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Abstract—In this paper, we propose and implement a novel 

method for 3D object detection in autonomous driving by 

applying federated mechanism to a monocular camera-based 

network. Our approach has several advantages over traditional 

3D object detection methods that rely on LiDAR or other 

sensors, as it is more cost-effective and can be more easily 

integrated into existing autonomous driving systems. We use a 

federated learning framework, which allows us to train the 

model on a large amount of data covering a variety of scenarios 

without having to share the raw data with a central server. This 

allows us to reduce transmission bandwidth requirements and 

preserve the privacy of the data contributors, while still 

achieving high accuracy in 3D object detection. In our 

experiments, we evaluate our method on a variety of challenging 

real-world driving scenarios and show that it is able to 

accurately detect objects in 3D from a monocular camera view. 

Our results demonstrate the effectiveness of our approach and 

show its potential for use in autonomous driving systems. 

Keywords-monocular, 3D object detection, federated learning, 

autonomous driving. 

I.  INTRODUCTION  

Safety remains the primary concern when people talk 
about autonomous driving. Autonomous vehicles are 
empowered by various Deep Learning (DL) models (i.e., 
perception, tracking, prediction, etc.), but these models are 
trained with either simulated data or controlled driving 
scenarios, with most autonomous vehicles still being tested in 
enclosed facility environments. It is, therefore, difficult to 
evaluate how they will perform in real-world driving 
scenarios, especially when the controlled environment is 
coupled with numerous unpredictable corners, emergencies, 
and occlusions. Human drivers gain experience over time, 
first watching the parents or others driving, then through 
driving schools and, finally, driving and improving their skills 
every year. Autonomous vehicles should do the same. Besides 
training deep learning models that enable autonomous driving 
in labs, autonomous vehicles should continuously learn from 
different driving scenarios of their own or others experience. 
Federated Learning (FL) is a promising approach that may 
address this problem. Instead of having autonomous vehicles 
to upload their perception data to the cloud to perform 
centralized training, as shown in Figure 1(a), FL allows 
autonomous vehicles to first train their local models with local 
collected data and share with each other their own experience 
through their DL models instead of sharing collected data, as 

shown in Figure 1(b). Recent works investigate if autonomous 
driving could benefit from FL. Some of them [1][2] are 
designing system architectures to ensure the efficiency of 
when and which vehicles should participate in the federation 
process. Other approaches are trying to address the problem 
that data collected locally are non-Independent and Identically 
Distributed (non-IID) [3][4]. Although existing methods 
demonstrate that FL could improve the accuracy in object 
detection, they have only been evaluated with 2D object 
detection [5] or 3D object detection using LiDAR [6]. 
However, it is not sufficient to use these two types of sensor 
data when evaluating methods for autonomous driving. More 
specifically, 2D object detection cannot output depth 
information or is hard to predict the distance of target objects, 
while LiDAR is expensive and is not commonly supported by 
autonomous vehicles, with the industry recently following a 
vision-based trend for autonomous driving [7][8]. In this 
paper, we investigate and verify that the performance of 3D 
object detection could benefit from leveraging federated 
learning with 3D image data collected by monocular cameras.  

 
(a) Centralized Monocular Approach 

 
(b) Federated Monocular Approach 

Figure 1.  (a) Centralized approach which upload the local images 
from all vehicles to the central server, then train and release the global 

model, (b) Federated approach, in which each vehicle trains their own 

model with the local data, then the local models will be uploaded, 

aggreated and released. 
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The rest of the paper is organized as follows. Section II 
gives an overview of related work, while Section III presents 
our proposed approach. In Section IV, we evaluate and 
analyze the results. Section V concludes the paper. 

II. OVERVIEW OF RELATED WORK 

A. 3D Object Detection in Autonomous Driving 

Object detection is a popular research topic in autonomous 
driving. Different approaches are proposed leveraging 
different kinds of sensors. For example, in [9] the RGB image 
captured by camera and point cloud obtained by LiDAR are 
fused together for 3D object detection. Evaluation results 
show that the detection accuracy increases since data from 
different modalities provide complimentary features (i.e., 
images provide semantic information while point cloud 
provides depth information to construct 3D surroundings). In 
[10], data obtained from LiDAR are used for 3D object 
detection. This approach considers long-range interactions 
among detection candidates. In [11], RGB-D images captured 
by monocular camera are used for 3D object detection. This 
vision-based approach is simpler, cost-efficient, and more 
practical compared to multi-modality-based approaches.  

B. Federated Learning in Autonomous Driving 

Federated learning is a machine learning approach that 
allows multiple participants to train a shared model without 
sharing their raw data. This is particularly useful in the context 
of autonomous driving, where data from individual vehicles 
may be sensitive or proprietary. With federated learning, each 
vehicle can train a local model on its own data, and then share 
the model updates with a central server. The server can then 
aggregate the updates and use them to improve a shared global 
model, without ever having access to the raw data. This 
approach has several potential benefits for autonomous 
driving. For example, it allows vehicles to learn from each 
other without sharing sensitive data, and can enable the 

development of more robust and accurate models by 
leveraging data from a larger and more diverse set of vehicles 
[1]-[6]. Additionally, federated learning can enable real-time 
updates to the global model, allowing vehicles to quickly 
adapt to changing conditions and improve their performance 
over time. Overall, federated learning has the potential to play 
a significant role in the development of autonomous driving 
systems. 

III. OUR PROPOSED METHOD 

In this paper, we propose a federated monocular 3D object 
detection approach for autonomous driving. The overall 
architecture of our method is illustrated in Figure 2. The left 
part of the figure shows the distributed federated learning 
mechanism, while the right part shows the local monocular 
model on each vehicle, which is trained to make predictions 
for 3D object detection. 

A. Federated Learning-based Collaboration 

The federated learning mechanism adopted in our 
approach includes the following 3 steps. 1) First, each vehicle 
trains a local monocular model on its own. This allows it to 
learn from its own data without sharing it with other vehicles 
or a central server. 2) After training the local models, each 
vehicle shares the model updates (e.g., weights, biases) with 
the central server. The server can then aggregate all these 
updates and use them to improve the global model. 3) Once 
the global model has been updated, the central server 
distributes the updated model to all the vehicles. Each vehicle 
can then use the updated global model to improve its own 
local model and continue the training process. This 3-step 
process can be repeated as necessary to continue improving 
the performance of the global model and enable vehicles to 
learn from each other. Over time, the global model should 
become more accurate and robust, allowing vehicles to make 
better decisions and improve their individual performance in 
real world conditions. Note that, during the federated training 

 

Figure 2.  Overall architecture of the federated monocular 3D object detection approach. 
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process, the images captured on each vehicle are not sent to 
the central server, keeping possible sensitive information on 
the local vehicle, thus eliminating privacy concern issues. 

B. Local Monocular 3D Object Detection Model 

We employ a fully convolutional one-stage monocular 3D 
object detection model for detecting objects in 3D from a 
single camera view [11]. This is an object detection approach 
that uses a Convolutional Neural Network (CNN) to predict 
the 3D bounding boxes and class probabilities of objects in an 
image. 

One key advantage of this approach is that it is fully 
convolutional, meaning that the CNN can operate on input 
images of any size, and produce output predictions for each 
pixel in the image. This allows the model to be used on images 
of varying resolutions, without the need for manual resizing 
or cropping. Additionally, this approach is a one-stage 
method, meaning that it uses a single neural network to make 
all of its predictions. This makes the model more efficient and 
faster to run, as it does not require multiple stages of 
processing or separate networks for different tasks. 

In the local monocular 3D object detection model, the 
ResNet101 [12] is employed as the feature extractor and the 
Feature Pyramid Network (FPN) [13] as the neck. The 
ResNet101 network is a well-known and widely used 
architecture for image classification and object detection 
tasks. It is a deep CNN that is composed of multiple 
convolutional layers, residual blocks, and pooling layers, and 
is designed to be highly efficient and accurate. By using 
ResNet101 as the feature extractor in our model, we can take 
advantage of its proven performance and efficiency, and 
extract high-quality features from the input images. The FPN 
is a network architecture that is commonly used in object 
detection tasks to improve the model's ability to detect objects 
at different scales. It is composed of a pyramid of feature 
maps, with each level of the pyramid representing features at 
a different scale. By using FPN as the neck in our model, we 
can improve the model's ability to detect objects such as 
pedestrians and cars at different distances from the camera. 

The FPN neck is followed by a shared head, shown in 
Figure 3. Using a shared head to output the class of objects 
and 3D bounding boxes in a fully convolutional one-stage 

monocular 3D object detection model can have several 
benefits. First, a shared head allows the model to make 
predictions for both the class of objects and the 3D bounding 
box in a single pass, which can make the model more efficient 
and faster to run. This is particularly useful in real-time 
applications such as autonomous driving, where it is important 
to make predictions quickly and accurately. Second, a shared 
head can improve the model's overall performance, as it 
allows the CNN to learn features that are relevant for both 
tasks simultaneously. This not only can lead to more accurate 
predictions but also to better generalization to new data. 
Finally, a shared head can simplify the model's architecture, 
making it easier to train and optimize. This can save time and 
resources, and can make the model more portable and easier 
to integrate into different applications. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

We used the nuScenes dataset to evaluate the performance 
of our federated monocular 3D object detection method. The 
nuScenes dataset is a large-scale dataset of annotated images 
and point clouds captured in real-world driving scenarios [14]. 
It contains a rich variety of data, including different 
environments, weather conditions, and vehicle types, making 
it an ideal testbed for evaluating our method. To perform our 
evaluation, we split the nuScenes dataset into 10 parts, each 
representing data from a different vehicle.  

We then train our local monocular models on each of these 
vehicle datasets (10% of the whole dataset), both with and 
without federated learning. This allows us to compare the 
performance of our method with and without federated 
learning. We train all the models for 12 epochs at a batch size 
of 4 on a NVIDIA Tesla V100L graphic card. The learning 
rate is set to 5e-3 and is halved in both the 8th and 11th epoch. 
For our approach, the trained model weights from the 10 
vehicles are aggregated in an average manner in every epoch. 

After training our federated monocular 3D object 
detection model, we use the mean Average Precision (mAP) 
and NuScenes Detection Score (NDS) metrics to evaluate its 
performance. These metrics are commonly used to evaluate 
object detection algorithms, and allow us to compare our 
method to other state-of-the-art approaches. The mAP metric 
measures the average precision of the model across all classes 
and all thresholds. It is calculated by averaging the precision 
of the model at different recall levels, and is a useful metric 
for comparing the overall performance of different object 
detection models. The NDS metric is specific to the nuScenes 
dataset, and measures the overall performance of the model in 
terms of both precision and recall. It is calculated as the 
harmonic mean of the average precision and average recall of 
the model, and is a useful metric for evaluating object 
detection models on the nuScenes dataset. 

Figure 4 (a) shows the performance comparison of our 
method with and without federated learning on the nuScenes 
dataset in NDS against epochs, while Figure 4 (b) shows the 
same comparison in mAP vs epochs. We observe that the NDS 
of our method is significantly higher when using federated 
learning, reaching 41.18%. This demonstrates that our method 
is able to improve both the precision and recall of its 
predictions, resulting in more complete and accurate 

 

Figure 3.  Illustration of the shared head in the local monocular 3D 

object detection model. 
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detections of objects in the scene. Similarly, we observe that 
mAP of our method is 70% higher when using federated 
learning, indicating that our method is able to make more 
accurate predictions when using data from multiple vehicles, 
as opposed to training only on local data from a single vehicle. 
The performance is summarized in Table I. 

Overall, our evaluation results show that the adopted 
federated learning mechanism is able to significantly improve 
the prediction performance of our federated monocular 3D 
object detection approach, leading to higher mAP and NDS 
scores compared to training only with local data. This 
demonstrates the effectiveness of our method and its potential 
for use in autonomous driving systems.  

V. CONCLUSION 

In conclusion, this paper has presented a novel method for 
3D object detection in autonomous driving using only a 
monocular camera. Our approach uses federated learning to 

train a deep neural network that is able to detect objects in 3D 
from a single camera view, and has several advantages over 
traditional methods that rely on LiDAR or other sensors. We 
have evaluated our method on a variety of challenging real-
world driving scenarios and showed that it is able to accurately 
detect objects in 3D from a monocular camera view. These 
results demonstrate the effectiveness of our approach and 
suggest its potential for use in autonomous driving systems. 
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Figure 4.  The validation results comparison at each training epoch on 

two metrics, (a) NDS, (b) mAP 
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TABLE I.  COMPARISON OF NDS AND MAP METRICS BETWEEN 

THE BASELINE AND OUR PROPOSED FEDERATED APPROACH 

Method Backbone Data Ratio NDS mAP 

Baseline ResNet101 10% 0.187 0.110 

Ours ResNet101 10% 
0.264 

(+41.18%) 

0.187 

(+70%) 
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