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Abstract—The transportation sector, dominated by gas-powered
vehicles, is a major contributor to carbon dioxide emissions that
pose significant threats to both environmental and public health.
To address this issue, Electric Vehicles (EVs) have emerged as a
promising alternative aimed at achieving zero-carbon emissions.
However, EV adoption faces several challenges, including high
costs, insufficient charging infrastructure, range anxiety, and other
barriers. To promote EV adoption, authorities responsible for the
management of EVs have implemented various incentives, such as
tax reductions, credits, and support for charging infrastructure
programs. Despite these targeted management efforts, the adoption
of EVs remains a complex issue that requires extensive analysis to
understand the factors driving increases or decreases in adoption
rates. In this study, we employ a two-pronged approach to examine
EV adoption growth rates across counties in six U.S. states.
Our methodology integrates correlation network analysis and
statistical prediction-based analysis. The primary finding of these
analyzes highlights the critical role of geographical features and
practices of local management of EVs in influencing similar
patterns of EV adoption among counties. Additionally, we identify
two clusters exhibiting declines in EV adoption, underscoring the
need for further investigation into the management strategies and
underlying causes of these decreases.

Keywords- electric vehicle; charging stations; electric vehicle
adoption; graph modeling, correlation networks.

I. INTRODUCTION

The transportation sector is a major contributor to carbon
dioxide (CO2) emissions, which pose a significant threat to
life on Earth. For example, in the United States, 29% of CO2
emissions are caused by the transportation sector, which relies
heavily on greenhouse gases such as gasoline. Light vehicles
alone account for more than half of the transportation sector’s
emissions [1][2].

Electric Vehicles (EVs) are widely regarded as a replace-
ment for gasoline-powered vehicles. However, EV adoption
(represented by the number of EVs) faces several challenges,
including high costs, insufficient charging infrastructure, range
anxiety (i.e., the concern that the battery’s remaining charge
may not be sufficient to reach the next stop), and other barriers.
Consequently, significant managment efforts have been made
to transition the transportation sector toward electrification. For
instance, U.S. authorities manage EV adoption by offering
incentives such as tax reductions and credits for purchasing
EVs and supporting various programs to enhance charging
infrastructure.

Despite such management efforts to promote EV usage, the
EV adoption remains a complex issue that requires in-depth
investigation to provide insights into how adoption rates can be
increased based on the characteristics of targeted populations.

In this study, we focus on counties in the U.S. We conduct
our analysis at the county level rather than at the state or zip
code level because states are too broad, while zip codes are
too narrow to effectively capture differences in EV adoption
behavior across regions. Therefore, an essential first step in
addressing the complexity of EV adoption is to examine how
different counties across various states in the U.S. are working
to accelerate EV adoption.

We conducted two analyses as part of this effort: one using
Graph Theory and the other employing statistical prediction
analysis. Graph Theory has been applied in the EV domain
as a method to optimize the distribution of charging stations
[3]–[9]. On the other hand, statistical analyses have been used
in studies to investigate the impact of charging stations and
other factors on EV adoption [10]–[16]; however, these studies
typically focus on one to three cities.

In our Graph Theory analysis, we leveraged a correlation
network to build a network of counties and clustered them
based on their correlations of EV growth rates. This approach
identified several clusters of correlated counties. Counties
within the same cluster exhibited similar EV adoption behaviors,
opening avenues for future research to understand the reasons
behind these shared behaviors.

The second analysis involved building various prediction
models to forecast EV adoption in a county based on its
demographic features. The best-performing model was selected,
and further analyzed to identify significant features.

Our findings from the correlation network revealed that
counties within the same cluster often belong to the same state
and are geographically close to one another. This suggests
that local managements and neighboring areas may play a
significant role in EV adoption. Additionally, some clusters
showed declines in EV growth rates, prompting the need for
further studies to investigate the causes of these decreases.

In the statistical prediction-based analysis, the Gradient
Boosting model emerged as the best-performing prediction
model. Among the significant features identified in the best
prediction model, the geographical feature ’Federal Information
Processing Standards (FIPS)’ stood out, aligning with the
findings from the correlation network analysis. Hence, a local
management’s strategy for EV adoption may be influenced by
both the characteristics of their own region and the strategies
of neighboring regions in adopting EVs.

The remainder of this paper is organized as follows: Section
II discusses our approach for employing Graph Theory to build
the EV adoption correlation network and the development of
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TABLE I. NUMBER OF COMPLETED COUNTIES BY STATE

No. State No. of Counties

1 Colorado 20

2 Minnesota 3

3 Montana 2

4 New York 48

6 Texas 30

7 Virginia 34

8 Total 137

prediction models. Section III discusses the results, followed
by the conclusion and future work in Section IV.

II. METHODOLOGY

In this section, we describe the data collection process for
this study, the application of Graph Theory in our analysis,
and the development of prediction models.

A. Data Collection

1) EV Data: Atlas Hub [17] provides temporal data on
EV registrations at the zip code level for several states in the
U.S. For this study, we selected states that offered data from
2018 to 2023 and aggregated the data at the county level. We
chose this time range based on data availability, as increasing
the range results in a smaller number of states and counties,
while decreasing the range shortens the time series and may
negatively impact the analysis.

Consequently, we identified 137 counties from six states that
provided a complete 12 months of EV registration data for
each year within the study period. Table I presents the number
of counties per state.

This study includes all EVs registered in each state, regard-
less of their usage purpose, such as personal or commercial,
and whether they are light-duty or heavy-duty. The impact of
usage purpose on EV adoption is worth further investigation
in the future.

2) Charging Station Data: Charging station data is required
as a predictor in the statistical prediction models. We collected
the number of stations for each county of interest from the Al-
ternative Fueling Station Locator [18]. Using the establishment
dates for each station, we aggregated the number of stations
established annually in each county. For the analysis, we used
the number of stations as of 2022 to predict the number of
EVs in 2023 (as explained in II-C), incorporating a one-year
lag.

3) Demographic Data: This data was retrieved at the
county level from the official Census Bureau of the United
States [19]. The dataset, covering the period from 2017 to
2022, includes approximately 58 features categorized into
the following groups: Population, Age and Sex, Race and
Hispanic Origin, Population Characteristics, Housing, Families
Living Arrangements, Computer and Internet Use, Education,
Health, Economy, Transportation, Income Poverty, Business,
and Geography.

B. The Correlation Network Method

First, we computed the month-to-month growth rates for
each county in our study, resulting in 72 data points of growth
rates per county. These growth rates were calculated using the
equation:

Current Month− Previous Month

Previous Month

where Current Month means the cumulative number of EVs
until the current month, and Previous Month means the the
cumulative number of EVs until the previous month.

Next, since our data are not perfectly linear, we calculate
the Spearman correlation [20] between counties, resulting in a
137 × 137 correlation matrix. Using this matrix, we created a
correlation network where nodes represent counties and edges
represent correlations that exceed a specified threshold. After
testing several thresholds, we found that the optimal threshold
for our case study was 0.72, which yielded clusters of correlated
counties.

C. Statistical Prediction Analysis

Our second analysis leveraged the nature of our data, which
includes 137 counties across multiple U.S. states, to build
cross-sectional prediction models for estimating the number of
EVs at the county level for a specific year. Specifically, we
focused on predicting the number of EVs in 2023 using the
following approach:
1) The target variable was the number of EVs in 2023.
2) The features included demographic data from the Census

Bureau and the cumulative number of charging stations as
of 2022, reflecting a one-year effect of charging stations
on the number of EVs in 2023.

3) The statistical prediction models used included Linear
Regression, Random Forest, Gradient Boosting, Decision
Tree, Elastic Net, Lasso, and Ridge.

Finally, we identified the most significant features in the
best-performing prediction model.

III. RESULTS AND DISCUSSION

In this section, we present the outcomes of our analysis,
including the identification of clusters based on EV adoption
patterns and the evaluation of our prediction models. We
highlight the most significant features identified in our Gradient
Boosting model and discuss their implications.

A. Graph Theory Based Clustering

First, the number of counties meeting our correlation
threshold is 40 out of 137 counties. Among the correlations
between these counties, we identified four main clusters, as
shown in the correlation network in Figure. 1. Table III shows
the number of counties and their corresponding states for each
cluster in the resulting correlation network.

We observed that the correlated counties in each cluster
belong to a single state. For instance, the counties in clusters 1,
2, 3, and 4 are from Colorado, New York, Texas, and Minnesota,
respectively. Hence, our primary finding in this analysis is
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Figure 1. Correlation Network: Nodes represent counties, with labels indicating the county name appended with the state abbreviation, where colors distinguish
different states (e.g., Saratoga_NY represents Saratoga County in New York). Edges correspond to correlations exceeding 0.72.

Figure 2. Growth rates of counties in cluster 1 (Colorado). The X-axis represents 72 months, from January 2018 to December 2023.

TABLE II. THE SEVEN MOST SIGNFICANT FEATURES IN THE GRADIENT BOOSTING MODEL

Feature Group Importance

Nonminority-owned employer firms, Reference year 2017 Business 5.26e-01

Living in same house 1 year ago, percent of persons age 1 year+, 2018-2022 Families & Living Arrangements 2.02e-01

Station Counts Station data 4.96e-2

Total annual payroll Business 4.75e-2

Men-owned employer firms, Reference year 2017 Business 4.60e-2

Women-owned employer firms, Reference year 2017 Business 1.66e-2

FIPS Code Geography 1.05e-02
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Figure 3. Growth rates of counties in cluster 2 (New York). The X-axis represents 72 months, from January 2018 to December 2023.

Figure 4. Growth rates of counties in cluster 3 (Texas). The X-axis represents 72 months, from January 2018 to December 2023.

that correlated counties tend to cluster geographically within
individual states. Furthermore, beyond manual investigations,
these correlated counties often appear to be neighbors within
the same state. This suggests that the management strategies
of neighboring regions and the geographical characteristics of
counties may play a significant role in driving EV adoption.

Furthermore, we visualized the growth rates of the counties in
Colorado cluster, Texas cluster, and New York cluster in Figures.
2, 4, and 3, respectively (we ignored the Minnesota cluster since
it only contained three counties). These visualizations reveal
the strength of correlations within each cluster. Interestingly,
the growth rates in Colorado and New York tend to decline,
highlighting the need for further investigation to understand
the underlying causes in these counties. Such insights could
help local authorities manage and address this decline in EV
adoption more effectively.

TABLE III. THE FOUR CLUSTERS FOUND IN THE CORRELATION NETWORK,
HOW MANY COUNTIES IN EACH CLUSTER, AND THE STATES OF THESE

COUNTIES

Cluster Code No. of Counties States
Cluster 1 11 Colorado
Cluster 2 12 New York
Cluster 3 14 Texas
Cluster 4 3 Minnesota

TABLE IV. COMPARISON OF SEVERAL ML MODELS IN PREDICTING EV
ADOPTION

Model MSRE R-Squared
Linear Regression 101850027.5567 0.5377
Random Forest 69206289.8 0.6859
Gradient Boosting 58108466.13 0.7362
Decision Tree 141672157.654 0.357
Elastic Net 122403797.77 0.444
Lasso 98257697.207 0.554
Ridge 96591486.7415 0.5616
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B. Prediction models

We applied statistical prediction models to predict the number
of EVs at the county level. These models were evaluated
using metrics such as mean squared regression error (MSRE)
and adjusted R-squared. The models tested include Linear
Regression, Random Forest, Gradient Boosting, Decision
Tree, Elastic Net, Lasso, and Ridge Regression. Table IV
compares the performance of these models, with Gradient
Boosting emerging as the best performer. It achieved MSRE
of 58108466.13, and adjusted R-squared of 0.7362, explaining
73.62% of the variability in EV numbers.

Finally, we prioritized features based on their importance
in the Gradient Boosting model and identified the top seven
features, as shown in Table II. Among these, the FIPS feature
emerged as one of the most significant predictors of EV adop-
tion at the county level. The FIPS feature, being geographical
in nature, aligns with our findings in the correlation network,
where counties from the same state tend to cluster together.
This highlights the influence of local authorities and geographic
location on EV adoption behavior.

IV. CONCLUSION AND FUTURE DIRECTIONS

We presented a two-pronged analysis of EV adoption in
counties across six U.S. states. The first approach utilized a
correlation network from Graph Theory, where nodes represent
counties and edges indicate correlations in their EV growth
rates. We then clustered the counties based on these correlations.
The second approach involved developing various statistical
prediction models to forecast EV adoption in 2023 using
demographic and charging station data as predictors. The best-
performing model was selected and further analyzed to identify
significant features.

Our key finding is that the geographical characteristics of
counties, such as the state in which a county is located and its
neighboring counties, play a significant role in EV adoption.
This is evident in the correlation network, where counties within
the same state exhibit similar EV growth rate patterns, and in
the prediction model, where the FIPS feature (a geographical
identifier) emerges as one of the most significant predictors in
the best-performing model.

Additionally, we identified two clusters with declining EV
growth rates, highlighting the need for further investigation
into their underlying causes. Future research could enhance
prediction models by incorporating political, environmental,
and climatic factors while also expanding the dataset to cover
more counties across states. More specifically, an in-depth
exploration of how gas prices interact with EV adoption remains
a promising area of study. Lastly, distinguishing between
different types of EVs in future adoption analyses may yield
valuable insights.
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