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Abstract—Urban mobility is among the main problems of the
contemporary society. In this context, the vehicle automation
technologies stand out in several aspects, such as reduction in
accidents, congestion and emission of pollutants. Considering
that, this work seeks to upgrade the simulation platform com-
posed by Grand Theft Auto: San Andreas, and its modification
San Andreas: Multiplayer (GTA-SA/SA-MP) that, according to
the literature, is an appropriate environment for implementing
autonomous vehicles networks. By using available structures in
this environment, it is possible to perform three-dimensional
simulations in many scales, ranging from a single village to
an extensive intercity map. From the available structures in
game, it was used a set of navigational nodes, which identify
all the available routes for the vehicles in the roads. We used
the navigational nodes to generate a weighted directed graph,
to which we applied Dijkstra’s and A* search algorithms. From
that, it was observed that the vehicles were able to calculate and
follow the best route from a source to a target node in any place
of the map, obtaining a realistic environment to simulate and
test solutions for the traffic, such as the autonomous intersection
management protocol, which will be implemented in future.

Keywords–Autonomous vehicles; multi-agent system; game;
VANET; IoT.

I. INTRODUCTION
Urban mobility has proved to be one of the main problems

we face in society. According to Texas A&M Transportation
Institute, in 2017 the delays of industrial deliveries, along with
the fuel consumption, caused a congestion cost of US$ 179
billion in the 494 urban areas of United States. Moreover,
an average auto commuter wasted 21 gallons of fuel only at
traffic congestion. The report also attested that average auto
commuters spent 71 hours of extra travel time in the same
year [1].

Besides monetary cost, many fatalities happen in the traffic.
According to the World Bank Group, about 1.25 million people
die on world’s roads every year, while in average 20 or 50
million people are seriously injured. In America, traffic has
been the leading cause of death since 1975 [2].

In addition, traffic congestion is a major aggravating factor
for environmental problems. Vehicle emissions became the
dominant source of air pollutants, raising the risks of morbidity
and mortality, specially for commuters and individuals who
live near roadways. When traffic flow is slow, regular speedups
and slowdowns can increase travel time and diminish the
dispersion of pollutants, elating by four times the emission
of CO, HC and NOx [3].

One of the emerging solutions for these problems is the
traffic automation, currently leaded by the development of
autonomous vehicles. They are proving to be effective and
efficient, mainly due to their ability of taking deterministic
and accurate decisions. Researches indicate that a vehicular

network composed by 5% of self-driving cars already demon-
strates significant advantages in the traffic flow [4].

Many simulation platforms were built to test autonomous
traffic problems and solutions. Having a variety of them is
important to validate different scenarios and perspectives. The
two main perspectives for autonomous vehicles simulations
are two-dimensional (2D) and three-dimensional (3D). The
3D perspectives are closer to reality, containing more details
and problems to solve, like relief dynamics, consumption
cost when driving uphills and downhills, among others [5].
However, due to the complexities and costs in building 3D
software, most of the simulations are 2D, like the Texas
University’s AIM project [6][7].

Considering that, games like Grand Theft Auto: San An-
dreas (GTA-SA) [8] and its modification San Andreas Multi-
player (SA-MP) [9] team up to form a good environment to
simulate multi-agent systems. This platform leverages many
of the game’s features, like an extensive 3D map containing
multiple cities, physical models for mechanics and collision,
different vehicle models, weather manipulation and many
others [10].

Previous works have managed to successfully build an
autonomous vehicles network inside GTA-SA/SA-MP [10].
Some of them could even build autonomous intersection
management protocols, which is one of the hottest topics in
autonomous traffic problems [11]. However, these works were
expanded only to a small village in the game, being unable to
scale all solutions for the whole game map [10]. Therefore,
this work sought to implement an autonomous traffic system
using the entire GTA-SA’s map, whose detailed goals can be
described as:

• Use the game’s structures to identify vehicle’s paths
along the game map;

• Apply routing algorithms to understand if the game
provides a consistent environment for simulations.

We could adapt GTA-SA/SA-MP’s features to simulate
autonomous traffic in the whole game map. Also, we found
paths data for different objects, like pedestrians and boats,
opening possibilities to interact with human agents and to
develop sensor networks for sea navigation.

In Section I, the reader had a vision of the existing
problems traffic automation want to solve, as well as some
tools that can be used to achieve that. In Section II, we
will present the base concepts and methodologies applicable.
Section III describes the implemented methodology in a way
to achieve the described goals. In Section IV, we expose the
results and data acquired from this work. In Section V, we
do a critical analysis on the data, as well as briefly explore
future works.
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II. CONCEPTS & METHODOLOGY
This section will use theoretical concepts to present meth-

ods to achieve our goals. In Section II-A, we do an analysis
on how to use games to simulate an autonomous multi-agent
system; this will require software engineering and design pat-
terns understanding. In Section II-B, we’ll understand which
math and computational models, as well as algorithms, are
necessary to apply in this system. In Section II-C, we define
the problems we want to solve with this model, as well as the
high-level solution that might fit in any kind of system.

A. Games and design patterns
We can use two object-oriented programming principles

to say that an electronic game or software product is eligi-
ble to simulate autonomous agents and multi-agent systems:
open/close and the dependency inversion principles [12].

Definition 1: Eligibility of a software product to be used
in modifications. Let M be a software product, M can only be
extensible to modifications when the following characteristics
are present:

1) M ’s modules and libraries may be extended without
being modified;

2) There is a set of public interfaces of M such that they
may be implemented, incorporated and distributed
with M .

By identifying an application that fits Definition 1, we will
reduce and decouple the amount of work. The responsibility
of simulating autonomous agents and multi-agent systems can
be addressed to the researcher, while the dependencies of this
work, like physical models, climate, objects and events can
rely on the modified application only.

B. Routing & mechanics models
Graph theory is the study of the relation between elements

of a set. G = (V,E) is said to be a graph, where V is a set of
vertexes and E = (u, v) is a set of pairs, where u, v ∈ V (G),
meaning that a vertex u is related to v. A graph is directed
when there is a relation over all edges (u, v) ∈ E(G) such
that u is said to be incident over v [13].

Graphs can be used to understand whether elements of
a set are reachable from a source vertex. Also, we can
apply the concept of paths or routes, where there is a sub-
graph P = (V,E) such that P ⊆ G, whose V (P ) =
{u1, u2, . . . , uk}, k ≤ |V (G)|, where all edges are in the
format E(P ) = {u1u2, u2u3, . . . , uk−1uk}. Basically, a route
or a path is a sub-graph that establish a traversal inside the
original graph [13][14].

Also, if there is a cost function C : E(G) → R, where
R is the set of real numbers, then we can calculate a route
P = (V,E) such that the cost to traverse E(P ) is said to
be the distance of P . For instance, we say that the distance
between two vertexes is the sum of all costs associated to the
edges that connect them [14].

Lemma 1: A path with minimal cost. Let G = (V,E) be
a graph and C : E ← R a cost function, a path P ⊆ G is said
to be minimal if all sub-paths in P are also minimal.

Proof: Suppose that P = {P1, P2, . . . , Pk, . . . , Pn},
where P1 is a sub-path of P that passes through Pk and reaches
all the way to Pn. Now, P is minimal if all Pi ⊂ P are
also minimal.

Let’s prove it by contradiction. Suppose that
Pk is not minimal, then we know that P =

{P1, . . . , Pk−1, Pk, Pk+1, . . . , Pn} have sub-paths from P1 to
Pk−1 and Pk+1 to Pn which are minimal. However, there is a
minimal path P ′k whose distance is lesser than Pk. Therefore,
the distance of P ′ = {P1, . . . , Pk−1, P

′
k, Pk+1, . . . , Pn} is

lesser than P , meaning that concatenating minimal sub-paths
will result in a minimal path.

The process of identifying a path with minimal cost is
based on Lemma 1. Therefore, Figure 1 lists an algorithm
to calculate all minimal paths from a single-source vertex of
a graph.

1: for all u ∈ V (G) do
2: d(u)←∞ {Initial distance is unknown}
3: p(u) ← ∅ {Identify which vertex is incident over u in

the minimal path}
4: end for
5: d(s)← 0
6: INSERT HEAP(A, s) {Creates a priority queue A based

on the distance to s}
7: while |A| ≥ 1 do
8: u ← REMOVE HEAP(A) {Removes the vertex with

minimal distance from A}
9: for all uv ∈ E(G), v ∈ V (G) do

10: if d(v) > d(u)+ CALCULATE COST(uv) then
11: d(v)← d(u)+ CALCULATE COST(uv)
12: p(v)← {u}
13: INSERT HEAP(A, v)
14: end if
15: end for
16: end while
17: return (p, d) {Returns a pair with the minimal distances

d to all vertexes and a set p that identifies incidences}

Figure 1. Algorithm to calculate the minimal cost of a path inside a graph
G = (V,E), such that the path starts from s ∈ V (G) and terminates in all

other reachable vertexes in V .

The algorithm in Figure 1 can be implemented in two well-
known versions: Dijkstra’s algorithm for shortest path and A*
algorithm [15]–[17]. The difference between them is how the
operation CALCULATE COST is implemented. Please look at
Figure 2 for each version.

1: return C(u, v)

(a) Standard cost function for Dijkstra’s algorithm for shortest path.

1: return C(u, v) + h(v)

(b) Standard cost function for A*’s algorithm for shortest path.

Figure 2. Implementations for each cost function according to Dijkstra’s and
A* algorithms in a graph G = (V,E), where u, v ∈ V (G) are two

vertexes, C : E(G)→ R is a cost function associated to the
edge uv ∈ E(G) and h(v) is any consistent heuristic.

One of the best heuristics is the euclidean distance be-
tween two points in the space. Considering a map of three-
dimensional coordinates, the distance between two points
P1 = (x1, y1, z1) and P2 = (x2, y2, z2) is given by:

d(P1, P2) =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2, (1)
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which can be applied as the cost function of a graph when its
vertexes represent coordinates of a 3D map.

C. Problems and definitions
Since routing problems are modelled using graph the-

ory, one way of modelling and solving traffic problems is
combining graph theory with a multi-agent approach [13].
In this context, Problems 1 and 2 present the definition of
an autonomous traffic model, whose agents are named as
autonomous vehicles.

Problem 1: Model an autonomous traffic system. Given
a set of vehicles A and a set of paths P = (V,E), where V
is a set of positions and E = (u, v), u, v ∈ V , is a set of
pairs that indicate that v is reachable through u, output a set
of routes Ri = (Vi, Ei), ∀Ri ⊆ P that a vehicle ai, ∀ai ∈ A,
can traverse autonomously.

Problem 2: Model an autonomous vehicle. Given a ve-
hicle a and a set of paths P = (V,E), where V is a
set of positions and E = (u, v), u, v ∈ V , is a set of
pairs that indicate that v is reachable through u, output route
R = (V ′, E′), R ⊆ P such that a can traverse autonomously.

According to the definitions of Problem 1, considering G
a set of graphs and V a set of vertexes, let Φ : G × V → G
be a function that receives P = (V,E) and an initial vertex
s ∈ V (P ), such that it outputs a path R ⊆ P . In essence, Φ
outputs a route starting from vertex s. Also, let Ω : V → V
be a function that receives a set of vertexes and outputs a
random vertex of the set. Henceforth, consider the algorithms
in Figure 3 as solutions for Problems 1 and 2.

1: R← ∅
2: for all a ∈ A do
3: Ra ← ∅
4: s← Ω(V (P ))
5: Ra ← Ra ∪ Φ(P, s)
6: end for
7: return R

(a) Solution proposed for Problem 1.

1: R← ∅
2: s← Ω(V (P ))
3: R← R ∪ Φ(P, s)
4: return R

(b) Solution proposed for Problem 2.

Figure 3. Solutions for the problems proposed in the paper. Consider R a set
of routes, Ra a subset of routes for a vehicle a, s ∈ V (G) a source vertex

for a graph P , where P = (V,E). Φ : P × V → P is an operator that
returns a path given a graph and a source vertex.

According to the algorithms in Figure 3, Φ can be any
single-source routing algorithm in a directed graph. Some ex-
amples are breadth-first and depth-first searches, which detect
all reachable vertexes from a single source [13]. There are
also shortest path algorithms, such as Dijkstra’s and Bellman-
Ford’s, which calculate the minimal paths from a single source
to every reachable vertex of the same graph [15][18]. Heuris-
tics, such as A*, are welcomed as well [16][17]. Notice that
the latter algorithms require a cost function C : E(G) → R,
where R is the set of real numbers.

Another important topic is reducing large amounts of work
into sub-problems, which allows us to avoid repetition and

implement reusable design patterns [14]. Lemma 2 applies this
vision to Problems 1 and 2.

Lemma 2: The problem of modelling an autonomous ve-
hicle is a sub-problem of modelling an autonomous traffic
system.

Proof: Let A = {a1, a2, . . . , an} be a set of n vehicles
and P = (V,E) a graph, where V is a set of positions and
E = (u, v), u, v ∈ V a set of pairs that indicate that v is
reachable through u. Consider the following assumptions:
• There is a set of known, but randomly calculated

source vertexes S = {s1, s2, . . . , sn}, where S ⊆ V ;
• The solutions of Problems 1 and 2 will always cal-

culate the route for a vehicle ai starting from the
corresponding vertex si, where si ∈ S;

• The algorithm used to calculate the route Ri for ai
will be the same in both solutions.

Given a set of routes R = {R1, R2, . . . , Rn} calculated
by the solution of Problem 1, we define R′ a set of routes
that will be calculated individually by all vehicles a ∈ A, as
said by the definition of Problem 2. According to Lemma 2,
if R′ = R we can prove that Problem 2 is a sub-instance of
Problem 1.

Let’s prove it by induction. The steps are:
1) Initially, R′ = ∅
2) For all vehicles ai ∈ A, apply the solution of

Problem 2, generating a route R′i;
3) Insert the solution R′i to R′;
4) R′i was generated with the same algorithm as Ri and

starting from the position si, therefore R′i = Ri.
Since every R′i ∈ R′ is equals to the corresponding Ri ∈

R, then the sets R′ and R are equal. Therefore, we proved that
applying the solution of Problem 2 to all vehicles in A will
produce a valid solution for Problem 1, hence Problem 2 is a
sub-instance of Problem 1.

Lemma 2 is useful because it tells us that, to model
an autonomous traffic system, we only need to model a
set of autonomous vehicles. Autonomous traffic is hence a
composition of autonomous vehicles.

III. DEVELOPMENT
This section will present how we applied the methodology

in our work. In Section III-A, we describe the development
environment and how we used it to simulate a multi-agent
system. In Section III-B, we do a more detailed analysis
on how to use the environment’s tools to model the agents.
Then, in Section III-C we describe which algorithms and
data structures we designed in order to make the environment
behave like an autonomous vehicular traffic system.

A. GTA-SA/SA-MP: an online multiplayer game server
The GTA-SA/SA-MP is a multiplayer modification for

the Rockstar’s game GTA-SA [8][9]. It uses the dependency
inversion principle to make an interface between an abstract
machine interpreter and the game itself [12].

The abstract machine, AMX, is the compilation result of
a well-known scripting language, named Pawn [19]. SA-MP
is an AMX interpreter that executes the compiled AMXs with
the developers’ modifications. Therefore, GTA-SA/SA-MP is
a client-server application, where GTA-SA is the client and
SA-MP is the server [9].
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Also, Pawn interpreters follow a design pattern that pro-
vides a common interface to be extended in separated plug-
ins. For instance, developers can write dynamic libraries that
include the AMXs’ interpreters base functions, allowing them
to be extended and reused in Pawn scripts. Since dynamic
libraries are developed in middle-level languages, such as
C or C++, we can improve our server for better memory
management and computational cost [9][12][19].

When a player first enters a SA-MP server, it will establish
a connection between the game and the respective server,
whose events, objects and other dynamics will be controlled
and modified according to the compiled AMXs [9][20].

In this context, we created a set of Pawn scripts and
dynamic libraries that used the game’s built-in objects, physics
and events to modify its default behavior, allowing us to
introduce our own functions to simulate an autonomous ve-
hicle system.

SA-MP has a consolidated community that writes and
shares plug-ins and scripts around the world [20]. We used
some of these, like the Fully Controllable Non-Playable
Character plug-in, FCNPC, which allowed us to insert and
control non-playable characters, NPCs, in the game map [21].
This plug-in was important to implement the agent system’s
behaviors, which can be seen in more details in Section III-B.

Also, based on the premise that games render only a limited
amount of objects in the screen, mostly to save memory
and computational resources, it was important to use plug-
ins that embodied this principle and avoided extra memory
consumption. Therefore, we used SA-MP Streamer Plugin to
draw objects and labels in the game map, allowing us to display
some structural information about the system [22].

In addition, SA-MP exports a set of paths’ data that we
could decode and use to implement our system [23]. Please fol-
low to Section III-C to have more details on how we modified
the game’s path structures to implement routing algorithms.

Finally, we used the described tools and data structures
to solve Problem 2, which can be scaled to a solution of
Problem 1.

B. Autonomous agents modelling
GTA-SA/SA-MP provides a whole set of objects and

structures that can be modified by FCNPC plug-in [20][21].
Among them, there are non-playable characters and vehicles.
We used these elements to solve Problems 1 and 2, proposed
in this work’s methodology at Section II-C.

In this case, vehicles can be controlled either by the player
or by an NPC. Since NPCs can have autonomous behavior,
then we could simulate autonomous driving by inserting a NPC
into a vehicle [21]. Therefore, we created a dynamic library
that extends SA-MP server to do basic operations over NPCs
and vehicles, given by Definition 2.

Definition 2: The Driver NPC plug-in. It is a dynamic
library that implements SA-MP’s model to manage NPCs
directly inside a vehicle. This plug-in exports three functions:
• Create: receives as input the vehicle’s attributes, as a

pair of primary and secondary colors C1 and C2, a
vehicle model T , an initial position s and an angle θ
in relation to the north, which indicates the direction
the vehicle will be facing. It renders the model in the
described position and will return a unique identifier
a, representing the NPC;

• Destroy: receives as input an NPC identifier a. It will
destroy both NPC and its corresponding vehicle from
the screen;

• Move: receives as input an NPC identifier a and a pair
of positions u and v. It will make the NPC travel from
u to v simulating an autonomous driving.

In Definition 2, the operations create and destroy were
developed using GTA-SA/SA-MP’s own features [20][24].
However, operation move needed to be adapted in different
situations, like curves and hills. In curves, we calculated the
Bezier’s curve between the initial and final positions [25].
Driving up and down hills was still an obstacle, and we
couldn’t find a method to adjust the vehicle’s angle while
traversing different reliefs.

C. Routing algorithms and data structures
GTA-SA/SA-MP provided a set of path structures that

allowed us to model positions and hence a directed graph in the
game map [23]. The structures are described in Definition 3.

Definition 3: SA-MP’s links and nodes. There are two
main types of nodes exported by GTA-SA/SA-MP:
• Path-nodes: a structure containing an identifier i, an

area identifier p, a link identifier l and a position P =
(x, y, z) in the game’s 3D space. Path-nodes are placed
in streets and roads along the map. Also, they can be
extended in different kind of nodes:
◦ Navi-nodes: a structure containing detailed in-

formation about a path-node. It has the referred
path-node’s identifier i and area identifier p,
and a position P = (x, y, z) in the game’s
3D space, usually between two adjacent path-
nodes. It also has a set of flags, like the amount
of left and right lanes in relation to the navi-
node and a value to indicates if the traffic flow
is allowed in the right or left lanes;

◦ Ped-nodes: describe the game’s default paths
for pedestrians. Usually placed on streets in-
tersections, houses and sidewalks;

◦ Vehicle-nodes: describe the game’s default
paths for vehicles. Usually placed on streets,
roads and parking lots;

◦ Boat-nodes: describe the game’s default paths
for boats. Usually placed at the sea.

• Links: a structure containing an identifier l and pairs of
nodes and area identifiers (i1, p1), (i2, p2), indicating
that the nodes i1 and i2 in areas p1 and p2 have
a connection.

Therefore, we created a dynamic library that extends SA-
MP server to do operations over map positions, which allowed
us to implement the proposed routing model. Hence, path-
nodes and all their derivations could be inputted as positions;
the move function, exported by the Driver NPC plug-in, as
described in Section III-B, received a pair of path-nodes which
represent the initial and final positions of the autonomous
vehicle movement.

Definition 4: The Paths plug-in. It is a dynamic library
that implements SA-MP’s model to manage paths and positions
in GTA-SA. It exports the following functions:
• GetRelativeStreetPosition: receives as input the identi-

fiers i1 and i2 of source and target path-nodes and the
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vehicle’s width w, returning a position P = (x, y, z)
in the correct lane for the vehicle to traverse;

• Dijkstra: receives a pair of random path-node identi-
fiers s and t as input, returning a list of path-nodes
identifiers, representing the route with minimal cost
between path-nodes s and t calculated by Dijkstra’s
algorithm [15];

• AStar: receives a pair of random path-node identifiers
s and t as input, returning a list of path-nodes identi-
fiers, representing the route with minimal cost between
path-nodes s and t calculated by A*’s algorithm [16].

The Definition 4 states that the Paths plug-in exports a
set of functions related to routing calculation and path-nodes
manipulation. The function GetRelativeStreetPosition needs a
pair of source-target nodes because, according to Definition 3,
path-nodes identify a street rather than a specific lane. There-
fore, we used both nodes’ angles to identify in which track of
circulation the vehicle was and, as a consequence, in which
lane it should be placed. For that purpose, we also used the
vehicle’s width to calculate the agent’s correct position in the
lane, P : A→ R, given by

P (a) = c+
w(a)

2
, (2)

where a ∈ A is a vehicle, w : A→ R is a function that returns
the vehicle’s width and c is a constant factor.

Also, this function was developed in a way that allows
implementing both traffic ways, meaning that the agents can
traverse in the positive lane direction as well as in the negative
lane direction.

Finally, we developed the functions Dijkstra and AStar
to calculate routes using Dijkstra’s and A*’s algorithms, re-
spectively, both returning a list of path-nodes, where the cost
of navigating between a pair of path-nodes is given by the
distance between two points in a 3D space, as defined in the
equation (1) [15][16].

IV. RESULTS
This section will explore the results we obtained after

applying the proposed methodology to GTA-SA/SA-MP. We
indicate how many path structures were found in the game,
as well as their category according to Section III-A. Then,
we clarify how they were used to generate routes in order
to simulate the autonomous traffic. Finally, we raised time
execution metrics to understand if the generated routes match
the expected cost for the applied algorithms.

In our development, we were able to identify a high number
of path-nodes in the game, as displayed by Table I. According
to it, the pedestrian nodes represent the majority of GTA-SA
paths data, being followed by vehicles and boats.

TABLE I. QUANTITY OF PATH-NODES DISCOVERED IN THE GAME,
GROUPED BY THEIR TYPES.

Type Count
Pedestrian 37,650
Vehicles 30,587
Boats 1,596
Total 69,833

From Table I, we can also estimate that GTA-SA’s default
features allow an autonomous agent network to be composed

by 54% of humans, 44% of vehicles and 2% of boats,
considering the default path-nodes distribution.

In addition, the path-nodes and navi-nodes were processed
into a graph Γ = (I, L), where I is a set of path-nodes and L is
a set of links, containing information regarding the connection
between the nodes in the game map. Figures 4 and 5 show a
visual representation of path and navi-nodes, respectively.

In Figure 4, we see the detailed information of path-nodes,
like the identifier i = 36, the area identifier p = 261, the
three-dimension position P = (x, y, z) and a set of links
L = {(36, 262), (36, 265), (36, 270)}, where each pair (i′, p′)
represents a target path-node’s identifier and area identifier,
respectively.

Figure 4. Visual representation of a path-node and its attributes.

In Figure 5 we see detailed information about navi-nodes.
They are mostly present on hills, curves and multi-lane streets
or roads. We used their target path-node identifiers i = 37 and
area identifier p = 275, as well as the amount of left and right
lanes, which in the example counts as one for both.

Figure 5. Visual representation of a navi-node and its attributes.

Furthermore, we could categorize two different street mod-
els in the game: the single-lane and the multi-lane. The
single-lane model has a single traffic way available or, more
specifically, a way where navi-nodes expose zero left and right
lanes. In the multi-lane model, there might be one or more
traffic ways available for which the navi-nodes expose more
than zero left and right lanes.
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According to Figure 6, in the single-lane model the vehicle
a can traverse in both traffic ways to reach a path-node i. This
can be done by inverting all links’ directions.

i

a

(a) North-south traversal in a
single-lane street.

i

a

(b) South-north traversal in a
single-lane street.

Figure 6. A single-lane street on which a vehicle a is reaching a path-node i.

According to Figure 7, in the multi-lane model vehicles a1
and a2 can traverse both in the same street to reach path-node
i, but in different lanes. Therefore, we applied the equation
in (2) to determine the correct vehicle’s positions. Since we
used the same vehicle models, w is a constant; hence, from
empirical approximations, we determined w = 0.75 and c = 1.

i

i1 i2

a1 a2

P (a1) P (a2)

(a) Multi-lane street model with a
single direction.

i

i1 i2

a1

a2

P (a1) P (a2)

(b) Multi-lane street model with
different directions.

Figure 7. Multi-lane street models. Vehicles a1 and a2 need to reach
path-node i, but it’s placed in the middle of the street. Therefore, we

calculate the displacements P (a1) and P (a2) to determine the correct next
positions i1 and i2, respectively.

As for the routes calculations, we recorded the time
spent, in milliseconds, for both Dijkstra’s and A* algorithms
according to the number of path-nodes that composed the
routes. The results were compiled in the chart on Figure 8.
According to the chart, we noticed that A* is faster when
generating routes for the same set of path-nodes. In addition,
both algorithms calculated the same routes with minimal costs,
meaning that the vehicle’s path did not take any influence in
the route computation.
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Figure 8. Time execution for the routing algorithms, in milliseconds (vertical
axis), according to the number n of path-nodes (horizontal axis). The

continuous line represents the time spent by Dijkstra’s algorithm for shortest
path, while the dotted one represents the time spent by A*’s algorithm.

The literature indicates that A* is faster than Dijkstra’s
algorithm whenever the heuristic is said to be consistent, which
is also a good indicator that the adopted 3D space is consistent
for routing models [16]. Also, we recorded a video of some
simulations, which can be appreciated by the readers as a
reference in this paper [26].

V. CONCLUSION
The results obtained in this work allowed a better sim-

ulation in the GTA-SA/SA-MP environment. When the au-
tonomous vehicle network was extended to the whole map, it
was possible to simulate different scenarios, taking advantage
of many things that the environment offers, like different
reliefs, street lengths and curve angles.

Furthermore, the results showed consistency with the re-
ality, since A* and Dijkstra algorithms returned routes with
minimal costs given the same set of path-nodes. Also, A*
could calculate all routes with the proposed heuristic, which
means that GTA-SA/SA-MP has a valid model of geometry
and position.

This extension also allows the pedestrian and boat nodes
to be implemented. Using the pedestrian nodes, it is possible
to create an integration between autonomous vehicles and
pedestrians in the roads, which is one of the main problems in
autonomous vehicles systems. Using boat nodes, it is possible
to simulate a maritime traffic, allowing to test the vehicles at
sea as well.

Also, Autonomous Intersection Management protocols
(AIM) can be implemented in a larger scale. Intersections are
one of the main problems in autonomous vehicles systems too,
since most of the traffic accidents happens in them. Therefore,
implementing AIM at multiple intersections can be an efficient
way to raise results about reductions in accidents and others
factors, such as time spent, amount of emitted gases and
spent fuel.

Another option would be increase the dynamics of the
simulations, including weather manipulation, acceleration and
deceleration in curves, uphills and downhills, reverse driving
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and overtaking. This would allow us to explore more scenarios,
as well as increase the difficulty of the problems we are solv-
ing.

Now, beyond the successful simulations that were done
in the whole GTA-SA map, the progress made in this work
opens doors to perform simulations of the main problems
of autonomous vehicles systems in a larger scale, using the
realistic environment GTA-SA/SA-MP.
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