temporal features like day of week and week of year
also show small but consistent correlations, suggesting
time-dependent network load or usage patterns. The effect
is likely to increase with a better timely distribution of
measurements.

o Speed seems to have no relevant influence on the signal
parameters.
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Beyond environmental effects, fluctuations in signal quality
often coincided with serving-cell handovers. Sections with
more frequent handovers (normalized per 1000 measurements)
tended to show higher run-to-run variability, supporting the
view that cell transitions contribute to the variance observed in
average-quality zones, although the overall correlation remains
weak.

B. Correlation with Ambient Temperature

To further investigate the influence of temperature, Figure 4
illustrates the average RSRP values across different tempera-
ture bins, separated by connection type. A clear degradation
in signal strength with increasing temperature is observed.
However, LTE connections appear to be more sensitive to
temperature increases than 5G-Non Standalone (NSA).

—98 4

-100 -

—102

~104

RSRP

—-106 4
-108

-1101 Connection Type
5G-NSA

~112 1 TE

714 1421 2128

temperature (°C)

70 07

Figure 4. Influence of the ambient temperature on the RSRP value separated
in 5G-NSA and LTE measurements

These results support the hypothesis that weather conditions
can differentially affect radio wave propagation, and that newer
network technologies like 5G may offer enhanced resilience
under varying environmental conditions.

VI. PREDICTION MODEL

The discussed correlations provide a foundation for feature
selection and motivate the inclusion of contextual parameters
in the predictive modeling efforts described in this section. The
Mean Absolute Error (MAE) was used to assess the influence
of contextual features on the target parameters. MAE is chosen
for its interpretability and robustness to outliers, as it provides
a direct average of absolute errors in the same units as the
target variable, making it especially suitable for this purpose.
The MAE is defined as:

1 n
MAE = — i — Ui 1
=D Ly — i (1)

=1

where y; denotes the true value, g, the predicted value, and
n the number of samples [23].

As mentioned in Section III-B, RSSI and similar metrics
are expressed in dB or dBm, which are logarithmically scaled.
Therefore, even small changes in the MAE can have a signif-
icant impact on signal quality [19].

A. Context Parameter Scaling

To investigate how external context parameters affect mobile
network signal quality, a modeling approach that adjusts the
section-wise signal predictions based on environmental devia-
tions was developed. The baseline model predicts the expected
target parameters for every RP along the route only using
the mean value from historical measurements. This section
explores whether incorporating individual context parameters
can improve the prediction by reducing the MAE.

For each context parameter, a linear model was trained
using the deviation between a parameter’s current value and
its historical section average. This deviation was multiplied by
a scale factor to model the resulting shift in signal behavior.
The prediction was then computed by adding this adjustment
to the baseline section average. To identify the optimal scale
factor, values ranging from -5.0 to 15.0 in increments of 0.1
for each context parameter were tested. The scale factor that
minimized the MAE on the test measurement was selected.
The goal was to quantify how strongly each context parameter
contributes to prediction accuracy and whether any of them
provided consistent improvements over the baseline.

RSRP
7.0

temperature_2m
surface_pressure
cloud_cover_low
relative_humidity_2m
day_of_week
distance_bs
--- Baseline MAE

6.5

6.0

5.0

4.5

4.0

3 4 5 6 7
Scale Factor

8 9 10 11 12 13 14 15

Figure 5. Influence of the context parameters with different scale factors on
the MAE compared to the baseline MAE without context

Figure 5 shows the results of the scale factor optimization
for the signal parameter RSRP. Each curve in the plot repre-
sents the MAE progression as a function of the scale factor
applied to the respective context parameter. In all cases, the
MAE initially decreases with increasing scale factor, reaches
a minimum, and then increases again. The findings show that
several context parameters can improve prediction accuracy
compared to the baseline. However, the improvement varies
between the parameters.
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B. Combining Context Parameters

The aim of this section was to investigate whether the
prediction accuracy of mobile network parameters could be
further improved by simultaneously incorporating multiple
context parameters. Building on the results of the individual
analyses, it was examined whether combining two context
parameters, each with its own scale factor, could reduce
the MAE even further. Therefore, all possible pairs of the
five most relevant context parameters (temperature, surface
pressure, relative humidity, ground fog, and day of week)
were systematically evaluated. For each pair, a linear model
was trained using the deviation of each context value from
its corresponding section average. A grid search over scale
factor combinations in the range -5 to 15 (in steps of 0.1)
was conducted. The goal was to identify the combination that
minimized the MAE on a separate test measurement.

However, the results in Table II show that none of the
tested parameter combinations yielded significantly better per-
formance than the single context parameter. For RSRP and
SINR, the MAE even increased when using two parameters
instead of one.

TABLE II. MAE COMPARISON OF BASELINE, BEST SINGLE FEATURE, AND
BEST FEATURE COMBINATION

. . Best Best
Metric | Baseline Feature Combination
3.548
RSSI 3.684 3.536 Surface Pressure
Surface Pressure ..
Humidity
4.440
RSRP 4.635 4437 Surface Pressure
Surface Pressure ..
Humidity
2.063
.065
RSRQ | 2.158 206 Surface Pressure
Surface Pressure
Ground Fog
3.024
SINR 3.041 Ten? ) (;Zture Temperature
p Surface Pressure

This finding suggests that the influence of context param-
eters on mobile network measurements cannot be adequately
described by a simple linear superposition. Another explana-
tion may be the multicollinearity among weather variables,
which adds redundancy and inflates linear model variance.
For example, temperature and relative humidity are often
negatively correlated [24]. It is likely that complex interactions
or nonlinear relationships exist between the context features,
which are not captured by the linear model. As a result, more
advanced modeling techniques may be necessary to identify
and leverage synergistic effects between context features. The
current findings highlight the importance of targeted feature
selection and expose the limitations of linear modeling ap-
proaches in the analysis of context-sensitive measurement data.

The results of our research confirm that mobile network
quality is not only dependent on geographic location but is
also significantly influenced by contextual factors, such as
environmental conditions and temporal variation. However,
some limitations must be acknowledged. First, the current
analysis is based on a linear correlation approach, which limits
the ability to capture complex or nonlinear relationships be-
tween contextual features and mobile network metrics. Second,
robust prediction across a spatial route may require even more
measurement campaigns under diverse conditions.

VII. CONCLUSION AND FUTURE WORK

Future work will address these limitations by applying
advanced ML models capable of learning nonlinear relation-
ships and feature interactions (e.g., gradient boosting, random
forests, or neural networks). Such models could uncover
hidden patterns and provide more accurate predictions of
mobile network performance based on complex environmental
context. Further measurement campaigns are also planned to
expand the dataset in terms of spatial coverage and seasonal
variability. This will not only enhance model training but
also allow the inclusion of additional features, such as traf-
fic density or infrastructure obstacles (e.g., forests, bridges,
buildings). Finally, incorporating GNSS precision metrics may
further improve the contextual understanding of signal fluctu-
ations in dynamic, real-world vehicular environments.

This paper presents a comprehensive data collection and
analysis approach to investigate the environmental influences
on mobile network signal quality for automated driving.
Based on 38 measurement drives along a fixed route, it was
demonstrated that mobile signal quality varies even at identical
locations, depending on weather and temporal conditions.
Through an EDA, we showed that contextual parameters, such
as temperature, humidity, GNSS precision, and day of the
week correlate with key mobile network metrics. These find-
ings underscore the value of integrating environmental context
into signal prediction models. The insights from this study
lay the foundation for advanced modeling aimed at enhancing
the connectivity awareness of automated vehicles. Future work
will focus on the development of advanced models trained on
enriched datasets to improve pre-trip signal quality forecasting
and to support more reliable network connections for Level 4
vehicles.
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