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Abstract— Sharing electric vehicles among companies and 
users can increase efficiency of corporate car fleets. Due to 
charging times and limited ranges, high quality scheduling is 
necessary to achieve a high degree of utilization and in turn 
economic efficiency. Schedule optimization can help improving 
a schedule regarding utilization and cost, but does not take into 
account possible future bookings. If a schedule is fragmented, 
no future bookings can fit in. In this work, we introduce a 
measurement for the fragmentation of schedules and use it to 
minimize fragmentation and in turn maximize future booking 
potential. We evaluate the approach using synthetic and real-
life trials, showing that fragmentation reduction can lead to 
increased utilization in electric vehicle fleets. 

Keywords-corporate carsharing; fragmentation; schedule 
optimization; schedule management; electric vehicle  fleets. 

I.  INTRODUCTION 
Even though electric vehicles (EVs) have been available 

for some time, recent developments like the rising costs of 
fossil fuels, technological progress in vehicle technology 
and availability of regenerative energy make the economic 
use of EVs in company car fleets more and more feasible. 
The market potential is noticeable, estimated at about 1 
million EVs until 2020 just for Germany and in particular 
for company car fleets at 30% of newly bought cars [5]. The 
drawbacks of EVs, such as the high fixed cost for vehicles 
and charging infrastructures, have to be overcome by 
employing high utilization. The Shared E-Fleet project [15] 
researches the economic operation of shared car fleets, 
making it possible even for small and medium enterprises, 
which could not economically operate a fleet on their own. 

Charging times and limited range are special challenges 
in the context of using EVs for corporate car sharing, which 
need to be taken into consideration when scheduling 
vehicles and business trips. When operating at capacity, the 
consequences of minor disruptions like delays or lost battery 
level can affect the future schedule, as trips might not be 
started on time or without sufficient charge to reach the 
destination. 

To reach high utilization of car fleets while minimizing 
cost or ecological impact and compensating these 
disruptions, continuous optimization of the schedule is used. 

While regular optimization techniques can be used to 
optimize a fleet schedule, e.g., regarding minimization of 
emissions, possible future states are not taken into account. 
These include the potential for future bookings, for which 

suitable timeslots in the schedule need to be available. If the 
schedule is fragmented, i.e., trips are distributed uniformly 
among vehicles, there may be no timeslot for a future 
booking, even though in aggregate, enough unused time on 
vehicles is available. 

In this work, we describe a rating method for vehicle 
schedules based on a fragmentation criterion and use it to 
provide optimized schedules with minimum fragmentation, 
thus ensuring maximum opportunities for future bookings. 

The contribution of this work is as follows: We introduce 
a fragmentation ratio, a measurement for the fragmentation 
of schedules and show how it is used as part of a closed 
loop optimization system. 

The remainder of this work is structured as follows: 
Section II describes related work. Section III describes the 
schedule optimization problem. Section IV defines schedule 
fragmentation in relation to concepts from memory 
management. Section V presents the fragmentation rating 
and the algorithm for computing it. Section VI describes an 
evaluation scenario from the Shared E-Fleet project. Finally, 
Section VII gives the conclusion and outlines future work. 

II. RELATED WORK 
    Optimization of vehicle fleets encompasses multiple 
domains like routing, charging and scheduling. Different 
schedule optimization algorithms exist, but do not match the 
corporate car sharing scenario [13]. 

In our case, trips have a fixed start and end time and they 
need to be distributed among a set of vehicles with the 
purpose of maximizing utilization and minimizing costs. 
The solution for the optimization of scheduling and 
charging presented in [3] proves that the routing problem is 
NP-complete. While this approach provides a solution for 
charging and schedule optimization, the reaction to 
disruptions and schedule fragmentation are not covered.  

Several methods for a feasible solution to NP-hard 
schedule optimization problems can be found in [4], but 
they do not refer specifically to the shared fleet scenario.  

Schedule defragmentation is a problem in other fields of 
application as well. For example, [8] introduces an 
algorithm for scheduling lectures to classrooms by moving 
chunks from the least to the most occupied rooms. The 
implementation is described in [11], defragmenting a 
classroom schedule. However, compared to our work, 
defragmentation is the primary and not a secondary 
optimization goal. The schedule of healthcare professionals 
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can be defragmented to provide maximum potential for 
additional appointments by preserving large chunks of free 
time, similar to how this work aims at maximizing potential 
for additional bookings [9]. In a similar manner, [10] 
provides a defragmentation algorithm to minimize patient 
waiting times. In comparison, our scenario has additional 
constraints such as vehicle range. 

While the general concept can be applied to schedule 
defragmentation, different consistency conditions specific to 
EV use are not covered. Additionally, these static 
scheduling problems do not cover frequent re-optimization, 
as needs to be applied in a car fleet schedule. 

III. SCHEDULE OPTIMIZATION 
In a shared car fleet, users book trips for a predefined time 

and destination, starting and ending at a car fleet station, 
where the vehicle can be charged. A schedule decides which 
trips are performed by which vehicles. As vehicles differ in 
range, cost per kilometer and emissions, there is potential for 
optimization. Another goal of optimization is enabling a high 
degree of utilization, which includes leaving a maximum 
potential for future trips. A user books a trip in the fleet, a 
specific vehicle is only assigned shortly before the trip starts, 
enabling trips to be moved by optimization beforehand. 

Two different algorithms are used for schedule 
optimization. An alternative search algorithm searches a 
feasible fit for a trip in the schedule. This algorithm is used 
to check availability during booking and needs to provide 
immediate answers. The other algorithm, periodic 
optimization, performs a full optimization of the schedule, 
potentially redistributing any future trips [12]. 

 
 

Figure 1 Closed loop schedule optimization scheme. 
 
For the periodic optimization, we take into account two 

main components of schedule optimization, namely the 
algorithm used for optimizing the scheduling procedure and 
the feedback mechanism that has the purpose to indicate the 
degree of optimization or in other words the optimization 
rating of a schedule. As in the case of a typical closed loop 
control system [6], the optimization algorithm would be used 

as an actuator, changing the state of the schedule and the 
optimization rating as the feedback responsible for providing 
the necessary insight for improving the scheduling 
algorithm. This article focuses on one proposed feedback 
method, namely the fragmentation of a schedule. 
Fragmentation reduces the possible utilization of vehicles, as 
fragmented schedules offer shorter slots for future trips 
during alternative search. Therefore low fragmentation is a 
prerequisite for high utilization, so it is an important aspect 
to be evaluated and optimized. 

Figure 1 shows the closed loop system used in the 
optimization process. In a closed loop configuration, the 
components involved are connected in a cyclic manner, 
influencing each other. Therefore, a holistic approach 
towards the analysis of the system is necessary [2]. 

 
The closed loop has four main components: 
Optimization algorithm – used for scheduling based on an 
algorithm that is meant to optimize specific goals 
Scheduler – deploys the current schedule 
Fragmentation Rating – the feedback mechanism used for 
comparing the old and the new schedule 
Comparator – based on the feedback received from the 
Fragmentation Rating component, delivers the optimum 
schedule  

 
The optimization process starts with the current schedule, 

containing all current and future trips assigned temporally or 
permanently to vehicles. This schedule is given to the 
optimization algorithm, which after being triggered 
(periodically, by an event, e.g., a delay, or by an 
administrator), delivers a new schedule, using a greedy 
optimization algorithm, which is described in [12]. The new 
schedule and the current schedule are next given to the 
fragmentation rating component, where the computation of 
the rating takes place. The fragmentation rating is 
implemented as a maximization function (the higher the 
rating, the lower the fragmentation ratio) and the output is 
given in the form of a differential rating between the new 
and the current schedule. Using the provided rating, the 
comparator decides between the current and the new 
schedule and passes on the optimal schedule to the 
scheduler. At this point, the current schedule is replaced 
with the new optimized schedule (which might be the same 
one, if the new schedule does not receive a better rating, as 
the optimization algorithm is not fragmentation aware at the 
stage covered by the article). The optimization process is 
repeated every time the optimization algorithm is triggered. 

IV. FRAGMENTATION OF A SCHEDULE 
While the initial schedule optimization only took into 

account a goal function (for either cost or emission 
minimization), during model trials we noticed that high 
utilization was hard to be achieved, as end-users tended to 
book trips which could not be scheduled to any vehicle, 
though globally enough free capacity was available. We 
noticed the problem occurred when trips were evenly 
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distributed between vehicles, providing many opportunities 
for a future trip to overlap existing trips, therefore becoming 
impossible to book without re-optimization. 

Thus, we added a soft goal to our approach in the form of 
the fragmentation of a schedule. Borrowing from operating 
systems memory fragmentation, we applied this concept to 
the area of scheduling trips among cars. In the context of 
computer memory, fragmentation usually refers to storage 
space that is not used efficiently, meaning we are dealing 
with reduced capacity and/or performance [7]. This can lead 
to different undesirable situations, one of which is not being 
able to allocate memory in certain areas of the storage space.   

We will now introduce the basic principles related to 
memory management and fragmentation in the area of 
computer systems and we will transfer them to our proposed 
concept of the fragmentation of a schedule. 

The dynamic memory is designed as a buffer between the 
physical big storage devices (e.g., hard-disks) and the small 
size but high speed memory of the processor, i.e., the cache. 
Basically any application needs to allocate memory from 
dynamic memory in order to run. Blocks of memory are 
allocated in chunks and whenever the application does not 
need such a chunk anymore, that particular space can be 
freed. However, because the size of these chunks is variable, 
after a while, depending on the actual memory usage of the 
application, the number and the size of long continuous 
regions of memory space could reduce significantly [1].  
As an analogy, in order for a trip to take place, it needs to be 
booked in the schedule, which means we need to allocate 
that trip a time slot on a single vehicle inside the schedule 
(the schedule corresponds to the dynamic memory).  

In the case of memory management, we work with 
allocating space chunks, while in the case of schedule 
management we are dealing with allocating time chunks. 
However, there is an important difference to be mentioned. 
The time to be allocated in the schedule is replicated among 
the vehicles available in the fleet, i.e., every vehicle has its 
own timeline, parallel to the others, so a specific time 
interval can be booked to any available vehicle. This is not 
true in the case of memory management, where every chunk 
of storage space is unique and it cannot be allocated to two 
or more processes at the same time. When a trip is cancelled 
for whatever reason, that specific time interval can be freed, 
as in the case of memory allocation. To continue the analogy, 
the time chunks allocated for trips are variable in size and 
when trips get cancelled, some variably sized slots are left 
unused, which can make booking longer trips harder. On the 
other hand, memory management does not depend directly 
on time, so the state of the memory could stay the same even 
if time passes. That is not the case with schedule 
management, because we are actually dealing with allocating 
time and the mere passing of it determines the state of the 
schedule to change along with it. For example, currently 
running trips cannot be reallocated and late trips may extend 
their allocated chunks, necessitating future changes. 

The two main types of fragmentation related to memory 
are internal and external. Internal fragmentation usually 
occurs when the allocated memory (addressed in fixed size 

partitions) does not match the requested memory and the 
remaining unused part is wasted, as it cannot be allocated to 
other processes. External fragmentation however is 
generated when variably sized partitions are used, but as 
soon as some segments of memory are freed, some unusable 
small gaps can appear between the occupied blocks of 
memory. If we analyze the schedule management situation, 
we can only have external fragmentation, because when we 
allocate time for a trip, we can allocate the exact interval 
needed, if the vehicle is available for booking, so we are not 
bound to some fixed sized intervals, as in the case of 
memory fragmentation.  

Therefore, the fragmentation for a schedule is computed 
using the chunks of time which are not used and their 
associated properties (duration and time interval of the day).  

V. FRAGMENTATION COMPUTATION 
The initial configuration is that every vehicle is fully 

charged and ready to be booked.  
 
There are a couple of terms to be defined: 

Window – The time interval (in the future) the 
fragmentation is calculated for (a default one day window 
starts at 7 AM and ends the next day at 6:59AM) 

Fragment – a chunk of time between two bookings 
which is not used (as seen in Figure 2) 

Maximum Fragmentation Ratio – the maximum rating 
you could get within a given window when the vehicles are 
fully charged without any booking. 

 
Figure 2 Example of a schedule. 

 
The computation of fragmentation is meant to be used for 
optimizing the fragmentation goal, which means reducing 
the actual fragmentation of the schedule. By taking a 
snapshot of the schedule at different moments in time, we 
can analyze its structure and extract a list of fragments for 
each vehicle. The span of a fragment is between the end of 
the previous trip and the start of the next one, all within the 
given window for analysis. After getting the list of all 
fragments in the schedule, we compute the fragmentation 
ratio using two general, relevant properties of the fragments: 
duration and the time interval in which the trip is located in. 
We incorporated these properties in the fragmentation ratio 
formula (1), represented by weights, as follows: 
 

FR = ∑ (duration(fragi) ∗ w1(fragi) ∗ w2(fragi))n
1   (1) 

 
where n is the number of fragments, w1 is the duration 
weight ( computed in (2) ) and w2 is the time interval weight 
( computed using (3) ). 
The fragments which have a longer duration have a higher 
weight w1, because longer and shorter trips can all fit in an 
extended time interval (see Figure 4). However, shorter 
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fragments have a lower usability (trips of less than 20 min 
are less likely). Regarding w2, the weight for the time 
interval, trips during regular business hours (7AM till 
17PM), have a higher weight than the trips outside of this 
interval (see Figure 5), taking into consideration that the 
main target of the Shared-E-Fleet project is the business 
sector [3]. 
The functions used for the weight computation are synthetic 
functions, but using the real data coming from statistics 
regarding usage of the electronic fleet, new and more 
relevant weighting functions can be computed. The initial 
formula (with x as the duration of the trip) used is: 
 

DurationWeight = 0.79
fw∗60

x + 0.01 − 0.79
fw∗60

    (2) 
 

The fw parameter stands for fragmentation window, which 
is always a factor of 1440, i.e., how many minutes there are 
in one day. A window starts at 7AM in the morning (0) and 
it ends at 6.59AM the next day (1440). If there is one trip 
today at 1PM and 1 trip tomorrow at 10AM, the 
fragmentation window is 2880 minutes (48H) (see Figure 3). 

 

 
 

Figure 3 Fragmentation window. 
 

An arbitrary maximum weight of 0.79 is given to a 
fragment containing the whole analyzed window. We intend 
to adjust the weight functions according to the real life usage 
profile obtained from the model trials. The subtraction in the 
formula is used for keeping the weight normalized. 

 

 
 

Figure 4 Weight function for the duration of the fragment. 
 

TimeIntervalWeight = �wend−wstart
2

�  (3) 

wstart = −0.8
fw∗60

startInterval + 0.9  (4) 

wend = −0.8
fw∗60

endInterval + 0.9   (5) 
 

The startInterval and endInterval variables are normalized 
for a one day duration, so values are between 0 and 1440 by 

using the fragmentation window defined previously. The 
parameters 𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠  and 𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒 are computed using formulae (4) 
and (5) and used for determining the time interval weight. 

 

 
 

Figure 5 Weight function for the time interval of the fragment. 
 

We plan to further adjust these synthetic functions by 
using statistical data from model trials. 

Using those weights, the fragmentation ratio function is 
computed as a value between zero (meaning there is no 
fragment in the schedule, so no free slots) and maximum 
fragmentation ratio (meaning all vehicle schedules are empty 
and ready to be booked). Note that due to the duration 
weight, longer continuous fragments provide a higher 
fragmentation rating, and due to the time interval weight, 
fragments during business hours provide a higher 
fragmentation rating. Thus, schedules which provide large 
fragments of free time slots during business hours for future 
bookings are selected after optimization.  

VI. EVALUATION 
Within the Shared E-Fleet project, this method is 

integrated into an optimization system, containing 
algorithms for booking, alternative search, partial and full 
optimization implemented as a Java prototype [12]. This 
optimization system is part of the larger Shared E-Fleet 
architecture, providing a EV fleet management solution[14]. 

We evaluated the fragmentation ratio approach, both 
using synthetic tests and by application during three long-
term model trials in German industrial parks.  

The partial and full optimizations are implemented in the 
optimizer component. The state of an EV is updated if real-
time notifications such as delays, malfunctions or returns are 
received. The optimization algorithm implemented is a 
greedy algorithm using backtracking [12], minimizing total 
emissions and compensating disruptions like delays, which 
was run as is during the initial phase model trials. As a 
whole, the optimization scales linearly with the number of 
trips, allowing use of large schedules. 

Before deployment in the model trials, we used synthetic 
test data with randomized bookings to determine the 
suitability of the approach.  

In the following, we show a simplified example using 
synthetic test data.  
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We used the fragmentation ratio computation in order to 
check the improvement of the fragmentation goal between 
two snapshots of a schedule, one with three trips, spanning 
over a one day window and the second one being the 
optimized version of the first one, using the optimization 
algorithm.  

 

 
 

Figure 6 – Original version of the schedule. 
 

A fleet of three vehicles is used in the example. As seen in 
Figure 6, in the original schedule we have a 30 min trip 
using ev1, starting at 11.00, a 1h 30min trip using ev2, 
starting at 14.00 and a 1h trip using ev3, starting at 12.00. 

 
Figure 7 shows the optimized schedule (optimization 

was carried out at 10.38am). It can be observed that instead 
of sparsely using three vehicles, two of them were 
completely freed and all three trips are booked on one 
vehicle, therefore increasing utilization and decreasing 
fragmentation. Note that charging can be deferred as long as 
the remaining charge is sufficient for the next trip. 
 

 
 

Figure 7 – Optimized version of the schedule. 
 

The gray area after each trip represents a buffer which is 
intended to account for user behavior (minor delays, 
unloading the vehicle, connect to charge station, etc.). The 
red areas indicate charging times. 

After running the analysis, we found 6 fragments for the 
old schedule (Figure 8) and 4 fragments for the new schedule 

(Figure 9) after optimization. The value of the fragmentation 
rating for the old schedule was approximately 794 and for 
the new one is around 1051, so the fragmentation was 
successfully reduced. The new schedule has two fragments 
of 1440 minutes, which means that two vehicles are 
completely free, as seen in Figure 7. 

 

 
 

Figure 8 – Fragmentation rating of the old schedule. 
 

 
 

Figure 9 – Fragmentation rating of the new schedule. 
 

If the new schedule has a higher fragmentation rating,          
the new schedule actually has lower fragmentation, so it is 
better than the old one and the optimization was successful. 

The model trials were implemented in three technology 
parks over a time period of a year, in the context of real 
small and medium sized enterprises. While the cars are 
providing a range of over 100 kilometers, the average 
booking contained a trip with less than 50 kilometers and 3 
hours in length, facilitating optimization. Figure 10 shows 
the distribution of trips throughout the day, indicating 
predominant use during business hours, which we aimed to 
accommodate using the fragmentation ratio. Figure 11 
shows the fleet utilization in one model trial, as well as the 
success percentage, indicating how many booking requests 
could be fulfilled. Due to novelty value, the demand reached 
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its peaks in the first month. However, initial hardware 
problems in addition to suboptimal fragmentation created a 
perception of low availability. Bookings were rejected even 
though vehicles could be seen as available. To increase 
utilization, the fragmentation rating comparison was added 
to optimization at the end of August. The improvement in 
scheduling allowed on average 21.6% increase in utilization, 
with a higher success ratio. In December, utilization was 
lower due to weather conditions as well as holidays. 

 

 
 

Figure 10 – Distribution of trips during the day. 
 

 
 

Figure 11 – Trips and success ratio. 
 
Other model trials lack comparison values as they were 

started with fragmentation rating in place. 

VII. CONCLUSION 
Optimizing vehicle schedules is a necessity for economic 

operation of shared fleets. In this work, we have introduced 
the fragmentation ratio, a rating for fragmentation of vehicle 
schedules, based on concepts from memory management in 
operating systems. Fragmentation rating complements 
schedule optimization to further increase utilization by 
prioritizing large time slots for future booking. 

We evaluated the concepts by using synthetic data, as 
well as introducing them in a running model trial, showing 
notable improvements in utilization. 

In future work, we will integrate fragmentation rating 
with other soft goals related to charging times and energy 

management (e.g., optimal utilization of photovoltaics for 
charging). Currently, the rating is applied after optimization, 
stopping fragmented schedules from replacing less 
fragmented schedules. In future work, we would like to adapt 
the optimization algorithm with fragmentation awareness in 
addition to other optimization goals. Additionally, we would 
like to evaluate weighing individual vehicle utilization using 
the fragmentation ratio, which could provide benefits in 
larger fleets. 

ACKNOWLEDGEMENT 
This research has been supported by the IKT II program 

in the Shared E-Fleet project. They are funded by the 
German Federal Ministry of Economics and Technology 
under the grant number 01ME12105. The responsibility for 
this publication lies with the authors. 

REFERENCES 
[1] A. S. Tanenbaum, “Modern Operating Systems (3rd Edition),” 

Prentice Hal,  ISBN-13: 978-0136006633, 2007. 
[2] K. J. Åström and R. M. Murray, “Feedback Systems: An Introduction 

for Scientists and Engineers,” Princeton University Press, ISBN 0-
691-13576-2,  2008. 

[3] O. Sassi and A. Oulamara, “Joint scheduling and optimal charging of 
electric vehicles problem,” Computation Science and its 
Applications-ICCSA 2014, Springer, 2014, pp. 76-91. 

[4] V. Pillac, M. Gendreau, C. Gueret, and A. L. Medaglia, “A review of 
dynamic vehicle routing problems,” European Journal of Operational 
Research 225(1), 2013, pp. 1-11. 

[5] P. Plötz, T. Gnann, A. Kühn, and M. Wietschel, “Market introduction 
scenarios for e-vehicles,“ Karlsruhe:  Fraunhofer-Institut für System-
und Innovationsforschung ISI, 2013, (in German). 

[6] R. C. Dorf and R. H. Bishop, "Modern control systems," Pearson 
(Addison-Wesley), 1998. 

[7] M. S. Johnstone and P. R. Wilson, "The memory fragmentation 
problem: solved?," ACM SIGPLAN Notices, Vol. 34, No. 3, ACM, 
1998, pp. 26-36. 

[8] E. Humo and Z. Vejzović, "A Heuristic Approach To Classroom-
Period Schedule Optimization," Advanced Engineering, 1st year 
(Vol.2), 2007, pp. 165-172. 

[9] J. Lian, et al., "Clinical appointment process: improvement through 
schedule defragmentation," Engineering in Medicine and Biology 
Magazine, IEEE 29.2 (2010), pp. 127-134. 

[10] C. E. Nelson, et al., "Visual scheduling to improve workflow and 
throughput in the University of Virginia Health System Pediatric 
Specialty Clinic," Systems and Information Engineering Design 
Symposium (SIEDS), IEEE, 2011. 

[11] Z. Vejzovic and E. Humo, "A software solution for a mathematical 
model of classroom-period schedule defragmentation," EUROCON, 
2007, The International Conference on: Computer as a Tool, IEEE, 
2007. 

[12] F. Koetter, „Dynamic schedule optimization in shared EV fleets,“ 
http://www.shared-e-
fleet.de/images/Dynamische_Einsatzoptimierung_von_gemeinsam_g
enutzten_ Elektrofahrzeugflotten.pdf, 2015, (In German). 

[13] M. Bielli, A. Bielli, and R. Rossi, "Trends in models and algorithms 
for fleet management," Procedia-Social and Behavioral Sciences 20, 
2011, pp. 4-18. 

[14] J. Ostermann, T. Renner, F. Koetter, and S. Hudert, "Leveraging 
Electric Cross-Company Car Fleets through Cloud Service Chains: 
The Shared E-Fleet Architecture," Global Conference (SRII), 2014 
Annual SRII, IEEE, 2014. 

[15] Shared E-Fleet. [Online]. Available from: http://www.shared-e-
fleet.de/ 2015.07.14  

0%
5%

10%
15%
20%
25%
30%

08
:0

0-
9:

00

09
:0

0-
10

:0
0

10
:0

0-
11

:0
0

11
:0

0-
12

:0
0

12
:0

0-
13

:0
0

13
:0

0-
14

:0
0

14
:0

0-
15

:0
0

15
:0

0-
16

:0
0

16
:0

0-
17

:0
0

17
:0

0-
18

:0
0

0%
20%
40%
60%
80%
100%

0
10
20
30
40

Trips Success ratio (%)

25Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-434-3

VEHICULAR 2015 : The Fourth International Conference on Advances in Vehicular Systems, Technologies and Applications


	I.  Introduction
	I.
	II. Related Work
	I.
	III. Schedule Optimization
	IV. Fragmentation of a Schedule
	I.
	V. Fragmentation Computation
	I.
	VI. Evaluation
	VII. Conclusion
	Acknowledgement
	References

