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Abstract—Advanced Driver Assistance Systems (ADAS) are
becoming an integral part of modern road vehicles. Their
deployment is demonstrating their contribution to safety and
efficiency. However, as the interaction between ADAS and the
driver increases, other issues are emerging that affect their
performance. The driving task is influenced by a range of
factors, including the driver’s preferences and behavior that
is conditioned by the operating environment comprising the
road conditions, environmental conditions, and complex social
interactions with other road users and pedestrians, etc. Driving
differs also between and within cultures. In this paper, we
review the current approaches in the literature that demonstrate
an adaptation to the driver behavior but also the work on social
interactions on the road. We then discuss issues that remain
open and need to be confronted when designing a cross-cultural
intelligent vehicle.

Index Terms—intelligent vehicles, culture, context-based sys-
tem, safety, personalized ADAS, social robotics.

I. INTRODUCTION

Vehicles and driving are intimately connected to our in-
dividual and collective sense of self - who we are, what we
believe in, what are our values, and what we aspire to achieve,
as well as how we interact with others [1]. Currently, there is
a rapid deployment of Advanced Driver Assistance Systems
(ADAS) in the new generation of road vehicles as a means to
enhance safety, riding comfort, and energy consumption. Their
deployment is contributing to improvements in these areas,
with modern legislation and vehicle qualification evaluations
such as the EuroNcap [2]. However, the interaction between
ADAS systems and drivers is becoming very symbiotic, which
raises several issues.

Intelligent vehicles are mainly developed based on data
collected, developments and field trials, and research con-

ducted in North America, certain countries in Asia and Europe,
where driving conditions, safety, etc. are very different from
what occurs elsewhere [3]. It is to be noted that in low- and
middle-income countries a growing phenomenon is occurring,
road accidents are reaching almost epidemic proportions, and
road safety has became a major concern. The World Health
Organization [4] reported that with an average rate of 27.5
deaths per 100,000 population, the risk of a road traffic death
is more than three times higher in low-income countries than in
high-income countries, where the average rate is 8.3 deaths per
100,000 population, see Fig. 2. Furthermore, these countries
have also witnessed a major increase in the number of road
vehicles. In these countries, the road infrastructure, traffic
conditions, driver training, and respect to the traffic code are
substantially different [5].

The conditions and road networks where ADAS func-
tions are deployed differ very much. Recently, research has
increasingly focused on reducing bias in the development
of intelligent vehicles by addressing the intricacies raised
by cultural and social differences [3], [6]. In a developing
country such as India, Fig. 1, in order to respond to common
challenges on the road, traffic conditions, local regulations, and
unwitting rules are rapidly emerging. For example, in heavy
traffic, respect to the rule that should keep all cars within
the boundaries of lane markings disappears, that is more cars
than the number of lanes will fit across standard roads. Unlike
countries within the European Union, there will be more non-
verbal cues and verbal communication to create awareness and
for drivers to find a consensus related to safety and efficiency.
Another example would be crossing outside crosswalks that is
a common behavior of vulnerable road users; this is contrary
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Fig. 1. Sample of traffic conditions in India [8]–[10].

to what occurs in most Nordic countries [7]–[10].

The differences in road networks and operating conditions
are more notable when deploying the Society of Automotive
Engineers (SAE) Level 4 vehicles (e.g., robot-taxis); that is,
the machine should understand its situation before making
any decision; however, situations will vary from country to
country, from rural land to dense urban areas, even within
the same country. Most field trials of robot-taxis have been
so far confined to limited areas, and scaling up has proved
more difficult than expected. Therefore, the manner of how
all road users will behave is a major constraint to full-scale
deployment.

Intelligent vehicles comprising ADAS functions or different
levels of automation will not achieve their promise if drivers
and the environment rounding do not accept and use them in
a sustainable manner [11].

Designing a cross-cultural intelligent vehicle is one of the
challenging problems faced by researchers in the automotive
sector but not yet seriously addressed. Through this paper, we
tackle the following questions:

• What do we mean by a culture with respect to driving?
What are the main cultural differences in driving behav-
iors?

• What do we mean by a cross-cultural adaptive intelligent
vehicle? What are the cues to pay attention to on the
road?

The remainder of this paper is organized as follows. In
the following section, Section II, we define culture, introduce
its dimensions in the context of driving, and we emphasize
the bias in the development of intelligent vehicles to date.
Following that, in Section III, we discuss personalization in
Advanced Driver Assistance Systems and drivers models in the
literature. In Section IV, we will review the state of the art in
social intelligent vehicles and discuss where attention is turned
to on the road. Section V discusses what a context-based
intelligent vehicle would consider and highlights challenges
and open issues in the design of such a system. Conclusion
and future work are drawn in the last Section VI.

Fig. 2. Rates of road traffic death per 100,000 population between 2013 and
2016 by the World Health Organization regions [4].

II. CULTURE’S IMPACT ON DRIVING TASK AND ROAD
TRAFFIC

The driving task is not only what is measured objectively
on a road, nor only the professional conceptualization of the
traffic system. It is also the “world view” that lay people have
of the traffic system [12].

It is in the human being as a mirror of one’s personality,
one’s expectations and risk assessment, also one’s culture. In
this context, How could intelligent vehicles gain their place in
society and be accepted by the driver? The intelligent vehicle
is involved in more than just trajectory optimization, obstacle
avoidance, and driver cognition testing. To become a part
of the surroundings and to incorporate the driving culture, it
needs also to be merged with the driver and represent him/her.

Before diving into the role of culture in the driving task
and why it is primordial to include the context in the design
of intelligent vehicles, we first define the concept of culture.

In “What is Culture?” by Edgar Schein [13], culture is
defined as a pattern of shared assumptions (knowledge and
values) that have served a group well in the past, that is
learned to new members and that can be adapted to external
circumstances. Culture is essentially a social indoctrination
rule that people learn as they try to fit into a particular group.

Culture can also be defined through its characteristics. It has
collective representations - vocabularies, symbols, and codes
[14], [15]. More often on some roads and less on others,
drivers, to find a consensus, tend to communicate verbally
their decisions and understand common non-verbal cues, while
in Europe for example, we notice a certain individualism as
rules are respected and traffic is structured. The work in [16]
and [17] explicitly addresses the need for an external HMI for
autonomous vehicles to communicate with other vehicles and
pedestrians. Culture has social norms and values. All these
elements structure the thinking and acting of the individuals
within the same group to respond to the survival challenges of
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their environment by learning through reward and punishment,
by conforming to social norms, laws, and regulations, by
accepting persuasive messages, anticipating others’ behavior,
and compensating for the errors of other traffic participants.

As illustrated in Section III and concluded in [1], the
ADAS systems can compensate for the perceptual constraints
that affect driver performance when responding to roadway
demands, but less when overriding a driver’s attitudes, goals,
and priorities. Driver behavior, then, may ultimately have the
most influence on traffic safety. Research on driver behavior
has focused almost entirely on individual differences (e.g.,
cautious, aggressive), distraction, or cognitive level as contrib-
utors to unsafe driving behavior. However, in [18], the authors
investigate the relationship between the three factors of the
Driver Behavior Questionnaire (DBQ) (errors, aggressive vio-
lations, ordinary violations) reflecting culture differences and
the difference in the rate of fatalities in six countries (Finland,
Great Britain, Greece, Iran, The Netherlands, and Turkey).
Findings demonstrated that the addition of driving styles,
especially aggressive violations and errors not only improved
the models for predicting the number of traffic accidents but
also mediated the relationship between culture/country and
accidents. The results show that 84.6% of traffic accidents are
caused by vehicle violations, which is the crucial factor within
all traffic accidents [15]. In the road safety annual report in
2019 [19], it is emphasized that traffic-related mortality rates
differ widely between countries, e.g., the risk of being killed in
a road crash is six times higher in Argentina than in Norway.
Although traffic car accidents are a major problem everywhere,
significant differences between countries are encountered. The
results emphasize the critical role that culture plays in driving
safety. The authors in [20] discuss road accidents related to the
interactions among drivers instead of single attitudes. A recent
review [21] discusses the factors influencing driving behavior
and the causes of road accidents.

Moreover, culture provides the subtext to driver behavior by
shaping the beliefs, values, and ideas that people bring to the
driver’s seat. It highlights the influence of societal expectations
and practices among drivers from the same culture. For
example, “honking” clearly reflects aggression in Scandinavia,
whereas in Southern Europe and Iran, drivers use their horn
frequently to give various messages, such as thanking other
drivers. Furthermore, in Turkey, the speed of traffic flow on
many roads is much higher than the speed limit. Consequently,
drivers do not see their speeding as a serious offense as the
Western Europeans might do. Thus, it is important to consider
that traffic culture or context determines the criteria but also
both formal and informal rules for acceptable driving style, and
thus, develop nation-specific items for reflecting informal rules
that reflect the cultural behavior in each country/environment
[18]. Understanding the context is what will give the intelligent
vehicle fluidity, motion involved in social exchanges, the
socio-acceptance and it is what is going to increase the driving
safety by anticipating other drivers behavior and making up
for errors made by other traffic participants.

Transferring the ADAS technology as designed by auto-

motive manufacturers from one culture to another can be
problematic. In [22] and [23], research was conducted to
indicate different cultural areas that need to be focused on
when developing ADAS for China. One of the major problems
in China is the complex traffic environment with congestion,
motorized three-wheeled vehicles, and poor lane markings.
It has been reported that ADAS such as Forward or Lateral
Collision Warnings or Adaptive Cruise Control can be just
annoying in such crowded environments where people obey
authority norms less than social ones. Consequently, an ADAS
that is of great value to the drivers of one country may be of
less value than to those in another if not adapted.

The intelligent vehicles are integrated into hybrid roads
where drivers tend to possess a model of their environment,
allowing them to predict the intentions of road and non-road
users, and thus, their safe driving is predetermined based on
meeting the expectations of others. The intelligent vehicle
should possess this set of knowledge, skills, and competencies
to recognize, understand, and adapt to social and cultural
differences.

III. PERSONALIZED DRIVING ASSISTANCE SYSTEMS:
STATE OF THE ART

Due to the greater market penetration, the field of advanced
driver assistance systems has grown to include aid functions
that are increasingly complex but designed for the average
driver or all drivers [24]. To assure the best user experience
throughout such a wide range of use conditions and usage
patterns, personalization techniques have been created. Person-
alized ADAS are developed by learning driver models from
the observation of driver behavior and then parameterize the
vehicle controllers to meet the personal driving style. In this
section, we review recent work on the driver models and the
personalized ADAS.

A. Driver modelling

Since their pioneering theoretical study of Automobile-
driving, human driving behavior, by Gibson and Crooks in
1938, scholars have contributed to driver behavior mimic and
driver psychology modeling [25].

The models proposed went from simplistic mathematical
models to represent the correlation between the state metrics
of the host vehicle (acceleration, relative speed, distance head-
way, etc.) [26]–[28] to more sophisticated models reflecting
the internal mechanisms of the decision making that drivers
must hold in their minds. The authors in [29] model the driver
behavior in the ACT-R cognitive architecture. In [30], J.A.
Michon discusses the driver behavior model types; behavioral
(Mechanistic, adaptive-control, etc.) and psychological (mo-
tivational, cognitive, etc.). The authors of [31] review two
hundreds models on driver behavior modeling.

Each driver is individually influenced by the social envi-
ronment consisting of other road users, general social norms,
traffic-related rules of conduct, and their representations [32].
The models proposed in the literature either suggest that a
group of similar characteristics, or stereotypes, exist about a
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set of users [33], [34] or they are tailored to meet personal
driving styles. However, driving style is supposed to vary
in the degree to which it is shaped by both intrinsic (e.g.,
age, sex, experience, cognitive biases, and emotions [35]) and
extrinsic (e.g., social context) factors [18], which are rarely
considered. In the same sense, driver behavior modeling as
proposed in the literature lacks a connection between models
of individual driver behavior and the (presumably) resultant
population behavior as reflected in traffic characteristics, in-
formal rules conducted, or the accidentology level in the
environment, which greatly influence the driving skills, the
other main component of human factors in driving [36], [37].
[38] models the driver behavior along with demonstrating how
the contextual information affects its performance.

B. Personalized ADAS

In this part, we are interested in defining the personalization
of the ADAS as studied in the literature, revealing the key
human/environment features considered in this personalization
and presenting the process behind including those features
in the loop. We have considered functions representing the
three types of driver efforts: strategic (route planning), tactical
(Adaptive Cruise Control [46], [47] – Lane Change Assis-
tance), and operational (Forward Collision Warning) in the aim
of identifying which features are relevant to each type/function
and coming across models that have an eye in and out of the
vehicle. A recent survey [48] and a review of personalization in
ADAS and autonomous vehicles [49] concentrate on methods
that combine individual driver models and controllers for
designing personalized ADAS.

Table I summarizes some of the papers reviewed. In the per-
sonalization of the ADAS, we can distinguish between group-
based and individual-based approaches to personalization. In
the former case, drivers are assigned to one of a small number
of representative driving styles (e.g., aggressive, cautious, etc.).
In the latter case, the ADAS strategy tries to best reproduce
the driving style of an individual driver [50]. In the table,
we make also the point on the driver’s characteristics relevant
for the function, the environmental dynamic information, etc.
We also refer to the methods used for Driver/context behavior
recognition and the models used for Adapting. Finally, the
personalization as demonstrated today, lacks a continuous
learning of the human preferences or proposes that on demand
with a recalibration of the process of personalization, we
distinguish between the two approaches in the table.

We have presented some ADAS functions referring to self-
driving capabilities (Adaptive Cruise Control), maneuver assis-
tance (Lane Change Assistance), and monitoring capabilities
(Lane Keeping Assistance) to show how they share some
common features and differ on others to approach the driver
modeling.

The use of neural networks or fuzzy logic (with capabilities
of approximation, generalization, and self-learning) is suitable
for modeling driver behavior with nonlinear characteristics.
The research showed that artificial intelligence could offer
some potential advantages in driver behavior analysis and

modeling. However, the current studies present some limita-
tions listed below:

• The driving style and the driver behavior are studied
mostly from the control viewpoint, e,g., mimicking the
acceleration/deceleration profiles [41]. Although, this op-
eration is the result of different traffic situations, intra-
individual differences, etc.

• Current customized personalized systems are mainly im-
plemented through manually adjusting warning trigger
thresholds for example, which would be less feasible for
overall drivers as a certain domain expertise is required
to set personal thresholds accurately and it becomes a
tedious task as the number of ADAS is continuously
increasing.

• Personalization techniques exploit individual drivers’ data
to build personalized models. Such an approach could
learn personal behaviors but requires impractical large-
scale individual data collection or the data are mostly
based on simulation and not close to reality.

• We did not come across papers studying different func-
tions under the same framework and this is problematic
as the ADAS functions are increasingly added.

• The personalization of the ADAS to meet the driver’s
preferences and to mimic his behavior is bottom-up and
when it is top-down, it is not validated.

• Artificial intelligence has proven its potential in modeling
driver behavior. However, it presents some disadvantages
when coming to the model stability, the computational
load required and the complexity of it.

• Two approaches exist for the trajectory modeling:
stochastic (Hidden Markov Models, Neural Networks,
Fuzzy logic, etc.) and kinematic [42]. the stochastic
modeling has proven its capability to approach different
driver behaviors, it is flexible and accurate but lacks the
physical meaning contrary to the kinematic modeling.

Despite the aforementioned efforts, it is missing the inclu-
sion of the driver skills which are related to the environment
from which he gains experience and constructs this toolkit to
respond to the road needs. The objective of a driver model
is to represent the process by which a driver transforms some
perceived information about the driving situation into an action
on the vehicle’s actuators (steering wheel, pedals). We believe
that regenerating this behavior is not mimicking the brake
and acceleration profiles but understanding the why of these
maneuvers as the driving task is about the driver’s behavior
toward a certain situation.

IV. SOCIAL AUTONOMOUS VEHICLES

Research on social robotics and in particular social au-
tonomous vehicles is demonstrating the importance that play
the social and the cultural dimensions when it comes to
situation understanding [51], decision-making, and motion
planning [52]. [53], [54] reveal the gaps in the development
of autonomous vehicles navigating in uncertain environments
and the lack of sufficiently detailed understanding of how
humans interact in such conditions and how that understanding
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TABLE I
REVIEW OF PERSONALIZED ADVANCED DRIVER ASSISTANCE SYSTEMS.

Function Approach Driver/context in the loop Model-used Driver/Context behavior
recognition

Methods for adapt-
ing

The learning
rate

Reference

Adaptive
cruise control

Group-based
average, maximum and minimum of relative speed,
time headway and jerk learning-

based
Self-organizing feature map
neural network with K-
means then PNN classifier

MPC as an upper-
level Controller, and
feedforward and PID
for lower-level con-
troller

On demand [39]

Adaptive
cruise control

Individual-based

Demographics: Age, sex, income level, educational level - loca-
tion of the vehicle: distance to the lead vehicle, vehicle speed,
longitudinal acceleration, road density, road type, weather -
driver’s behavior

learning-
based

Regression model – deci-
sion tree model

- - [40]

Adaptive
cruise control

Individual-based

Motion states of the leading vehicle and the host vehicle (vehicle
speed, acceleration, accelerator pedal/throttle depression, brake
pressure, relative distance/speed to lead vehicle, and Global
Positioning System information)

Model-based Self-learning algorithm
based on RLS to identify
the model parameters

a linear driver be-
havior model with a
lower PID controller

Continuous
learning

[41]

Lane change
assistance

Individual-based

Max/average absolute value of steering-wheel angle, average
steering-wheel angular velocity, standard deviation of steering-
wheel angle, max/average absolute value of lateral acceleration,
maximum absolute value of slip angle, maximum absolute value
of yaw angle, maximum value of yaw rate, average value of yaw
rate, and standard deviation of yaw rate

Rule-based
and learning-
based

Fuzzy c-means algorithm
for classification then back-
propagation (BP) neural
network optimized by a
particle swarm optimization
(PSO) algorithm

a sinusoidal lane-
change model

Continuous
learning

[42]

Forward Col-
lision Warn-
ing

Individual-based Time headway, Time to collision, longitudinal speed of ego
vehicle

Model-based recursive least squares
method for warning
threshold

Adaptive algorithm Continuous
learning

[43]

Forward Col-
lision Warn-
ing

Individual-based
Gas pedal position, range with neighboring vehicles, turn signal,
yaw rate, longitudinal acceleration, velocity. . . learning-

based
Neural network – Support
Vector Machine

Adaptive algorithm Continuous
learning

[44]

Route
planning

Group-based
The vehicle’s absolute motion, the vehicle’s relative motion to
surrounding vehicles and/or objects, Distance, Time, accelera-
tion profile. . .

Model-based HMM models – classifiers –
fuzzy-based classifier - . . .

Continuous
learning

[45]

might be quantified in computer models. Considering the
lane change maneuver, scholars are formulating the problem
as a non-cooperative game [55] when considering the social
behaviors and the intentions of the surrounding vehicles [56],
[57] while in [58], the authors are imitating the stimulus-
based selective attention mechanism of human vision systems
to recognize the lane changing intention of the surrounding
vehicles. Based on a higher level of cognition, human drivers
have this capability to pay attention to relevant information on
the road related to their actual maneuvers, the authors in [59]
review the modeling of where and when the drivers look on
the road. Additionally, human drivers consider the stochastic
variability in their interaction with vehicles/pedestrians, [60]
is addressing this problematic at uncontrolled crosswalks.
Learning to drive has emerged as an efficient alternative to
hand-crafted rules, especially when considering interactive
behaviors [61]–[66]. To tackle the social, ethnographic, and
legal dilemmas in the urban environment, [67] offers insights
into a new automated driving strategy by introducing a general
learning-based framework based on maximum entropy inverse

reinforcement learning and the Gaussian process. In [68], the
authors introduced the learning by watching others framework
enabling the vehicle to learn new skills in a new situation
or geographic location, which finds its inspiration in the
driver capabilities to fit in new environments and cultures
by watching demonstrations from other drivers. To fit into an
environment and to gain this social invisibility [69], drivers are
learning from countless experiences by possessing this device
of permanent memory, inferring, and experiential updating
in addition to their event-related mechanism. The authors of
[70] are discussing how to implement a cognitive computing
framework for autonomous driving with selective attention
and event-driven mechanism. A direct measure of performance
for autonomous vehicles is their level of similarity to human
drivers, and emulating human driver behavior just adds more
challenges to countless ones.

V. DISCUSSION

In order for an intelligent vehicle to gain in intelligence,
performance, robustness, and acceptability, we posit that it
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should take a culturally and socially cognizant path. We define
cultural awareness as the capacity to infer such favorable
actions based on knowledge about the driver and others’
intent and behavior, of understanding road and non-road users’
interactions and complying with mutually-accepted rules but
also compensating for the uncertainties and non-stationarities,
thus, formulating their social insights.

A generalized framework of an intelligent vehicle having
an eye in and out could be a step up. It should consider the
following features, which we regroup in three sub-contexts:

1) The vehicle with automation
2) Interaction with the operating environment: all the ele-

ments constituting the operating environment are linked,
see Fig. 3. People from the same culture develop dis-
tinct patterns of emotions, norms (informal rules, local
perception of the law, etc.), and behaviors to deal with
the survival challenges of their common environment
(infrastructure, environmental conditions, etc.) figuring
out a structure in the unstructured environment. The
system should be able to reason about these behaviors,
predict the intentions of traffic participants, and com-
pensate for their errors, thus increasing safety and socio-
acceptability.

3) Interaction with the driver: the personalization in the
sense”to suit the automated task to the preferences and
needs of the driver,” we believe that it should consider
the driver behavior that is understood as the intentional
actions issued from the driver’s inner mental thought and
unintentional characteristics [71], but while answering
the in which situation question. The driving task for an
intelligent vehicle still needs the driver to remain active
and engaged to take back the control [72], considering
that the driver cognitive level is primordial for the
system.

To achieve such a cross-cultural intelligent system, we are
now facing the challenge of defining the value of society
across different scenarios and translating the set of ethical rules
into a language that the vehicle can understand independently
from any human intervention. We need then to propose a
cognitive architecture capable of being socially and culturally
aware and in the sense of being able to abstract the situa-
tional information on the road, to retrieve what is relevant
for its application. The framework should emulate the way
expert drivers understand human interactions on the road and
comply with mutually-accepted rules learned from countless
experiences, we can do so by enabling the intelligent vehicle
to memorize, reason, experiential update its knowledge, and
extend the generalized knowledge learned to new scenes
that were previously unknown and gain in adaptability and
dynamic reconfiguration to face the environment changes and
different Human/vehicles interactions [73]. We recognize that
the challenges are enormous, adding to what was mentioned,
the simplicity of most car simulators, especially the lack of
realism when addressing the social and cultural aspects.

Fig. 3. Driver-vehicle-environmement in the loop.

VI. CONCLUSION AND FUTURE WORK

In this paper, we highlight the importance of considering
seriously one of the most challenging problems facing the
intelligent vehicle today, which is the cross-culture adaptabil-
ity. We have taken a first step towards that by defining the
culture with regards to driving and emphasizing the bias in the
development of intelligent vehicles to date. We have provided
a review of the current state of the art for personalization
in advanced driver assistance systems and social autonomous
driving. Our concern was the driver models used for per-
sonalization. The main objective of ADAS customization is
to increase the system usability and, as a result, the driver
acceptance. This is particularly crucial in applications safety-
related such as Forward Collision Warning, where alarms and
their timing should be tailored to the needs and skills of the
driver to prevent the system underuse. The state of the art
for social autonomous vehicles was then reviewed, including
some studies that analyze interactions with other road and non-
road users as well as anthropological and legal dilemmas in an
urban environment. Finally, we discuss what a cross-culture
adaptive intelligent vehicle could be considered. It should
possess a model of its environment, allowing is to predict the
intentions of road and non-road users, and thus, its safe driving
is predetermined based on meeting the expectations of others.
The intelligent vehicle should possess this set of knowledge,
skills, and competencies to recognize, understand, and adapt to
social and cultural differences. The challenges are enormous;
defining the value of society across different scenarios and
proposing a cognitive-based architecture for the system would
be our next step.
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