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Abstract—The new advances in Vehicular Systems and Tech-
nologies have resulted in a sheer increase in the number of
connected vehicles. These connected vehicles use IoT technologies
to communicate operational signals with the OEMs, such as the
vehicle’s speed, torque, temperature, load, RPM, etc. These sig-
nals have provided an unprecedented opportunity to adaptively
monitor the status of each piece of the vehicle’s equipment and
discover any possible risk of failure before it happens. This
emerging field of study is called predictive maintenance (also
known as condition-based maintenance) and has recently received
much attention. In this paper, we apply Integrated Gradients
(IG), an XAI method until now primarily used on image data,
on datasets containing tabular and time-series data in the domain
of predictive maintenance of trucks’ turbochargers. We evaluate
how the results of IG differ, in these new settings, for various
types of models. In particular, we investigate how the change
of baseline can affect the outcome. Experimental results verify
that IG can be applied successfully to both sequenced and
non-sequenced data. Contrary to the opinion common in the
literature, the gradient baseline does not affect the results of IG
significantly, especially on models such as RNN, Long Short Term
Memory (LSTM), and GRU, where the data contains time series;
the effect is more visible for models like MLP with non-sequenced
data. To confirm these findings, and to understand them deeper,
we have also applied IG to SVM models, which gave the results
that the choice of gradient baseline has a significant impact on
the performance of SVM.

Index Terms—Explainable AI (XAI), Predictive Maintenance,
Integrated Gradients, Machine Learning.

I. INTRODUCTION

With the increase in popularity of artificial intelligence,
several challenges have been brought to light, for example, the
lack of transparency, debugging difficulty, lack of control, and
biased outcomes that may not represent the real world with its
principles and norms [1]. Even though AI is a powerful tool for
predictions, it does lack transparency. A significant reason for

this is the black-box structure that comes with deep learning
methods such as Deep Neural Networks (DNNs), where their
hidden layers are hard to visualize for human understanding.
In contrast to DNNs and other similarly complex AI models,
there are several simpler approaches that are more interpretable
and easier to visualize, for example, decision trees; however,
they often have limited accuracy [2]. The trade-off between
explainability and accuracy can therefore be a challenge.

Because of AI’s lack of transparency, it can be challenging
to trust the important life-changing decisions the algorithms
may take. The AI algorithms and methods give us an answer,
but not a why or a how to that answer. It is hard to trust an
algorithm without knowing why and how it made a specific
decision. As a result of these challenges, the subject of Ex-
plainable Artificial Intelligence (XAI) has arisen. Even though
the interest in XAI has increased in the last few years, the term
XAI was first coined by Van Lent et al. in 2004 [3]. However,
the concept of explainability in machine learning has existed
since the 1970s according to [2]. Today, one of the goals of
XAI is for humans to understand and trust the reason behind
the decisions of an AI model while the model maintains a
high prediction accuracy. The theory behind XAI can usually
be simplified and divided into four main principles: to justify,
to control, to improve, and to discover [2]. This is also a goal
for this paper: to explain the reasoning behind the resulting
predictions in an understandable way.

There are already several techniques to use for XAI of
different kinds, for example, scope-related and/or model-
related. Scope-related techniques are divided into two cate-
gories: global and local interpretability. Global interpretability
is when the technique follows the whole reasoning leading to
all of the predictions of the chosen model and understanding its
logic. However, global interpretability can be hard to achieve
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in practice, mainly when it comes to machine learning (ML)
models with a large number of parameters. Local interpretabil-
ity is easier to implement in reality, considering its main
focus is on explaining a single prediction and not several.
Local interpretability is also the primary approach for the
explainability of predictions made by deep neural networks
(DNNs) [2].

This paper focuses on explainable AI for Predictive Main-
tenance (PdM). PdM is a condition-driven preventive method
and is used to improve the productivity of a machine by
regularly monitoring the parts of the machine to avoid a run-
to-failure approach or to maintain a healthy machine [4]–[6].

We have performed several experiments on a real-world
turbocharger system dataset provided by Volvo, which is used
to predict the remaining useful life. The data is a time-series
dataset containing over 400 sensor values and on average
20 timestamps sampled biweekly [7]. To be able to more
accurately evaluate the impact of the gradient baseline of
integrated gradients (IG) in predictive maintenance, we resort
to simulated data. This is due to the fact for the chosen
simulated data the feature importance is known to the research
community and accordingly easier to evaluate and justify. The
first simulated dataset is the Turbofan Engine Degradation
Simulation Data Set (CMAPS), which is run-to-failure data
that could be used to predict remaining useful life. The
dataset contains time as well as sensors reading, which makes
the dataset similar to the Volvo dataset [8]. The Tennessee
Eastman Process Simulation dataset (ETEPS-CP) is used for
the second simulated dataset. The dataset contains information
about chemical plants, where some features are measurements
while some are manipulated values. This dataset is used as a
comparison since it is known which features are measurements
and should have more impact on the predictions. The target
for the dataset is set to be a classification problem since it is
known that the chemical plant runs normally until a fault is
induced[ [9], [10]]. The dataset contains 54 sensor values and
when transformed into time series it contains approximately
38000 timestamps.

A significant difficulty in implementing Integrated Gradients
is determining the gradient baseline, which plays an important
part in the results. When using images as inputs, it is most
common to use a black or white image as a gradient baseline,
but the choice of the gradient baseline is not as clear for tabular
data. The gradient baseline for tabular data varies depending
on the dataset type, and there is not much research on finding
the optimal gradient baseline for these types of datasets. We,
therefore, want to find a systematic way of defining the optimal
gradient baseline for integrated gradients with tabular data as
input. The meaning of the word baseline in this report refers
to the baseline used in integrated gradients, which is explained
in more detail in Section III.

This paper explores the following:
1) How the baseline for integrated gradients can be chosen

for tabular data in predictive maintenance.
2) How the gradient baseline affects the outcome of differ-

ent models.

II. RELATED WORK

There are different types of machine learning algorithms
and explainable AI that have been used for predictive mainte-
nance. Some algorithms and work that have been adapted to
predictive maintenance are Bagged trees ensemble.

In the work done by [11], they have used bagged tree
ensemble, decision trees and normalized feature deviations to
get the model more interpretative. The result of their work
concluded that when using bagged trees ensemble, the decision
trees as an explanation got a higher quality but did not
generate a complete explanation on all test cases as proposed
to normalized feature deviations, which got a lower quality of
explanation but generated consistent explanations.

In addition to the work described above, the paper [12]
evaluates the previous work as well as added LIME to interpret
the result. In the paper, they used Random Under Sampling
(RUS) and boosted trees ensemble, which successfully and
correctly classifies all failures as a comparison where the
bagged trees ensemble did not.

Other machine learning algorithms used for predictive main-
tenance and anomaly detection are Principal Component Anal-
ysis (PCA), null-space, One-Class Support Vector Machines
(OC-SVM), Extreme Learning Machine (ELM), and 2 Dimen-
sional Convolutional-based Neural Network Autoencoder (2D-
CNN-AE), which are compared in [13]. The paper compares
the different approaches by using the F1-score, where the best
approaches are concluded to be the null space and 2D-CNN-
AE. Due to the capability of 2D-CNN-AE to detect even small
failures, it is outperforming the other methods.

To handle time-series data in prediction, a combination
of Convolutional Neural Network (CNN) and Long Short
Term Memory (LSTM) is proposed in paper [14]. The paper
predicts the remaining lifetime of aircraft engines by com-
paring Convolutional Neural Network (CNN), LSTM, and a
combination of the two algorithms, CLSTM, where the result
is that the combination of the two algorithms provides the
highest accuracy rate. Another work that handles both CNN
and LSTM together is a fault diagnostic system on mechanical
data from a gearbox [15]. The result of the algorithm proposed
is 97% accuracy, where the algorithm is able to detect which
fault is detected.

III. INTEGRATED GRADIENTS

Integrated Gradients (IG) is a technique for model in-
terpretability used to visualize the relationship between the
prediction of the model and the input features, often when
the input is an image. Similar to SHAP, IG is also inspired
by game theory, especially the Aumann-Shapley value, which
SHAP is based on [16]. Below, the way to compute IG is
shown as well as in eq. 1:

1) The first step is to identify the input and output. In this
study, the input is the sequential data whereas the last
layer of the model is the output.

2) To be able to identify features that are important to the
prediction of the neural network, the second step is to
choose a gradient baseline as an input.
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3) The third step is then to interpolate the chosen gradient
baseline for a number of steps. The number of steps
is a hyperparameter and represents the number of steps
needed for the given input in the gradient approximation,
where the recommended number is between 20-1000
steps,

4) After the gradient baseline has been interpolated they
are preprocessed, and then a forward pass is done.

5) Lastly, the gradients for the interpolated data points are
obtained and then by using the trapezoidal rule, the
gradients integral is approximated.

IGapprox
i (x) :== (xi−x

′

i)×
m∑

k=1

∂F (x
′
+ k

m × (x− x
′
))

∂xi
× 1

m

(1)
Where:

[xi] = Input Data
[x

′

i] = Gradient Baseline
[m] = Number of Steps in the Integral Approximation

There are several advantages of integral gradients. An
example is sensitivity, which means that it will give a non-
zero attribution every time there is a difference in one feature
between input and gradient baseline but also a difference in
predictions. Another example is the invariance of implementa-
tion, where two models’ feature attributions will be the same
if they both are functionally equivalent, without regard to the
network architecture [17].

IV. METHODOLOGY

A. Setup

Before the experiments are performed, the data needs to
be prepared, which is done differently among the data sets.
For the CMAPS dataset, standard scaling and hyperparameter
tuning are used. For the ETEPS-CP dataset, standard scaling
was used to preprocess the data. For the Volvo dataset, more
preparations need to be taken, where the first step is to handle
the NAN values by imputation with the mean values of each
column. It is important to note that Mean Imputation (MI)
can lead to biased estimates and predictions, especially if the
number of NAN values is significant. Before the imputation,
the dataset only contained approximately 2% of NAN values,
and therefore we decided that MI is a suitable type of
imputation in this dataset.

After MI, the columns containing objects or strings are
label-encoded so that the model used only has float or integer
as input values. Most of the ML models do not take strings
as inputs, which is why label encoding is needed.

Lastly, the data needs to be scaled and normalized when
employing deep learning models. For this, MinMaxScaler and
standardScaler from the scikit-learn library are used.

B. Machine Learning Methods

To be able to evaluate the XAI methods, as well as the
gradient baselines, we first need to implement reliable models.
The models used in the experiments are Recurrent Neural

Network (RNN), Long short-term memory (LSTM), Gated
Recurrent Unit (GRU), and Multilayer Perceptrons (MLP).
Support Vector-Machine (SVM) is also implemented to af-
firm the results we receive from the experiments on MLP,
which can be seen in section V. These regressor models are
evaluated using Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE). For the classification models, the
measurements will be on accuracy as well as Area Under the
Receiver Operating Characteristic Curve (ROC AUC) where it
should present better than randomly choosing a class, which is
better than 0.5. The models perform better than the baseline,
which means that for the regression part, the mean absolute
error is smaller than the mean value for the test sets. For the
classification, the accuracy is above 50%, and the ROC AUC
is over 0.5.

C. Systematic Choice of Baseline

The choice of a gradient baseline has a large impact on
the result of Integrated Gradients, and it is therefore crucial to
have an appropriate gradient baseline. In figure 1 we provide a
systematic approach to the choice of gradient baseline, which
is explained in more detail in the following paragraphs.

Fig. 1: A systematic approach on how to select gradient baseline.

For the Volvo dataset and the simulated datasets, the gradi-
ent baselines used are a gradient baseline with the Initial State
(IS), the Mean Initial State (MIS), and the Initial State with
Gaussian Noise (ISN). For datasets without an initial state,
gradient baselines consisting of either only zeros or max values
can be used to resemble an image. Our approach of using a
gradient baseline with only zeros simulates a white image,
and a gradient baseline with the max value for all features
simulates a black image.

An aggregated version of integrated gradients has been used
to get an overall view of the attributions. The aggregated
model of integrated gradients is an iterative type of integrated
gradients, where all attributions for all data points are iterated.
The reason for using an aggregated integrated gradient is to
get an average of all feature importance.

For all datasets, the aggregated version of integrated gradi-
ents was iterated over all data points for the different gradient
baselines. The different baselines used are the initial state of
the data, the initial state with gaussian noise as well as the
mean value of all the states. The initial state is used as a
ground truth of the datasets, where the different variations of
the ground truth are used to explore the result when using
different gradient baselines.

Lastly, the results between the different gradient baselines
are plotted and compared, where the gradient baseline with
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the most logical results (in accordance with domain experts)
is the most favorable choice of baseline.

V. RESULTS

A. Gradient Baseline

The main experiment is to find the optimal gradient base-
lines for sequential and tabular datasets. We use the two
simulated benchmark datasets (ETEPS-CP and CMAPS) to
test gradient baselines similar to the ones used on the Volvo
dataset.

1) Simulated Data - CMAPS: Figure 2 shows the features
that appeared as the top three features with the most impor-
tance according to IG for all of the RNN models. In Figure
2, we can see that sensor 11 plays a significant role in the
prediction of all models, as it almost always is the third most
important feature. We can also see that sensor 4 is clearly an
important feature for all of the models, as it rather often placed
as the second most important feature according to IG.

Fig. 2: Feature occurrence for top three features with the most
importance in percentage according to the results of IG. These results
are for the models LSTM, RNN, GRU on the CMAPS dataset, and
depend on the model.

Overall, all RNN models (RNN, LSTM, and GRU) seem
to give similar results when using integrated gradients, where
sensors 11, 4, 6, and 9 have the most significant impact on the
prediction. Looking at Figure 3 with the MLP model, we also
receive sensors 11 and 4 at the top. Sensors 6 and 9, however,
can only be seen towards the far right of the graph, occurring
under 5% as the top 3 features.

Looking at Figure 3, the results between the gradient
baselines of the MLP model also vary more than between the
RNN models. Here, we can see that the gradient baselines pay
a different amount of attention to a larger variety of sensors
than the RNN models do in Figure 2. We can also see this
in Figures 4, 5 and 6, where how large of an impact that the
different gradient baselines have on each model.

In the case of the CMAP dataset, it could be that the MLP
model is sensitive toward specific sensors, such as sensors 6
and 9 (as explained above). This sensitivity could lead to the
baselines playing a much more significant role in the results
of IG.

Another reason the results between the baselines differ
much more for the MLP model than for the RNN models

is that the baseline may not have as much significance when
using models specified toward sequenced data. We, therefore,
theorize that when using a model such as RNN where the data
is sequenced, the baseline does not affect the outcome of IG
to a large extent, as long as the baseline is a reasonable one
(for example, the initial state). For models where the input is
not sequenced, the gradient baseline affects the results of IG
more.

To endorse this theory, we applied IG to a Support Vector
Machine (SVM) model where the input is not sequenced. In
Figure 7, we can see that the baselines play a significant role
in the outcome of IG, similar to the results of MLP.

2) Simulated Data - ETEPS-CP: The results for the MLP
model can be seen in Figure 10. The initial state is almost
identical to the initial state with noise. However, the mean
of the initial states gives completely different results. The
similarities between the initial state and the initial state with
noise could be that adding noise to the baseline does not
change the baseline significantly or that these features are
highly correlated to the prediction. When comparing to Figure
10, it is seen that the initial state and initial state with noise is
similar, which also was seen in the table. Moreover, the mean
initial state pays attention to a broader number of features,
with a smaller number of features occurring more than others.
The conclusion to draw from the dataset with an MLP model is
that the initial state and initial state with noise perform better
since fewer features occur in the top for around 50% of all
data points.

In Figure 10, it is shown that the initial state and initial
state with noise pay attention to the same features while the
mean initial state pays attention to multiple features.As seen
in Figure 10, the gradient baseline MIS is not shown in the
figure. This is because the values from MIS are giving feature
values near zero for the MLP model. When looking at the
other gradient baselines, it is clear that there is no difference
between the values for the feature importance.

The results for the GRU model can be seen in Figure 13.
All three baselines are similar to each other in both placement
and occurrence.In Figure 13, the values for the top features
are similar for every gradient baseline. Compared to the MLP-
model, Figure 10, which has more features occurring at the
top, the GRU model gives fewer features with no difference
between baselines.

The results for the LSTM model can be seen in Figure
12. However, the different features do not appear in the same
placement or occurrence. In Figure 12, the values for the top
features is similar for every gradient baseline as for the GRU
model, Figure 13.

The results for the RNN model can be seen in Figure 11. As
seen in Figure 11, the different baselines are almost identical
to each other. Further looking into both GRU in Figure 13 and
LSTM in Figure 12, the same pattern reoccurs, where all the
different baselines give almost identical results for the same
model and baselines.

However, comparing the different time-series models seen
in Figure 8, the models pay attention to the same features but
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Fig. 3: Feature occurrences for top three features with the highest
importance (in percentage), according to the results of IG, for the
four different types of networks. These results are for the CMAP
dataset for MLP model, and depend on the baselines.

Fig. 4: Feature occurrences for top three features with the highest
importance (in percentage), according to the results of IG, for the
four different types of networks. These results are for the CMAP
dataset for RNN model, and depend on the baselines.

Fig. 5: Feature occurrences for top three features with the highest
importance (in percentage), according to the results of IG, for the
four different types of networks. These results are for the CMAP
dataset for LSTM model, and depend on the baselines.

Fig. 6: Feature occurrences for top three features with the highest
importance (in percentage), according to the results of IG, for the
four different types of networks. These results are for the CMAP
dataset for GRU model, and depend on the baselines.

Fig. 7: Feature occurrence for top three features with most importance
in percentage according to the results of IG. These results are for the
model SVM on the CMAP dataset, and depend on the models.

with different magnitudes.

Fig. 8: Feature occurrence for top three features with most importance
in percentage for IG. These results are for the models RNN, GRU
and LSTM on the ETEPS-CP dataset.

The result for IG on the sequential data is once again tested
as in V-A1, where similar results are presented regarding
sequential data. To see if the theory that the gradient baseline
affects the results of IG on non-sequential models more than
sequential models also applies to the ETEPS-CP dataset, we
apply SVM classification. The result of the SVM Classification

can be seen in Figure 12 which strengthens the belief that the
non-sequential model is more affected by the gradient baseline.

Fig. 9: Feature occurrence for top three features with the most
importance in percentage according to the results of IG. These results
are for the SVM Classification model on the ETEPS-CP dataset, with
three different baselines.

In Figure 8, the feature occurrence from IG for LSTM,
GRU, and RNN models can be seen. From Figure 8, it is
shown how the different models give similar results to the IG.

The overall conclusion for the ETEPS-CP dataset is that the
choice of baselines does not seem to affect the explanation for
the time-series models. Moreover, when comparing the MLP
to time-series, the gradient baseline significantly impacts the
explanations.

3) Volvo Dataset: The results for the MLP model can be
seen in Figure 14.

In Figure 14 the occurrence of the features can be seen. As
with the simulated datasets, MLP pays attention to multiple
features depending on the gradient baseline. Looking into the
values in Figure 14, it can be seen that the initial state and
initial state with noise are similar. However, the mean initial
state pays attention to a broader number of features.

Evaluating Figure 14, shows that they both often occur and
have a large impact on the prediction. For the MLP model,
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Fig. 10: Feature occurrence for top three features with the most
importance in percentage according to the results of IG. These results
are for the ETEPS-CP dataset for MLP model, and depend on the
baselines.

Fig. 11: Feature occurrence for top three features with the most
importance in percentage according to the results of IG. These results
are for the ETEPS-CP dataset for RNN model, and depend on the
baselines.

Fig. 12: Feature occurrence for top three features with the most
importance in percentage according to the results of IG. These results
are for the ETEPS-CP dataset for LSTM model, and depend on the
baselines.

Fig. 13: Feature occurrence for top three features with the most
importance in percentage according to the results of IG. These results
are for the ETEPS-CP dataset for GRU model, and depend on the
baselines.

the initial state is similar to the initial state with noise, while
the mean initial state has a broader view of features.

The MLP-model, as seen in Figure 14, shows a broad
spectrum of features where only the mean initial state has
features that occur in the top three at more than 50% of the
dataset. Some similarities can be seen between the initial state
and the initial state with noise. However, the other datasets
are not identical, which could result from having a more
complex dataset. IG is also very sensitive to noise, leading
to the difference between the IG for different datasets.

When comparing the baselines for the RNN model, as seen
in Figure 15, the different baselines do not differ as much as
for the MLP. However, the different baselines do not seem
to have a huge impact on important features. By looking
into GRU, Figure 17 as well as LSTM, Figure 16 the same
patterns are occurring. For all time-series data there are not
any significant features that occur in the top three.

The overall conclusions that can be drawn from this are
how sensitive IG is towards the noise and that the baselines
do not significantly impact time-series data, which is shown
in sections V-A1 and V-A2. Some features occur in multiple
gradient baselines; however, no feature occurs in all three
different baselines for the MLP-model.

The results for the RNN model can be seen in Figure 15.
IG gradient baseline initial state and initial state with noise
are similar. In contrast, the mean initial state pays attention
to more features, which means that the theory of gradient
baseline can be applied when the dataset is robust and does
not have noise since IG is sensitive to noise.

The results for the GRU model can be seen in Figure 17.
Evaluating Figure 17, it can be seen that for all gradient

baselines the model pays attention to multiple features depend-

ing on the baseline. Since the data contains noise, the result
of the variance of the gradient baselines can be disregarded
for the outliers. However, when looking closer at the figures,
some of the features occur in all baselines which strengthen
the belief that the gradient baseline for sequenced data with a
small amount of noise result in similar conclusions.

The results for the LSTM model can be seen in Figure 16.
When looking at Figure 16, it can be seen that the data

contains noise due to some features appearing in the top ten
for only one gradient baseline.

VI. CONCLUSIONS & FUTURE WORK

In this paper, we have dived deeper into the XAI method
integrated gradients to justify the predictive maintenance re-
sults for a dataset provided by Volvo. To our knowledge, IG is
a method commonly used for data of images and not the time-
series data that the Volvo dataset contains. The lack of work
done on time-series data for IG can be because the choice of
gradient baseline can be seen as complex. Therefore, we have
focused the paper on how to find a good baseline and how
the baseline affects the result depending on the deep learning
model and the type of data. We have also investigated other
types of XAI methods to either justify or compare the results
of our experiments.

We observed that integrated gradients are a good method to
interpret the behavior of deep learning models in predictive
maintenance, especially for time series data. However, we
still believe that the choice of gradient baseline continuous
to be seen as difficult. As stated before, we theorize that the
gradient baseline’s effect on the results of integrated gradients
decreases for RNN models with sequential data and increases
on models like MLP with non-sequential data. However,

34Copyright (c) IARIA, 2023.     ISBN:  ISBNFILL

VEHICULAR 2023 : The Twelfth International Conference on Advances in Vehicular Systems, Technologies and Applications



Fig. 14: Feature occurrence for top three features with the most
importance in percentage according to the results of IG. These results
are for the Volvo dataset for MLP model, and depend on the baselines.

Fig. 15: Feature occurrence for top three features with the most
importance in percentage according to the results of IG. These results
are for the Volvo dataset for RNN model, and depend on the baselines.

Fig. 16: Feature occurrence for top three features with the most
importance in percentage according to the results of IG. These results
are for the Volvo dataset for LSTM model, and depend on the
baselines.

Fig. 17: Feature occurrence for top three features with the most 
importance in percentage according to the results of IG. These results 
are for the Volvo dataset for GRU model, and depend on the baselines.

integrated gradients are sensitive to noise, and therefore, the
results can vary depending on the dataset. Even a dataset with
noise can get a similar result as the theory depending on
the model. To strengthen this theory, we applied integrated
gradients with three different gradient baselines on SVR and
SVM models with non-sequential data, which gave similar
results as it did for the MLP model.

To answer the questions 1. ”How can the baseline for inte-
grated gradients be chosen for tabular data in predictive main-
tenance?” and 2. ”How does the baseline affect the outcome of
different models?”, we have applied IG on several datasets and
models, with different gradient baselines. However, since IG
is a local XAI method, we implemented an aggregated version
of the method to get a larger view of how the model makes
its predictions. This makes it easier to see how the features
impact the whole model, and not only one prediction, which
is very useful in predictive maintenance. We can see from the
experiments and conclusions that the gradient baseline has a
more significant impact on the results of IG on tabular and
non-sequential data on models such as MLP and SVM. In
contrast, the impact of the gradient baselines decreases for
sequential models such as RNN, LSTM, and GRU. These
results could imply that the IG method is more suited for
sequential data. Furthermore, we observe that applying IG to
a deep learning model provides knowledge on the importance
of the features differently depending on how robust the data
is when using data with time series. With noisy data, such as
the Volvo dataset, the IG has a more challenging time making
clear conclusions. This is not anything new, considering we
know that IG is sensitive to noise; however, it is now more
evident that this also applies to data with time series and not
only for images.

We would have liked to discuss the results with domain
experts, which is something we will bring for future work. We

would also like to see a combination of integrated gradients
with another gradient-based method as a future work within
the area of XAI and predictive maintenance for time-series
data.
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