
Secure Routine
A Routine-Based Algorithm for Drivers Identification

Davide Micale∗, Gianpiero Costantino†, Ilaria Matteucci†, Giuseppe Patanè‡ and Giampaolo Bella∗
∗University of Catania, Dip. di Matematica e Informatica, Catania, Italy

†Consiglio Nazionale delle Ricerche (CNR), Istituto di Informatica e Telematica (IIT), Pisa, Italy
‡Park Smart Srl, Catania, Italy

Email: davide.micale@phd.unict.it, name.surname@iit.cnr.it, giuseppe.patane@parksmart.it, giamp@dmi.unict.it

Abstract—The introduction of Information and Communication
Technology (ICT) in transportation systems leads to several
advantages (efficiency of transport, mobility, traffic management).
However, it may bring some drawbacks in terms of increasing
security challenges, also related to human behaviour. As an exam-
ple, in the last decades attempts to characterize drivers’ behaviour
have been mostly targeted. This paper presents Secure Routine, a
paradigm that uses driver’s habits to driver identification and, in
particular, to distinguish the vehicle’s owner from other drivers.
We evaluate Secure Routine in combination with other three
existing research works based on machine learning techniques.
Results are measured using well-known metrics and show that
Secure Routine outperforms the compared works.

Keywords–driver identification; secure routine; machine learn-
ing; automotive.

I. INTRODUCTION

Modern vehicles can be considered as computer on wheels.
The mechanical parts are often controlled by software com-
ponents and communication protocols are in charge of ex-
changing data among vehicle’s components. For this reason,
modern vehicles are Cyber Physical Systems (CPS) in which
used technologies bring countless advantages in terms of, for
instance, efficiency of city operations and services. An example
among all is the Internet connectivity. Within this context, a
problem of particular interest is how to leverage vehicular
and/or smartphone data to characterize driver identification.
Its characterization finds application in the development of
software, which can be used by insurance companies to check
and identify drivers or, for instance, to discourage auto theft. In
2019, around 56k vehicles were targeted by thieves in UK [1].
It equates to one car stolen every 9 minutes and 45% of thefts
occurred between midnight and 6 AM. Having a strategy to
classify the driver’s behaviour may help to mitigate this trend.

Routine based classification is a type of classification [2]
that aims to find actions that are frequently repeated in time. To
complete a task, people repeat sequence of actions previously
saw from others or done by themselves, no matter how tough
the task is [3]. Two persons may accomplish the same task
with similar actions but with little fundamental differences [3].
Routines can describe how people organize their lives: daily
commute, weekly, meetings, holidays. Routines can also de-
scribe how a driver approaches to an intersection [4].

Based on these aspects of routine, here we introduce the
paradigm of Secure Routine (SR) that takes into account not
only what the user does but also how much frequently. We use
the SR paradigm within the automotive context with the aim to
classify drivers. To achieve this, we elaborate and implement

the SR algorithm that exploits sensors’ car data, obtained,
for instance, through the OBD-II [5] diagnostic port. The SR
algorithm evaluates the recorded data and, in particular, uses
the timestamp to make an accurate classification of drivers.
Then, SR leverage a Machine Learning (ML) technique to
establish driver’s routines and to properly identify the driver.

To test the goodness of the Secure Routine algorithm, we
compare it with other research works present in literature. The
comparison is done on two different datasets and the results are
evaluated using three metrics: Accuracy, Precision and Recall.
Findings show that Secure Routine outperforms the compared
works in all the tests carried out.

The paper is structured as follows: next section presents the
state of the art. In Section III, we introduce the background on
ML techniques. In Section IV, we present the Secure Routine
paradigm used to identify drivers. Then, in Section V, we
compare Secure Routine with other research works presented
in literature. Finally, Section VI draws the conclusion of this
paper and presents some hits for future research directions.

II. STATE OF THE ART

In literature, there are several solutions based on ML
techniques for the identification of driver’s behaviour. Bernardi
et al. [6] used a Multi Layer Perception (MLP) to identify
drivers. They used three datasets obtaining respectively 94%,
95% and 92% of Accuracy. In particular, these results were
obtained using a Start&Stop sliding window. A sliding window
combines several consecutive instances in a single instance. In
particular, Start&Stop joins instances starting when the car is
moving until the car stops.

Gao et al. [7] discriminated drivers through Stop-and-Go
events using a voting strategy. A Stop-and-Go event occurs
when the car slowdowns until stops (stop phase), it stands still
for five or more seconds and then speeds up (go phase).

Wang et al. [8] identified 30 drivers by using the voting
strategy and Random Forest algorithm. Authors split data and
tests into different window sizes. They use six sensor signals
and three derived sensor’s signals along with five statistical
features. With 5 minutes of testing data this model achieves
almost 93% of Accuracy. With a sliding window of 5 seconds
and 6 minutes of testing data they achieve 100% of Accuracy.

Girma et al. in [9] used the Long Short-Term Memory
(LSTM) algorithm with sliding windows and tested their model
on [10] and [11] datasets with Precision and Recall of 98%.

Kwak et al. in [12] selected 15 features to identify drivers
behaviour. For each feature they computed the mean, median
and standard deviation according to a reference sliding win-

40Copyright (c) IARIA, 2020. ISBN: 978-1-61208-795-5

VEHICULAR 2020 : The Ninth International Conference on Advances in Vehicular Systems, Technologies and Applications

dow. Thus, the total number of features is 45. They used
different ML algorithms and achieved the best Accuracy of
99,6% applying Random Forest on [10] dataset.

Martinelli et al. in [13] tested several Decision Tree algo-
rithms with the same dataset [10] using all 51 features. They
obtained a Precision and Recall equal to 99,2% with J48. The
same authors in [14] used only six features out of 51 features
of [10] dataset. In this case, Precision and Recall decreased to
98,9% due to under-fitting.

Compared to our paper, [6], [7], [8], [12], [13] and [14]
do not look for frequency. Also, LSTM in [9] obtained lower
scores in comparison with a Decision Tree (DT) algorithm
([12], [13] and [14]) on the same dataset. As shown by
[14], certain features discriminate better than others for some
drivers. Hence, SR must use the best feature set for each driver.
[6], [14] and [13] are the only ones that make owner-driver
identification, they select the same feature set for all drivers.
Finally, SR breaks down the timestamp in fine grained units
to detect frequency in order to increase the accuracy.

III. MACHINE LEARNING

ML is the study of computer algorithms that improve
automatically through experience. ML algorithms build a
mathematical model to make predictions or decisions without
being explicitly programmed to do so. At the basis of the
model, there is a dataset that has to be processed. Such dataset
can be considered as a table in which all data are listed. Each
row of the table is called instance and each column represents
a feature of the instance. The dataset is usually split into two
parts, the training dataset and the test dataset. The model is
created on the basis of the training dataset. Instead, a test
dataset represents all instances adopted to verify how much
accurate our model is in doing the classification.

ML techniques are largely adopted for the identification
and classification of users. In the following, we introduce an
example of ML algorithm based on DT predictive modelling
approach. A DT consists on a tree data structure that contains
rules to classify the instance. For each level of the tree, the
value of a feature of the instance is tested, for example, through
a specific question. Each internal node of the tree contains a
test. Depending on the answer, the model follows a different
edge: the left edge if the result of the test is true, otherwise the
right edge is followed. Finally, the leaf nodes, i.e., the nodes
with no children, contain the prediction.

A. Decision Tree Requirements
A DT algorithm must create a tree with the minimum

number of levels. This allows the ML algorithm to classify
the instance as fast as possible. To build a DT with a low
number of levels, it is necessary to select the best tests for the
model. This is done by selecting the appropriate Formula to
make the selection. A Formula specifies the criterion chosen
to establish which is the next test to perform in the DT.

For instance, let Alice and Bob be two drivers that are used
to going on the Sixth Avenue. Alice goes on the Sixth Avenue
all days of the week, instead Bob goes only from Monday to
Friday. Bob drives slightly faster than Alice, with a speed up
to 55 Km/h. A possible DT model is the one in Figure 1(a)
that is built by putting on the tree root the following test:

“Is today Saturday or Sunday?”

Following the root test, we have that the left child is taken by

Alice instead the right child corresponds to the following test:

“Is the vehicle speed lower than 55 Km/h?”

Again the left child is a leaf node that represents Alice,
whereas the right child is the leaf node representing Bob.

Despite the above DT model is a valid model for our
example, we may produce a better tree in which a root node
is configured with the following test (Figure 1(b)):

“Is the vehicle speed lower than 55 Km/h?”

In this case, the left child is the leaf node Alice and the right
child is the leaf node Bob. Hence, a ML algorithm concludes
its prediction with only one test.

A DT has to be simple. This allows the DT to be flexible
enough to represent also further instances. Thus, if the built
model is too complex, it may not represent new labelled
instances, i.e., for instance those ones present in a test-set. This
may cause a high error rates, generating the over-fitting error.
To reduce the over-fitting error, the pruning technique can be
adopted to obtain a simpler version of the tree by pruning some
nodes. Another solution to mitigate the over-fitting error is the
feature selection that works by removing features. However,
pruning too many nodes and removing too many features or
relevant ones may lead to higher error rates, aka under-fitting.
B. Decision Tree Algorithms

Several DT algorithms were developed to generate models.
The C4.5 was proposed in 1993 [15] and it uses the Gain Ratio
(GR) of a feature “X” of the training set (T) to establish which
is the best test to perform.

GR =
H(T)−H(T |X)

H(X)
(1)

where:
• H(T) indicates the entropy of T, i.e., the quantity of

information carried by the probability distribution of
labels in T [16], calculated as:

H(T) = −
k∑

j=1

freq(Cj , T)

|T | ×log2

(
freq(Cj , T)

|T |

)
(2)

where:
◦ k is the number of classes;
◦ freq(Cj , T) is the number of instances in the

j-th class;
◦ |T | is the number of instances of T.

• H(T |X) indicates the entropy after partitioning T in
“n” parts, where “n” is the number of possible values
assumed by X:

H(T |X) =

n∑
i=1

|Ti|
|T | ×H(Ti) (3)

where:
◦ |Ti| is the number of instances with the i-th

value assumed by the feature X;
◦ H(Ti) indicates the entropy of the set of

instances with the i-th value assumed by the
feature X.

• H(X) indicates the entropy of X:

H(X) = −
n∑

i=1

|Ti|
|T | × log2

(
|Ti|
|T |

)
(4)

41Copyright (c) IARIA, 2020. ISBN: 978-1-61208-795-5

VEHICULAR 2020 : The Ninth International Conference on Advances in Vehicular Systems, Technologies and Applications

Is today
Saturday or Sunday?

Alice Is the vehicle speed
lower than 55 km/h?

Alice Bob

(a) DT with two levels.

Is the vehicle speed
lower than 55 km/h?

Alice Bob

(b) DT with one level.

Figure 1. Comparison of two possible DT for solving the same problem.

Note that C4.5 can handle features with unknown values
and real numbers and may make use of the pruning technique.

Random Forest (RF) [17][18] is an algorithm formed by a
set of DTs. Each tree is built from a random sampling with
replacement of the training-set. Each node of a tree is the best
test defined on a subset of features, instead of on all available
ones. Trees are not pruned. In prediction phase, an instance
is run on each tree and each tree makes a prediction. The
most predicted value becomes the prediction of RF. Also, RF
includes a procedure in case of unknown values in the dataset.

IV. SECURE ROUTINE

In literature, the concept of Routine is already exploited
to classify users or drivers [4]. A Routine is defined as a
set of actions that a person frequently perform in response
to a circumstance [19]. Hence, routines can describe how
people organize their lives: daily commute, weekly, meetings,
holidays. Here, we refine the concept of Routine by introducing
the paradigm of Secure Routine that takes into account not only
what the user does but also how much frequently.

We define SR and present its application into the automo-
tive context to perform driver’s behavioural identification. To
this aim, SR analyses all tracking data recorded by vehicle’s
sensors while the user is driving it. Tracked data are organized
in separate instances according to the sensor that collects
them and the timestamps when the event occurs. Hence, SR
firstly decomposes the timestamp of each instance and extracts
second, minute, hour, day of week, day, month and year. Then,
SR removes less relevant features, as we will describe below
using the Feature Selection (FS) technique. Successively, the
data collected by sensors are correlated with the timestamp
previously decomposed. Then, a ML algorithm examines these
data. The output is a model representing users’ Secure Routine.
As final step, the obtained model is compared with an observed
user’s driver behaviour for his/her identification.

To show the value added by the Secure Routine to identify
drivers, we introduce the following example. Let us consider
Alice and Bob who are used to going on the Sixth Avenue.
Alice usually goes there at 12PM, and Bob at 7PM. If we do
not consider the timestamp information, the resulting model
of Alice and Bob will contain only the information “The user
is used to going on the Sixth Avenue”. In this situation, the
observed behaviour will be compared to understand whether
the driver is Alice or Bob. However, this selection is quite
difficult since the missing timestamp information is fundamen-
tal to distinguish between the drivers. On the contrary, if we
consider also the timestamp in which the event happens, the

identification will be unique in this case. In fact, if the vehicle
is at 7PM on the Sixth Avenue, therefore the driver is Bob.

This is what Secure Routine does considering daily routines
as well as monthly and yearly ones. Hence, SR may be very
useful, for instance, to mitigate scenarios as the one depicted in
Section I: in UK cars are often stolen at night. If the vehicle’s
owner does not usually drive during the night, SR can easily
detect the weird behaviour. In particular, the SR paradigm
is built upon a ML algorithm that uses as training-set the
data recorded through an OBD-II device. A closer working
mechanism of SR is presented in [20]. Here, the authors prefer
to involve the interval between a rerun of the same action. Let
us consider this other example in which Alice goes on the
Sixth Avenue every 24 hours for the whole week, instead Bob
every 24 hours from Monday to Friday. In this case, the routine
of Bob will be modelled as intervals of 24 and 72 hours. So,
if we consider a driver moving on Saturday, we would not be
able to identify the driver, neither Alice nor Bob, since the
interval is set to 24 hours. On the contrary, if the day of the
week is taken into account, Alice will be correctly identified.

A. SR Algorithm
Let us consider a target vehicle belonging to a driver d.

The SR algorithm acts in four phases:
a) Model Generation Dataset: Whenever a vehicle is

used, its sensors register pieces of information about several
features, e.g., the water temperature, the speed, the brake
pressure, and so on. We assume to take trace of all these data
in combination with the timestamp in which each instance of
data is generated. Data are taken from the OBD-II port by
using an OBD-II interface [21]. Each instance of data is called
interaction of the driver d with the vehicle and it is denoted
as ini,d where i is the timestamp. Interactions are composed
by the timestamp, recorded with the following template: (day,
month, year, hour, minute, second and day of the week) plus
the others features obtained from the OBD-II.

b) FS paradigm: To mitigate the possible over-fitting
error, we implement the FSParadigm (Figure 2).

FSParadigm is designed to select the best features to use. It
firstly ranks all features applying the Gain Ratio approach and
then features are sorted in ascending order. Those features with
rank equal to zero are discarded. Then, the average-rank among
all features not correlated to the timestamp is calculated. The
FS discards those features, except those related to time, whose
rank sum is less than or equal to the average-rank.

c) Model Generation Algorithm: Let us consider that
a vehicle may be driven by d but also by other people, e.g.,
friends or relatives of d. In the modelling phase, our algorithm

42Copyright (c) IARIA, 2020. ISBN: 978-1-61208-795-5

VEHICULAR 2020 : The Ninth International Conference on Advances in Vehicular Systems, Technologies and Applications

(Figure 3) considers all the past interactions recorded by the
vehicle and labels with 1 each interaction that belongs to d, 0
otherwise. The labelled interactions are sent to a DT algorithm
that generates the model for the driver d.

In particular, in line 5, FSParadigm is the Feature Selection
paradigm we described above as part of SR and line 6
(MLAlgorithm) indicates the ML algorithm in use with the
subset of features obtained before.

d) SR Identification strategy: Once the model is gener-
ated, SR makes the identification evaluating each interaction.
In particular, SR links an interaction to the vehicles’ owner if
the ML algorithm predicts and labels it as 1, otherwise 0.

V. SECURE ROUTINE EVALUATION

We evaluated Secure Routine in two steps: first, we run
it using two ML algorithms and we verified which of them
best performs to identify drivers. Then, we compared Secure
Routine with the following research works present in literature:
• Martinelli et al. [14] referred in the following as M .
• Kwak et al. [12] referred in the following as K.
• Girma et al. [9] referred in the following as G.

A. Datasets
We run the experiments using two datasets presented

in [10], referred as Θ, and [22], referred as Ψ. The former
is a dataset used also by M , K and G in their research works.
So we can fairly make a comparison. However, the Θ dataset
does not contain a fundamental feature used by SR, this is
the timestamp of each represented instance. Nevertheless, Θ
dataset contains the engine runtime that provides the minutes
to be used as timestamp needed for SR to work.

On the other hand, Ψ dataset contains a timestamp for each
instance by default. This feature allows Secure Routine to fully
work by using all available pieces of information. In particular,
SR expands the timestamp to generate all time dependent
features. As far as we know, the other compared research works
do not make use of this dataset to evaluate their proposal. So,
to evaluate SR even in this case, we were able to re-run the
work proposed by Martinelli et al. and calculate the results for
the owner-driver identification. On the other side, the works

1 function FSParadigm(instances)
2 ranking ← GR(instances)
3 rankingordered ← order ranking ascending
4 features>0 ← discard features with rank =

0 from rankingordered
5 (featuresno_timestamp_correlated,

featurestimestamp_correlated)← features>0

6 rankingno_timestamp_correlated ← ranking from
rankingordered of features present in
featuresno_timestamp_correlated

7 averageranking ←
mean(rankingno_timestamp_correlated)

8 subsetno_timestamp_correlated ← discard
features sum is less than or equal to
the averageranking from
rankingno_timestamp_correlated

9 subset ← subsetno_timestamp_correlated ∪
featurestimestamp_correlated

10 return subset

Figure 2. Feature Selection Paradigm

K and G did not calculate the owner-driver identification and,
also, it was not possible to re-run their algorithms since the
implementation is not publicly available. In the specific case
of G, the authors published only the pre-built model and we
were not able to use it.
B. Metrics

To get a comparable result of SR with M , K and G, we
evaluate Accuracy [23], Precision and Recall [14].
• Accuracy represents how often the model is making a

correct prediction. It is the ratio between the number
of correct predictions and the number of predictions:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

where:
◦ TP (True Positive) is the number of instances

belonging to the vehicle’s owner that are cor-
rectly predicted;

◦ TN (True Negative) is the number of instances
not belonging to the vehicle’s owner that are
correctly predicted;

◦ FP (False Positive) is the number of instances
belonging to another person but incorrectly
predicted;

◦ FN (False Negative) is the number of instances
belonging to the vehicle’s owner but incor-
rectly predicted.

• Precision measures how often the predicted instances
belonging to the vehicle’s owner are true. It is calcu-
lated as the ratio between TP and TP + FP :

Precision =
TP

TP + FP
(6)

• Recall identifies how often the instances belonging to
vehicle’s owner are correctly predicted. It is calculated
as the ratio between TP and TP + FN :

Recall =
TP

TP + FN
(7)

To better estimate the three metrics depicted above, in
our experiments we used the 10-fold cross-validation [24]
approach. First, we split the dataset on 10 equal size subsets
D1, D2, ..., D10. Each instance of the dataset is randomly
inserted in a subset. Then, we constructed 10 training sets
Tr1, Tr2, ..., Tr10 and 10 testing sets Te1, ..., Te10. Tri
is made of all subsets except Di and Tei is made of Di

1 function generate_model(d)
2 insd ← get interactions from db made by d,

labeling 1
3 inso ← get interactions from db made by

others, labeling 0
4 insall ← insd ∪ inso
5 subset ← FSParadigm(insall)
6 model ← MLAlgorithm(insall with features

from subset)
7 return model

Figure 3. Secure Routine Model Generation

43Copyright (c) IARIA, 2020. ISBN: 978-1-61208-795-5

VEHICULAR 2020 : The Ninth International Conference on Advances in Vehicular Systems, Technologies and Applications

with i ∈ {1, 2, ..., 10}. For each pair (Tri, T ei) is calculated
Accuracyi, Precisioni and Recalli. Finally, we calculated
the final value of Accuracy, Precision and Recall as the
mean of Accuracyi, Precisioni and Recalli, respectively.

C. Experiments
We performed four types of experiments to evaluate Secure

Routine. The first experiment is related to multi-driver identi-
fication problem [14], i.e., properly identify who is the driver.
However, as step zero, we decided to find the most suitable
ML algorithm with the best features set to evaluate SR. We
leverage on Weka [25] as software that contains a collection
of visualization tools and algorithms for data analysis and
predictive modelling. So, we used the available Gain Ratio
method to rank each feature. Then, we employed J48, which
is the implementation of the C4.5 algorithm, and RF algorithm
over the driver identification.

In this step, results are obtained on Θ dataset. It contains
data from 10 drivers. Figure 4(a) shows the driver instances’
distribution. Drivers have 9438 instances on average: Driver
4 has the highest number of instances with 13244 samples
while Driver 1 has the lowest number with 7240 instances. In
addition, drivers drove two times in the same path in similar
time-window. Dataset instances are recorded per second.

Table I shows the results obtained comparing SR imple-
mented into J48 and RF algorithms applied to the driver
identification using Θ dataset. RF algorithm with feature
selection (37 features) obtained the best Precision and Recall.

After selecting SR with RF and the most appropriate
features ranked by the Gain Ratio method, we show the first
experiment results obtained by comparing SR with the work in
M , K and G on the Θ dataset. As shown in Table II(a), Secure
Routine and K achieves the best results. Note that M did not
calculate the accuracy in the paper, so we established this value
through the replication of their experiment. Instead, K did not
provide on their research Precision and Recall. Finally, for G
we were not able to retrieve the exact Accuracy.

As we can see in Table II(b), SR achieves almost a perfect
Precision, i.e., 100%, but with the worst Recall and this
depends on the features selection. In fact, if we increment the
number of features, we increase the Recall but the Precision

is decreased. Here, we decided to obtain a higher Precision
selecting the most appropriate features using the Gain Ratio.

The second experiment is related to the Owner Driver
identification, i.e., does the instance belong to the vehicle’s
owner? In this case, we compared SR only with M since K
and G did not calculate the owner driver identification. As
stated by the authors of M , they use the same feature set for
both the multi-driver and owner driver identification.

The third experiment that we propose is related to the
multi-driver identification on the Ψ dataset. This contains data
from 14 drivers. Figure 4(b) shows that drivers’ instances are
not equally distributed. For example, Driver 1 has the highest
number of instances with 13617 samples, whereas Driver 10
has the lowest number with only 7 instances. This may depend
on the fact that some users drive frequently whereas other
users rarely. However, 7 instances are not enough to build a
model for the Driver 10. So, we decided to exclude Driver
10 instances in our experiments to not alter the final result.
Also, many instances contain empty values because of errors
on gathering data. Instances are recorded every 7 seconds.

Compared to the Θ dataset, Ψ contains by default 32
features. Nevertheless, five of these features are timestamp
related and are minute, hour, day of the week, month, year.
Other features, such as, model, car year, are removed since
they do not give any useful information about the user driving
style. The dataset also contains engine runtime from which
we extract engine runtime minute.

In this experiment, we used the GR method for features
selection. Starting from pruned Ψ dataset, we evaluated SR.
As previously stated, we know that there are no other research
works that use this dataset. So, we had only the possibility to
replicate the best solution proposed by M .

Table II(c) shows that Secure Routine with feature selection
achieves the best result both for Precision and Recall.

To conclude the evaluation, last experiment focused on the
owner driver identification. Table II(d) indicates that SR with
features selection has the best performance when compared
with M . SR obtained an average precision of 99,6%, which
means that for 8 drivers SR established a perfect Precision
whereas M achieved this Precision only for 4 drivers with an
average Precision of 95,1%. Regarding the Recall, SR largely

(a) Number of instances for each driver in Θ (b) Number of instances for each driver in Ψ

Figure 4. Driver distributions on the datasets.

TABLE I. COMPARING SR USING J48 AND RANDOM FOREST OVER THE MULTI-DRIVER IDENTIFICATION PROBLEM.

J48 Random Forest
All features Feature selection All features Feature selection

Precision Recall Precision Recall Precision Recall Precision Recall
99,2% 99,2% 99,3% 99,3% 99,3% 99,3% 99,6% 99,6%

44Copyright (c) IARIA, 2020. ISBN: 978-1-61208-795-5

VEHICULAR 2020 : The Ninth International Conference on Advances in Vehicular Systems, Technologies and Applications

TABLE II. COMPARISON OF SECURE ROUTINE WITH RELATED WORKS

(a) Comparison of Secure Routine with M , K and G.
Secure Routine M K G

Precision Recall Precision Recall Precision Recall Precision Recall
99,6% 99,6% 99,2% 99,2% N.A. N.A. 98,8% 98,1%

Accuracy Accuracy Accuracy Accuracy
99,6% 99,2% 99,6% N.A.

(b) Comparison of Secure Routine with M .
Secure Routine M

Avg. Precision Avg. Recall Avg. Precision Avg. Recall
99,8% 98,5% 99,3% 99,3%

(c) Comparison of Secure Routine with M
for multi-driver identification.

Secure Routine M

Precision Recall Precision Recall
99,4% 99,4% 90,4% 89,8%

(d) Comparison of Secure Routine with M for owner identifi-
cation.

Secure Routine M

Avg. Precision Avg. Recall Avg. Precision Avg. Recall
99,6% 98,1% 95,1% 82,9%

outperformed M in percentage and SR achieved a perfect
Recall score for one driver, whereas M never obtained a
perfect Recall.

VI. CONCLUSION AND FUTURE WORK

In this paper, we introduced for the first time the Secure
Routine paradigm to identify the vehicle’s owner taking into
account the driving style. Also, we presented the algorithm
implemented by means of machine learning algorithms and
we showed how SR works to identify the driver. Then, we
compared SR with other three existing research papers and
we evaluated them considering Precision, Accuracy and Recall
metrics. Experiments made use of two different datasets. Find-
ings showed that SR obtains the best results compared with
the other algorithms considering both experiments regarding
the identification of the vehicle’s owner and the multi-driver.

As future work, we plan to improve the algorithm of Secure
Routine by considering additional features to increase its
identification capabilities, i.e., statistical features. We will also
improve our FSParadigm to enable a better feature selection.

ACKNOWLEDGMENT
This work has been partially supported by the COSCA

research project (NGI TRUST 2nd Open Call 2019002).

REFERENCES
[1] B. Johnston, “Rivervale reveal DVLA data to uncover the most stolen

cars in the UK,” 02 2020, URL:https://www.rivervaleleasing.co.uk/blog/
posts/most-stolen-cars-uk-theft#sthash.iCWvAg4d.dpuf [retrieved: 09,
2020].

[2] Y. Xiong and H. Lin, “Routine based analysis for user classification and
location prediction,” in 2012 9th International Conference on Ubiqui-
tous Intelligence and Computing and 9th International Conference on
Autonomic and Trusted Computing, Sep. 2012, pp. 96–103.

[3] I. Lavie, A. Steiner, and A. Sfard, “Routines we live by: from ritual to
exploration,” Educational Studies in Mathematics, vol. 101, no. 2, Jun
2019, pp. 153–176, URL:https://doi.org/10.1007/s10649-018-9817-4.

[4] N. Banovic, T. Buzali, F. Chevalier, J. Mankoff, and A. K. Dey, “Mod-
eling and understanding human routine behavior,” in Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems, ser.
CHI ’16. New York, NY, USA: Association for Computing Machinery,
2016, p. 248–260, URL:https://doi.org/10.1145/2858036.2858557.

[5] ”The OBDII Home Page”, “Obd-ii background,” URL:http://www.obdii.
com/background.html [retrieved: 09, 2020].

[6] M. Bernardi, M. Cimitile, F. Martinelli, and F. Mercaldo, “Driver and
path detection through time-series classification,” Journal of Advanced
Transportation, vol. 2018, 03 2018, pp. 1–20.

[7] Z. Gao, L. Li, J. Feng, R. Yu, X. Wang, and C. Yin, “Driver identifi-
cation based on stop-and-go events using naturalistic driving data,” in
2018 11th International Symposium on Computational Intelligence and
Design (ISCID), vol. 01, Dec 2018, pp. 306–310.

[8] B. Wang, S. Panigrahi, M. Narsude, and A. Mohanty, “Driver
identification using vehicle telematics data,” in SAE Technical
Paper. SAE International, 03 2017. [Online]. Available: https:
//doi.org/10.4271/2017-01-1372

[9] A. Girma, X. Yan, and A. Homaifar, “Driver identification based on
vehicle telematics data using lstm-recurrent neural network,” in 2019
IEEE 31st International Conference on Tools with Artificial Intelligence
(ICTAI), 2019, pp. 894–902.

[10] HCRL, “Driving dataset,” URL:http://ocslab.hksecurity.net/Datasets/
driving-dataset [retrieved: 09, 2020].

[11] P. Rettore, “Vehicular traces,” 2018, URL:http://www.rettore.com.br/
prof/vehicular-trace/ [retrieved: 09, 2020].

[12] B.-I. Kwak, J. Woo, and H. K. Kim, “Know your master: Driver
profiling-based anti-theft method,” in PST 2016, 12 2016, pp. 211–218.

[13] F. Martinelli, F. Mercaldo, V. Nardone, A. Orlando, and A. Santone,
“Who’s driving my car? a machine learning based approach to driver
identification,” 01 2018, pp. 367–372.

[14] F. Martinelli, F. Mercaldo, A. Orlando, V. Nardone, A. Santone,
and A. K. Sangaiah, “Human behavior characterization for driving
style recognition in vehicle system,” Computers & Electrical
Engineering, vol. 83, 2020, p. 102504. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S0045790617329531

[15] J. R. Quinlan, C4.5: Programs for Machine Learning. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1993.

[16] C. E. Shannon, “A mathematical theory of communication,” Bell
System Technical Journal, vol. 27, no. 3, 1948, pp. 379–423. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/j.1538-7305.
1948.tb01338.x

[17] A. Cutler, D. R. Cutler, and J. R. Stevens, Random Forests.
Boston, MA: Springer US, 2012, pp. 157–175. [Online]. Available:
https://doi.org/10.1007/978-1-4419-9326-7 5

[18] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1,
10 2001, pp. 5–32. [Online]. Available: https://doi.org/10.1023/A:
1010933404324

[19] G. M. Hodgson, “The ubiquity of habits and rules,” Cambridge Journal
of Economics, vol. 21, no. 6, 11 1997, pp. 663–684, URL:https://doi.
org/10.1093/oxfordjournals.cje.a013692.

[20] E. Shi, Y. Niu, M. Jakobsson, and R. Chow, “Implicit authentication
through learning user behavior,” in Information Security, M. Burmester,
G. Tsudik, S. Magliveras, and I. Ilić, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011, pp. 99–113.

[21] ”Elm Electronics Inc”, “Elm327 obd to rs232 interpreter,” 2017,
URL:https://www.elmelectronics.com/wp-content/uploads/2016/07/
ELM327DS.pdf [retrieved: 09, 2020].

[22] C. A. d. S. Barreto, “OBDdatasets,” 2018, URL:https://github.
com/cephasax/OBDdatasets/blob/master/masterDegreeResearch/
dailyRoutes.csv [retrieved: 09, 2020].

[23] J. Torres, First Contact with Deep Learning, practical introduc-
tion with Keras. Watch this space, 7 2018, URL:https://torres.ai/
first-contact-deep-learning-practical-introduction-keras/ [retrieved: 09,
2020].

[24] R. Kohavi, “A study of cross-validation and bootstrap for accuracy es-
timation and model selection,” in Proceedings of the 14th International
Joint Conference on Artificial Intelligence - Volume 2, ser. IJCAI’95.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1995, p.
1137–1143.

[25] I. Witten, M. Hall, E. Frank, G. Holmes, B. Pfahringer, and P. Reute-
mann, “The weka data mining software: An update,” SIGKDD Explo-
rations, vol. 11, 11 2009, pp. 10–18.

45Copyright (c) IARIA, 2020. ISBN: 978-1-61208-795-5

VEHICULAR 2020 : The Ninth International Conference on Advances in Vehicular Systems, Technologies and Applications

