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Abstract—Traffic flow along signalized arterials is a dynamic, 

nonlinear, and stochastic system in which the relationship 

between the signal timing plan and traffic delays is too 

complicated to be modeled using first principles approaches. 

With advances in sensing technologies, various data sets are 

available, allowing effective data-driven modeling to be 

conducted for further controller design. In this keynote paper, 

a Hybrid Neural Network (HNN) is proposed to model the 

multiple intersections along a signalized arterial in Honolulu, in 

which both modeling structure and the relevant training 

algorithms have been developed. HNN modeling using real data 

has shown a set of promising results, with dynamic model 

performance assessed using model error Probability Density 

Function (PDF). A simple HNN model can easily be used as a 

starting point for an artificial intelligence–based closed-loop 

control design that controls the signal timing to reduce the 

traffic delay.  

Keywords - signalized intersections; modeling; neural 

networks; performance analysis; signalized arterials simulation. 

I. INTRODUCTION 

The nature of the traffic flow system in signalized arterials 
can be represented as a dynamic and stochastic system [2] – 
[5] for which the inputs are the traffic demand and signal 
timing at each intersection, and the outputs are the traffic flow 
status (e.g., travel delays, queue length, and traffic flow speed) 
and energy consumed when vehicles pass through the arterial. 
Since the traffic demand and traffic flows (number of vehicles 
and their compositions) are random, the system is stochastic 
in nature. This is a Multi-Input and Multi-Output (MIMO) 
stochastic dynamic system. If it is in the continuous-time 
domain, its solution is obtained using partial differential 
equations induced from the well-known Ito stochastic 
differential equations with random boundary conditions. The 
solution for such a complicated model is quite difficult to 
obtain, and it frequently must be solved using high-
performance computing, which generally cannot be used for 
real-time control design and implementation. Therefore, data-

driven modeling methods—in particular, those widely used in 
Artificial Intelligence (AI) technology—are regarded as 
effective ways to establish simple dynamic models between 
signal control and traffic flows so that system performance 
can be controlled and optimized in real time. The advantage 
of using AI-based models is that these models can be 
adaptively learned using evolving real-time data. As a result, 
the use of neural network modeling has been a subject of study 
for many years.             
 

Indeed, advances in wireless-driven vehicular 
communications have greatly facilitated modeling exercises, 
and emerging cooperative intelligent transportation control 
system operations have enabled many smart traffic control 
and management applications to improve traffic safety and 
operational efficiency [1]. Vehicle-to-Everything (V2X) 
communications allow vehicles to communicate with other 
vehicles (vehicle-to-vehicle); infrastructure (vehicle-to-
infrastructure); pedestrians, bicyclists, and devices (vehicle-
to-device); and internet through cellular networks and/or 
dedicated short-range communication technologies. The 
information exchanges supported by V2X communication 
systems can be used to effectively balance traffic demand 
distribution among traffic networks and facilitate traffic flow 
progression. With these new data available in a real-time 
format, it is now possible to further enhance AI-based 
modeling, and ultimately control, to optimally coordinate 
signal controls for traffic flow systems along arterials.  
 

In addition, for stochastic modeling of traffic flow systems, 
one of the important criteria is the reliability of and confidence 
in the obtained models for control and optimization. Thus, not 
only do the models need to be built using real-time input and 
output data, but also there is a need to ensure that the model 
so obtained is reliable and has a high level of confidence 
interval for users. In this context, the use of modeling error 
entropy, or its Probability Density Function (PDF), should be 
considered as the modeling objective function to be 
minimized. Ideally, a narrowly distributed modeling error 
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PDF centered at zero mean would indicate that the models 
obtained have high reliability and confidence intervals. This 
is exactly its novelty compared with existing AI-based models 
for transportation systems, in which only sum-squares-error 
has been used to judge whether the obtained model is good or 
not. The method of using modeling error entropy and PDF to 
perform online adaptive learning was established several 
years ago [1], and this approach can be applied in combination 
with the existing AI modeling tools to establish reliable and 
robust AI-based models for the traffic flow system.             

 
Based upon the above analysis, it can be seen that the 

following challenges remain in terms of AI-based modeling 
and control for signalized intersections along arterials and the 
urban grid road network:  

 

• Although the theory of AI-based modeling and control for 
signal control is maturing, the field testing and closed-loop 
control implementation for a large number of intersections 
is still limited because of the insufficient real-time data for 
fast feedback control realization.  

• The existing AI-based modeling for transportation systems 
cannot yet capture the nonlinear and dynamic stochastic 
nature with high reliability and robustness. 

• Guaranteed control performance for energy minimization 
is still lacking.  
 

In this effort, neural network modeling was studied for 
signalized intersections along an arterial in Honolulu using the 
real-time data from the system. A Hybrid Neural Network 
(HNN) model, which is a subset of neural networks, was 
constructed, and its learning algorithm was established. A 
comprehensive assessment of the modeling effort was 
conducted using least squares and gradient approaches.  

 
The rest of this paper is organized as follows. Section II 

summarized the literature review on traffic signal control 
problems with neural network models. Section III describes 
the system structure and the forms of dynamic models that 
represent the relationship between the traffic delays and signal 
timing plans. Section IV presents the linear modeling using 
recursive least squares to show the nonlinearities of the system. 
Section V addresses the formulation of HNN and defines its 
inputs and outputs together with the formulation of training 
algorithms for both linear and nonlinear parts. The modeling 
results and modeling performance analysis for an arterial with 
seven signalized intersections are also discussed in this section. 
The conclusions and acknowledgement close the article. 

II. RELATED WORK                  

Traffic system modeling aims to establish linear or 
nonlinear relationships between traffic states—e.g., traffic 
volume, travel time (travel delay), and travel speed—given 
spatiotemporal traffic information. Most studies leverage a 
single data source. For example, the objective is to predict 
near-term traffic flow given historical traffic flow data. Other 
studies using multiple data sources need to capture dominant 
dependencies between different features. For example, Ke et 

al. [6] developed a model to predict lane-based traffic speed 
based on speed and traffic volume data. Transportation system 
modeling techniques can be divided into two categories: non-
learning based and learning based methods [7]. For example, 
classical non-learning-based methods include autoregressive 
integrated moving average [8] and K-nearest neighbors [9]. 
These models are usually more interpretable but cannot 
capture the spatial correlations of traffic states. Moreover, 
they are not appropriate for nonstationary data. Traditional 
learning-based methods include regression [10], Kalman 
filter [11], and support vector machine [12]. These methods 
are generally more effective than non-learning-based models. 
However, they usually fail to capture the nonlinear 
spatiotemporal correlations of traffic data. Nowadays, we 
have more data sources and increasing computational power, 
so more advanced learning-based methods, e.g., different 
types of neural networks, have shown promising performance. 
The most commonly used neural networks for transportation 
system modeling include Artificial Neural Networks (ANN) 
[13], Long Short-Term Memory (LSTM) [14], Convolutional 
Neural Networks (CNNs) [6], and Graph-based Neural 
Networks (GNN) [15]. Compared with ANNs, CNNs and 
LSTMs have advantages in capturing nonlinear spatial and 
temporal dependencies of traffic features. However, their 
limitations become obvious when the transportation network 
is very large. GNNs are proved to be powerful tools for large-
scale traffic signal control systems. GNNs can extract features 
from graph-structured data and predict future traffic states in 
an efficient and effective manner.  

 
With the established dynamic stochastic models for 

transportation system, the next step is to develop real-time 
optimal control strategies to reduce travel delay and energy 
consumptions. Conventional traffic control methods for 
multiple intersections in a network, such as SCOOT [16], 
GreenWave [17], SOTL [18], Max-pressure [19], and SCATS 
[20], usually assumed a simplified traffic conditions with 
complete traffic information available, e.g., pre-defined traffic 
flows and driving behaviors. Hence, they are not applicable 
for real-world traffic control for multiple intersections.   

 
For a large-scale traffic system, it is usually a difficult task 

to predict the effects of modifying signal timing parameters 
due to the nonlinear and stochastic nature in a traffic network. 
Comparing to the conventional signal control methods, Neural 
Network (NN)-based signal control methods can address the 
challenges on traffic system modeling and traffic signal 
optimization.  The studies from [21][22] tested a NN-based 
controller for single intersections. Both studies applied the 
concept of fuzzy logic and their NNs are five-layer type, e.g., 
input, fuzzification, inference, consequence, and 
defuzzification. They used number of vehicles passing the 
intersection and number of vehicles waiting in the queues as 
inputs and the outputs are the traffic signal plans. In [22], 
reinforcement learning and gradient descent method were 
applied to update the shape of fuzzy membership functions by 
computing the weights of the NN. The advantages of NN 
models are more obvious in a larger network.  Srinivasan et al. 
[23] developed a distributed unsupervised traffic responsive 
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signal control method for traffic signal control and 
coordination. Each agent is a local traffic controller for one 
intersection. They integrated the simultaneous perturbation 
stochastic approximation theorem in fuzzy NN. Stochastic 
approximation is a commonly used technique in stochastic 
optimization for online wight updates in NN. It is usually 
preferable when the gradient of the loss function is not readily 
available. The proposed model was tested in a traffic network 
with 25 intersection in Singapore. The results demonstrated 
that the model could be used to obtain the controller that 
reduces significant amount of travel delay. Choy and 
Srinivasan [24] further improved the study [23] by developing 
a HNN model with multistage online learning process to solve 
the distributed traffic signal control problem with an infinite 
horizon. It is challenging to calculate the analytical optimal 
solution for the distributed control problems. This study 
applied an approximation technique, receding-horizon 
limited-memory, for to approximate optimal solution. Each 
local signal controller was made up of a five-layered fuzzy 
NN that aimed at computing the optimal signal plans. 
Experiment results suggested that HNN model was effective 
and efficient in solving the large-scale traffic signal control 
problem in a distributed control manner. There are several 
limitations in NN-based traffic signal control algorithms. First, 
as mentioned by [22], NN learning is not efficient under 
complex continuous system because of lack of stochastic 
exploration. Second, learning process is usually too long to be 
implemented in real time in the field. 

 
Recently, Reinforcement Learning (RL) models have been 

studied extensively and made impressive progress in traffic 
control domains. RL can learn from observed data and adapt 
to real-time changes of traffic demands. RL is a trail-and-error 
learning process without making any unrealistic assumptions 
on traffic system modeling. There are four key components in 
Decentralized Reinforcement Learning (DRL): agent, 
environment, state, and reward. In transportation system, 
environment is often defined as traffic conditions and state is 
a feature representation of the environment. DRL will have an 
agent for each intersection to learn a model and predict 
whether current signal phase should be changed or not. The 
decision will be implemented in the environment and the 
reward (travel delay, vehicle throughput, or energy efficiency) 
is sent back to the agent to help it improve the decision-
making process. The key challenges in RL are (i) how to 
describe the environment quantitively, (ii) how to model the 
relationships between decision (signal timings) and reward 
(traffic states) due to its exponentially expanding complexities; 
and (iii) how to implement coordination and information 
sharing between multiple agents/intersections. There are 
generally two categories of RL: model-free and model-based 
RL. To successively apply model-based approach, the 
transition function (predict next state given current action) 
must be known. However, it is usually difficult to obtain it in 
real-world. Model-free RL directly estimate the reward given 
state-action pairs and select the optimal action accordingly 
[32]. Hence, model-free RL, e.g., Q-learning and SARSA, are 
commonly used in traffic signal control problems. For model-
free RL, exploration is required to gain knowledge by 

sampling. Model-free RL can be categorized as value-based 
and policy-based methods [33]. Value-based RL learning the 
value function (or a generalization called the Q-function) and 
policy-based methods directly learn the optimal policy or 
approximate optimal policy.  Comparing to the traditional 
reinforcement learning approach whose states need to be 
discretized and low-dimensional, DRL can handle high 
dimensional input data, e.g., image, and learn functions to 
extract useful information and approximate policy from input 
states. By combining deep learning with reinforcement 
learning, it addresses the “curse of dimensionality” issue, 
helps to improve the model scalability, and reduce learning 
time.  Li et al. [25] set up a Deep Neural Network (DNN) to 
learn the Q-function of DRL from the sampled traffic states 
(inputs) and the corresponding traffic conditions (outputs). 
The objective is formulated as a Q-function which aims to 
maximize the future rewards given the current state and action. 
Instead of relying on a conventional Q-table, they used the 
deep Stacked Autoencoders (SAE) neural network to estimate 
Q-function. Comparing to the conventional reinforcement 
learning approaches, their DRL can reduce delay by 14% and 
largely reduce number of vehicles stops at intersections. Wei 
et al. [26] developed a DRL model for traffic signal control 
with real-world large data set. In their method, traffic 
condition is extracted from an image. The image is directly 
used as an input for a CNN model to supplement other hand-
crafted traffic features (queue length, waiting time, and 
number of vehicles) of environment. They applied an offline 
model to test different signal timing plans and collect data 
samples of signal timings and traffic conditions. After that, an 
online model will determine the optimal action to take (change 
signal status or not). Their model was tested on a large-scale 
real traffic dataset from surveillance cameras. Motivated by 
Max Pressure (MP) control, Wei et al. [27] developed a 
reinforcement learning approach for large-scale road network. 
In RL, the objective is to maximize the long-term rewards by 
trial-and-error search while MP aims at minimizing pressure 
by greedy algorithm. This study set the reward function in RL 
the same as the objective of ML so that they can achieve the 
same result as MP to maximize vehicle throughput. As 
claimed by the authors, this is the first study that applies 
individual RL model and achieves coordination without any 
prior knowledge. Chen et al. [28] designed a DLR model for 
a city-level network with more a thousand intersections. DRL 
for multi-intersection control and coordination is quite a 
difficult problem due to the scalability and data feasibility. 
They incorporated DRL agent design with pressure, e.g., 
different of queue length at downstream and upstream 
intersections. The DRL agent aims at balancing the 
distribution of vehicles in the traffic network and maximize 
the system throughput. They tested their proposed model with 
Manhattan dataset containing signalized 2510 traffic lights. 
Comparing to other state-of-the-art signal control methods 
including fixed time, max pressure, and different variations of 
reinforcement learning methods, their proposed model was 
proved to generate shorter travel time and larger vehicle 
throughput.  

 

12Copyright (c) IARIA, 2021.     ISBN:  978-1-61208-879-2

VEHICULAR 2021 : The Tenth International Conference on Advances in Vehicular Systems, Technologies and Applications



Based on the literature, most studies used average queue 
length, average waiting time, average speed, and vehicle 
throughput as reward to evaluate an action in RL. There are 
various kinds of measures to describe environment states, e.g., 
queue length, waiting time, speed, and signal phases for each 
lane or for a road segment. Traditional RL use a tabular or 
linear model to approximate the state function to improve 
efficiency [31]. However, the state space in real world is 
usually very large which limit the capability of traditional RL. 
With the development of deep learning, DRL models can 
handle the large state space. For example, recent studies use 
images as state where vehicle trajectories and queue length 
can be extracted [26][27] for state representation.  The action 
in RL relates to signal phases changes. It can be the ratio of 
signal phase duration over the total cycle length  [31] or an 
indicator to decide if an different signal phase should be 
activated to green  [26].  Most of the traffic signal control 
studies with RL use value-based methods which usually 
requires discrete actions. The model takes the state 
presentation as input and parameterized by neural networks.  

 
 Although DRL model improves traffic signal control in 

the complex transportation systems, it treats neighboring 
intersections as the same and fail to model the spatial 
dependencies of traffic flows. Different intersections should 
be modeled carefully in realistic transportation network. To 
address the issue mentioned above, graph neural networks are 
proved to be an effective tool to capture the traffic dynamics 
in large-scale transportation network. The transportation 
system can be model by a graph consisting of nodes and edges. 
GNN can handle inputs given on general graphs. Wei et al.  
[29] proposed a model, CoLight, to control traffic signals on a 
large-scale road network with hundreds of intersections. They 
applied a graph attentional network to facilitate 
communication between intersections and consider the 
temporal and spatial influences of neighboring intersections. 
The model leverages the attention mechanism to model the 
influence of upstream and downstream intersections on the 

target intersection by learning different weights for different 
intersections. Extensive experiments have been conducted 
using synthetic and real-world data. Their proposed model 
outperformed other state-of-the-art methods in terms of 
reducing average travel time. Zhong et al. [30] developed a 
probabilistic graph neural network for traffic signal control 
and cooperation. They used decentralized reinforcement 
learning to model the transportation system. A graph attention 
module was then applied to learn dependencies of neighboring 
intersections. Finally, a graph inference model was proposed 
to learn the latent representations of adjacent intersections by 
considering traffic uncertainties. Their model can characterize 
the posterior with respect to latent variables and allow 
Bayesian inference. The rationality of model design can be 
explained by transportation theory. 

 
Coordination is essential for large-scale transportation 

system with multiple intersections. Wei et al. [34] categorized 
traffic signal control and coordination problems into three 
categories: joint action learners, independent (distributed) 
learners without communication and distributed learner with 
communication. Joint learners use a single centralized agent 
to control all intersections [34]. This approach could lead to 
the curse of dimensionality that the state-action space will 
grow exponentially as the number of intersections increases. 
Unlike joint agent, each distributed agent control one 
intersection. If communication does not exist between 
distrusted agent, each agent observes its own local 
environment. This method usually does not perform well 
when the environment becomes complicated. Distributed 
learning with communication allows agent to share 
information on their observations. Graph-based NN model for 
traffic signal control problems can learn the communication 
from the message passing on the graph. TABLE I summarizes 
the representative NN-based traffic signal control studies 
based on a few characteristics we discussed above.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

TABLE I.  REPRESENTATIVE NN-BASED TRAFFIC SIGNAL CONTROL STUDIES 

Reference Method Traffic features Coordination 
Road 

Network 

# of 

Intersections 

Wei and Zhang [21] Fuzzy neural network # of vehicles; queue length No communication Synthetic 1 

Bingham [22] Neurofuzzy traffic controller # of vehicles; queue length No communication Synthetic 1 

Srinivasan et al. [23] 

Fuzzy neural network with 

stochastic approximation 
theorem 

Traffic flow; occupancy 

Distributed control 

with 
communication 

Real (CBD 

Singapore) 
25 

Choy et al. [24] 

HNN with reinforcement 

learning and evolutionary 

algorithm 

Traffic flow; occupancy 

Distributed control 

with 

communication 

Real (CBD 

Singapore) 
25 

Li et al. [25] 
Value-based reinforcement 

learning  
Queue length No communication Synthetic 1 

Wei et al. [26] 
Value-based reinforcement 

learning  

Queue length; # of 

vehicles; waiting time; 
Image  

No communication Synthetic 1 

Wei et al. [27] 

Value-based reinforcement 

learning with max pressure 
control 

# of vehicles No communication 
Real (New 

York City) 
16 

Chen et al. [28] 
Value-based reinforcement 

learning  
# of vehicles No communication 

Real (New 

York City) 
2510 

Wei et al. [29] 
Graph attention network for 
cooperation 

Queue length 
With 
communication 

Real (New 
York City) 

196 

Zhong et al. [30]  
Probabilistic graph neural 

network 
Queue length, # of vehicles 

With 

communication 

Real 

(Hangzhou) 
16 
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In addition, the research team at the University of Hawaii 

has extensively developed machine learning-based 

approaches address various traffic data analysis and 

formulation issues. For example, we to estimate vehicle 

classification volumes based on single-loop detector outputs 

[36]. The proposed ANN has three layers with back-

propagation architecture. Vehicle classification categories 

employed by this study were consistent with the four-bin 

classification system currently used by the Washington State 

Department of Transportation (WSDOT) dual-loop detection 

system. To achieve the best bin volume estimates, a specific 

neural network is designed and configured for each vehicle 

category. The proposed ANN is trained and tested using data 

collected from loop detector stations on I-5 in the greater 

Seattle area. Our test results indicate that the proposed ANN 

method worked stably and effectively for the studied stations. 

The estimated bin volumes were reasonably accurate and can 

be applied to transportation practice. The temporal and spatial 

transferability tests showed that the proposed ANN is robust 

and can be applied to estimate bin volumes during different 

time periods and at different loop stations on I-5 without 

introducing significant errors. 

 

Work in [37] conducted a study to develop a Deep 

Learning (DL) framework to predict the taxi-passenger 

demand while the spatial, the temporal, and external 

dependencies were considered simultaneously. The proposed 

DL framework combined a modified density-based spatial 

clustering algorithm with noise (DBSCAN) and a conditional 

generative adversarial network (CGAN) model. More 

specifically, the modified DBSCAN model was applied to 

produce a number of sub-networks considering the spatial 

correlation of taxi pick-up events in the road network. And 

the CGAN model, fed with the historical taxi passenger 

demand and other conditional information, was capable to 

predict the taxi-passenger demands. The proposed CGAN 

model was composed of two LSTM neural networks, which 

are termed as the generative network G and the discriminative 

network D, respectively. Adversarial training process was 

conducted to the two LSTMs. In the numerical experiment, 

different model layouts were compared. It was found that 

different network layouts provided reasonable accuracy. With 

limited training data, more LSTM layers in the generator 

network resulted in not only higher accuracy, but also more 

difficulties in training. Comparisons were also conducted 

between the proposed prediction model and four typical 

approaches, including the moving average method, the 

autoregressive integrated moving method, the neural network 

model, and the LSTM neural network model. The 

comparison results showed that the proposed model 

outperformed all the other methods.  

 

Another research effort undertaken in [38] is to 

investigate how the integration of clustering models and deep 

learning approaches can learn and extract the network-wide 

taxi hotspots in both temporal and spatial dimensions. A 

Density Based Spatiotemporal Clustering Algorithm with 

Noise (DBSTCAN) was established to extract the historical 

taxi hotspots, which changed with time. A conditional 

generative adversarial network with Long Short-term 

Memory Structure (LSTM-CGAN) model was proposed for 

taxi hotspot prediction, which is capable of capturing the 

spatial and temporal variations of taxi hotspots 

simultaneously. Specifically, the DBSTCAN was applied to 

process the large-scaled geo-coded taxi pickup data into time-

varying historical hotspot information. The proposed LSTM-

CGAN model was then trained by the network-wide hotspot 

data. As illustrated in the numerical tests, it was found that 

the proposed LSTM-CGAN model provided comparable 

results with different model layouts and model with 4 LSTM 

layers in both generator and discriminator performed best. 

The comparison results indicated that the proposed LSTM-

CGAN model outperformed all these benchmark methods 

and demonstrated great potential to enable many shared 

mobility applications.  

 

Work in [39] reported a novel multi-agent reinforcement 

learning method, named as Knowledge Sharing Deep 

Deterministic Policy Gradient (KS-DDPG) to achieve 

optimal control by enhancing the cooperation between traffic 

signals. By introducing the knowledge-sharing enabled 

communication protocol, each agent can access to the 

collective representation of the traffic environment collected 

by all agents. The proposed method is evaluated through two 

experiments respectively using synthetic and real-world 

datasets. The comparison with state-of-the-art reinforcement 

learning-based and conventional transportation methods 

demonstrates the proposed KS-DDPG has significant 

efficiency in controlling large-scale transportation networks 

and coping with fluctuations in traffic flow.  

 

Based upon the above analysis, it can be seen that there 

are still following challenges on NN based modeling and 

control strategies for networked signal-timing control: 

 

1) The modeling using data driven reqires a good set of 

data in real-time; 

2) In therms of control strategies, there is a need to 

structure the control model so that it can be easily 

implemented in real-time. A affine type of dynamic model 

would be a choice.  This will be described in the following 

sections; 

3) Most studies have been focussed on simulations and 

real-time 24/7 implementation is lacking. 

 

These challenges constitute research questions to be 

answered and therefore in the following sections, a novel 

modeling and control, namely the HNN modeling and control 

developed by the authors, will be described that summarizes 

the authors recent work on multiple signalized intersection 

control. 
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III. TRAFFIC FLOW SYSTEM DESCRIPTION 

Figure 1 shows the signalized arterials to be modeled, 
where the input is the signal timing plan at each intersection 
and the output is the traffic delays of different phases (left 
turns, right turns and straight movements).  

 

 
 

Figure 1. The signalized arterial in Honolulu. 

 
The objective is to build up dynamic models that reflect 

the dynamics of the system; the data used were collected from 
Econolite systems. 

 
Taking 𝑢(𝑘) as the input and 𝑦(𝑘) as the output vector 

that is composed of the signal timing plan (i.e., green light 
time duration under fixed cycle length) and the traffic delays 
for each phase (i.e., through movements, left turns, and right 
turns) at an intersection respectively, the dynamics of the 
system can be generally modeled as follows 

 

 𝑦(𝑘 + 1) = 𝑓(𝑦(𝑘), 𝑢(𝑘), 𝜔(𝑘))                 (1) 

 
where 𝑓(… ) is the nonlinear vector function representing the 
system dynamics, 𝜔(𝑘) is the random noise term, and 𝑘 is the 
sample number, which can be a multiplication of cycle 
duration in signal timing control.  
 

IV. LINEAR MODELING 

       To perform the required data-driven modeling, it was 
imperative to first check whether the system could be truly 
represented as a nonlinear system. To answer that question, 
we performed linear modeling initially. Indeed, if the system 
was linear, then the modeling error should have a Gaussian-
like distribution. Otherwise, the system should be regarded as 
a nonlinear system in which neural network modeling and 
other nonlinear system modeling need to be considered to 
build reliable models for the system. 

A. Modeling structure  

When the system is linear, the following simple model can 
be assumed for each intersection 

 
 𝑦(𝑘 + 1) = 𝑎𝑦(𝑘) + 𝑏𝑢(𝑘) + 𝜔(𝑘)          (2) 

 

where {𝑎, 𝑏} are unknown parameters to be estimated, 𝜔(𝑘) 
is noise, and the modeling exercise is to use available data 
{𝑢(𝑘), 𝑦(𝑘)}  to estimate the parameters {𝑎, 𝑏} . This is a 
standard application of least squares estimation. For this 
purpose, denote  

 

 𝜃 = [
𝑎
𝑏

] , 𝜑(𝑘) =  [
𝑦(𝑘)

𝑢(𝑘)
]                       (3) 

 
Then, the following recursive least squares algorithm is 

used to estimate {𝑎,  𝑏}  using the data collected from the 
Econolite/University of Hawaii platform  

 

𝜃(𝑘 + 1) =  𝜃(𝑘) +  
𝑃(𝑘)𝜑(𝑘)𝜀(𝑘)

1 + 𝜑𝑇(𝑘)𝑃(𝑘)𝜑(𝑘)
 

𝜑𝑇(𝑘) = [𝑦(𝑘) 𝑢(𝑘)] 
𝜖(𝑘) = 𝑦(𝑘 + 1) −  𝜃𝑇(𝑘)𝜑(𝑘) 

𝑃−1(𝑘 + 1) =  𝑃−1(𝑘) +  𝜑(𝑘)𝜑(𝑘)𝑇  
 (4) 

where 𝜃(𝑘) is the estimate of 𝜃  at sample time 𝑘 (of every 
five cycles), 𝑃(𝑘)  is the variance matrix, with the initial 
conditions being 𝜃(0) = 0,  𝑃(0) = 100𝐼2×2.  
 
       It can be seen that (4) is a typical recursive least squares 
algorithm with the maximum forgetting factor as the linear 
modeling here is to just test whether the system in nonlinear 
or time varying so as to justify the use of nonlinear system 
model. A “less-than-one” forgetting factor can also be used in 
order to track time-varying feature of the system. This allows 
the estimation algorithm to be adaptive and robust with 
respect to changes of the system such as operational 
environmental changes or system parameter changes. In this 
case, standard modification is needed for the above algorithm. 

B. Modeling results showing the nonlinear feature 

The modeling results are shown in Figures 2–5. The 
original data are normalized between zero and one as shown 
in Figure 2, the estimated parameters are given in Figure 3, the 
modeling error is displayed in Figure 4, and the corresponding 
PDF of the modeling error is illustrated in Figure 5. It can be 
seen that the system is clearly not linear, as the modeling error 
PDF is not Gaussian. 

  
Figure 2. Original data—normalized to [0, 1]. 
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Figure 3. Estimated a and b. 

 

 
Figure 4. Modeling error—RLS residual signal 

 
Figure 5. Modeling error PDF. 

  
In addition, figures 6 and 7 show the validation results.  
 

 
 

Figure 6. Validation error showing a 30% error for the normalized data.  

 

 
 

Figure 7. PDF of the validation error showing a non-Gaussian shape. 

V. HYBRID NEURAL NETWORK 

As the system is nonlinear and non-Gaussian, HNN 
modeling is described in this section. In this context, a 
dynamic model was considered that reflected the relationship 
between the input and the output. Moreover, to improve the 
model, traffic volume was also considered as an extra input. 
Thus, the system had two input vectors (i.e., signal time plan 
and traffic volume) and one output vector, traffic delays. 

 
The system model was therefore assumed as follows: 
 

𝑦(𝑘 + 1) = 𝐴𝑦(𝑘) + 𝐵𝑢(𝑘) + 𝑓(𝑦(𝑘), 𝑢(𝑘 − 1), 𝑣(𝑘)) (5) 
 
where 𝑦(𝑘) and 𝑢(𝑘) denote average delay per vehicle and 
green time for multiple intersections at time index 𝑘. 𝑓(… ) is 
an unknown nonlinear vector function to be learnt and 𝜔(𝑘) 
is noise. {𝐴, 𝐵}}   are the weight matrices to be identified 
simultaneously with the estimate for the unknown nonlinear 
dynamics.  
 

        Let NN be used to approximate 𝑓(𝑦(𝑘), 𝑢(𝑘 − 1), 𝑣(𝑘)) 

by 𝑓(𝑦(𝑘), 𝑢(𝑘 − 1), 𝑣(𝑘), 𝜋) , where 𝑣(𝑘)  denotes traffic 
volume;  𝜋  groups all NN weights and biases. Then the 
training of the NN as well as the two matrices was to obtain 
accurate and reliable models for the traffic flow system. In this 
case, we considered seven intersections of an arterial all 
together, as indicated in the red box in Figure 1.  
 

The objective of training was to minimize the following 
performance function:  
 

Min 𝐽 =
1

2
(�̂�(𝑘 + 1) − 𝑦(𝑘 + 1))

2
              (6) 

 
which is basically a minimum variance error criteria, where it 
has been defined that  
 

�̂�(𝑘 + 1) = A𝑦(𝑘) + 𝐵𝑢(𝑘) + 𝑓(𝑦(𝑘), 𝑢(𝑘 − 1), 𝑣(𝑘),  𝜋)  
 (7) 

 
and {A, B, 𝜋 } are parameters to be trained. In the above 

equation, vectors �̂�(𝑘)  and 𝑓(… ) are the estimates of 𝑦(𝑘) 
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and 𝑓(… ) , respectively using the real-time data from 
Econolite Systems.  

A. Gradient rule for training 

Using gradient optimization, the following recursive 
estimation and training algorithm can be readily obtained to 
read  

�̂�(𝑘 + 1) = �̂�(𝑘) − 𝜆1
𝜕𝐽

𝜕𝐴
|

(𝐴(𝑘),�̂�(𝑘),�̂�(𝑘))
       (8) 

�̂�(𝑘 + 1) = �̂�(𝑘) − 𝜆2
𝜕𝐽

𝜕𝐵
|

(𝐴(𝑘),�̂�(𝑘),�̂�(𝑘))
       (9) 

�̂�(𝑘 + 1) = �̂�(𝑘) − 𝜆3
𝜕𝐽

𝜕𝜋
|

(𝐴(𝑘),�̂�(𝑘),�̂�(𝑘))
     (10) 

  
where 𝜆1, 𝜆2 and 𝜆3 are pre-specified positive learning rates 
which are typically selected to be less than 1.0, and the 
gradients are calculated from 
 

𝜕𝐽

𝜕𝐴
|

(𝐴(𝑘),�̂�(𝑘),�̂�(𝑘))
=  

 

(�̂�(𝑘 + 1) − 𝑦(𝑘 + 1))
𝜕�̂�

𝜕𝐴
|

(𝐴(𝑘),�̂�(𝑘),�̂�(𝑘))
= (�̂�(𝑘 + 1) 

−𝑦(𝑘 + 1)) 𝑦(𝑘)  (11) 
 
𝜕𝐽

𝜕𝐵
|

(𝐴(𝑘),�̂�(𝑘),�̂�(𝑘))
=  

 

(�̂�(𝑘 + 1) − 𝑦(𝑘 + 1))
𝜕�̂�

𝜕𝐵
 |

(𝐴(𝑘),�̂�(𝑘),�̂�(𝑘))
 = (�̂�(𝑘 + 1) 

−𝑦(𝑘 + 1)) 𝑢(𝑘)  (12) 
 
𝜕𝐽

𝜕𝜋
|

(𝐴(𝑘),�̂�(𝑘),�̂�(𝑘))
=  

 (�̂�(𝑘 + 1) − 𝑦(𝑘 + 1))
𝜕�̂�

𝜕𝜋
 |

(𝐴(𝑘),�̂�(𝑘),�̂�(𝑘))
  (13) 

  
where 𝑦(𝑘 + 1)  is the measured real-time data from the 
Econolite systems.  
 
       The selection of the learning rates are also critical here in 
order to ensure a good balance between the responsiveness of 
the learning and its stability in providing convergent neural 
network training. Using the second-order derivative analysis 
such as Jaccobian Matrices measure one can obtain the ranges 
for these learning rates.   
 
        The training algorithm described in (8) – (13) provides a 
set of simultaneous estimates for both linear parameters and 
neural network weights. Also, as the control input 𝑢(𝑘) to be 
designed is linearly involved in the model, the controller 
design using AI-techniques can be easily implemented as a 
direct inverse calculation so long as the matrix 𝐵 is of a full 
column rank. This approach effectively facilitates the real-
time implementation for the whole system. 

B. Data and their processing 

To model the system in (5), relevant data from the seven 
intersections were collected along the arterial as shown in 
Figure 1. In this context, the details of the data collected are 
as summarized in the Table II.  

TABLE II. DATA COLLECTION FOR HNN MODELING 

Study area Intersection 1-7 

Date collected March 3–5, 8–12, 15–19, 22–26, 29–31, April 
1–2 (23 weekdays) in 2021 

Time duration 4 pm – 7 pm 

Signal timing All phases of major and minor streets 

Traffic volume All movements 

Traffic delay All movements 

Sampling index Every five signal cycles (each cycle ≈180 s) 

 

C. Modeling results 

       Before the HNN model was trained, the raw data needed 

to be preprocessed to remove or reduce volatility, as shown 

in Figure 9. For traffic signal and traffic volume data, 

normalization was conducted to scale data between zero and 

one. For traffic delay data, after normalization, simple 

exponential smoothing was applied to further filter the data 

to remove noise, as shown in (14), where 𝑙(𝑘) is the filtered 

delay, 𝑦(𝑘)  is normalized delay, and 𝛼  is the smoothing 

factor between zero and one. As alpha decreases, the 

observation of delay at k has less impact on the output 𝑙(𝑘), 

indicating that the randomness of the delay measurements is 

reduced. After training of the HNN model, inverse 

normalization and inverse smoothing were applied to 

generate actual model output. This process is shown in Figure 

8. 

 

 
 

Figure 8. Data preprocessing. 

 

                𝑙(𝑘) = 𝛼𝑦(𝑘) + (1 − 𝛼)𝑙(𝑘 − 1)                    (14) 

 

The HNN model was trained by 78% of the total data 

points and was tested with data from March 22–26 (22% of 

total data). Figure 9 illustrates the HNN model structure 

applied in this study.  

 

The modeling results were evaluated by mean absolute 

percentage error (MAPE), rooted mean square error (RMSE), 

and mean absolute error (MAE) as in (15)–(17), where 

𝑦𝑛(𝑘) is the true delay at time k of phase n and �̂�𝑛(𝑘) is the 

predicted delay at time k of phase n. 

 

𝑀𝐴𝑃𝐸 =  
1

𝑁𝐾
∑ ∑ |

𝑦𝑛(𝑘) −�̂�𝑛(𝑘)

𝑦𝑛(𝑘)
|𝑁

𝑛=1
𝐾
𝑘=1             (15) 

𝑅𝑀𝑆𝐸 =  
1

𝑁𝐾
∑ ∑ √(𝑦𝑛(𝑘) − �̂�𝑛(𝑘))2𝑁

𝑛=1
𝐾
𝑘=1       (16) 

𝑀𝐴𝐸 =  
1

𝑁𝐾
∑ ∑ |𝑦𝑛(𝑘) − �̂�𝑛(𝑘)|𝑛=1𝑁

𝐾
𝑘=1         (17) 

 

Table III and Table IV show the prediction results for all 

phases of all seven intersections, the phases of main streets 

and side streets, and the phase of each intersection. Note that 

delay prediction at main streets is more accurate than at side 
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streets. The reason is that traffic volumes at side streets are 

much lower and more stochastic compared with main streets.  

 

 
  

Figure 9. HNN model structure.             

TABLE III. TRAINING AND TESTING RESULTS 

 
Training 

(all) 

Testing 

(all) 

Testing 
(main 

streets) 

Testing 

(side streets) 

MAPE 6.3% 6.5% 5.6% 6.9% 

RMSE 9.6 s 10.1 s 4.1 s 12.3 s 
MAE 6.7 s 6.9 s 3.0 s 9.2 s 

 

TABLE IV. TESTING RESULTS AT EACH INTERSECTION 

Intersection 1 2 3 4 

MAPE 4.0% 5.0% 5.7% 7.7% 

RMSE 3.7 s 5.7 s 10.7 s 11.0 s 
MAE 2.2 s  4.3 s 6.6 s 8.7 s 

    

Intersection 5 6 7 

MAPE 7.7% 6.7% 6.1% 

RMSE 12.6 s 8.8 s 10.3 s 
MAE 9.1 s 6.2 s 7.6 s 

 

Figure 10 and Figure 11 show the distribution and PDF of 

training errors. Training errors are roughly symmetrically 

distributed along the horizontal axis.  

  
Figure 10. Training error.  

 

 
Figure 11. Training error PDF. 

 

Figure 12 and Figure 13 show distribution and PDF of 

testing errors.  

 

 
Figure 12. Testing error.  

 

 
Figure 13. Training error PDF. 

 
Figure 14 shows comparisons of predicted delay from the 

HNN model and the true delay of each phase at intersection 1. 
There are four phases at intersection 1. Figure 14 (a-d) shows 
the delay comparisons of each phase, respectively. 
 

 
(a) Phase 1: Westbound left turning movement 
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(b) Phase 2: Eastbound through movement 

 

 
(c) Phase 4: Northbound through + left turning movements 

 

 
(d) Phase 6: Westbound through movement 
Figure 14. Delay Comparisons at Intersection 1. 

VI. CONCLUSIONS    

This keynote paper starts with a survey on the current 
neural network and Artificial Intelligent based modeling and 
control for signalized intersections. This is then followed by a 
study which developed a MIMO HNN model for multiple 
intersections along a corridor. The model can capture both the 
linear and nonlinear stochastic natures of multiple traffic 
features, i.e., traffic signal timings, traffic flows, and travel 
delays. The proposed model was validated by real-world data 
extracted from an Econolite system. The MAPE for delay 
prediction was 6.5% and the MAE was 6.9 s for all 
movements. The experimental results also suggested that the 
delay prediction for major streets was more accurate than that 
for minor streets.             

 
This study demonstrated a first step for the 

implementation of AI-based transportation system modeling 
and control. For future work, we will continue to collect data 
from more intersections and further refine the HNN model. 

When the model is ready, we will develop an AI-based 
optimal traffic control system based on the model to minimize 
entire system costs, including travel delay and energy 
consumption.             

 
Once a reliable system model is obtained, AI-based 

control design is required to establish a real-time closed-loop 
feedback control system that uses the traffic flow state as 
feedback [40][41]. This approach controls the signal timing 
intelligently at intersections so that the resulting traffic flow 
can be made smoother with minimized energy consumption. 
This control method requires controller design using AI 
techniques. Because of the random nature of traffic flow 
systems, stochastic optimal control in a multi-objective 
Bayesian framework will be investigated in the future.             
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