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Abstract— Land Vehicle Tracking systems depend mainly on
Global Navigation Satellite Systems (GNSS), such as Global
Positioning System (GPS). However, GNSS suffer from signal
blockage and degradation in urban areas. At the same time,
most land vehicles, nowadays, come with low-cost low-power
Inertial Measurement Units (IMU). Although these IMU can
be used an accurate short-term tracking system using Inertial
Navigation Systems (INS) technology, they are currently
mostly used only for safety applications. This paper proposes
an enhanced land-vehicles tracking system by integrating a
reduced IMU system with GPS to enhance the tracking
accuracy of land vehicles in downtown and urban areas.
Commonly, GPS/INS integration is based on Kalman Filter
(KF), where a linearized dynamic models for INS errors is
utilized. If Low-Cost MEMS-based inertial sensors with
complex stochastic error nonlinearity are used, performance
degrades significantly during short periods of GPS-outages.
This paper presents a nonlinear INS-errors modelling using a
fast nonlinear identification technique called fast orthogonal
search (FOS). During reliable GPS coverage, the corrected
vehicle state and sensors measurements are input to FOS and
the FOS models outputs are trained to predict the INS
deviations from GPS. During GPS-outages in urban areas, the
trained FOS models along with the most recent vehicle state
are used to predict INS deviations from GPS. The predicted
INS deviations are then feedback to the system Kalman Filter,
as updates to estimate all INS errors. The experimental setup
of this work used a very low-cost IMU from Crossbow Inc.
(USA based), the vehicle odometer measurements along with a
GPS receiver from Novatel, Inc. (Canada based). Experiments
were performed in Kingston, Ontario, Canada. Initial results
show promising improvement of tracking accuracy in
challenging GNSS-denied areas.

Keywords-Land Vehicles Tracking; Reduced IMU; GPS;
INS/GPS integration.

I. INTRODUCTION

Inertial Navigation Systems (INS) utilize inertial sensors
to provide navigation information continuously with time
[1][12][24]. In a Strapdown 3D INS with full Inertial
Measurements Unit (IMU) [24][25], three acceleration
sensors (Accelerometers) and three angular rate sensors
(Gyroscopes) are utilized. The accelerometers measure the

acceleration of the moving body in three orthogonal
directions. Gyroscope measures the rotation rate around
these three basic orthogonal axes. The essential functions in
INS are defined as follows: 1) Determination of the angular
motion of a vehicle using gyroscopic sensors, from which
its attitude relative to a reference frame may be derived. 2)
Measure the acceleration using accelerometers. 3) Resolve
the acceleration measurements into the reference frame
using the knowledge of attitude. 4) Account for the gravity
component. 5) Integrate the resolved accelerations to
estimate the velocity and position of the vehicle. Although
INS systems have good short term accuracy, there are two
main problems in using such a scheme. The first problem is
the sensor imperfections and drifts [2][8]. The second
problem is that the measurements of such sensors must be
mathematically integrated to provide velocity, position, and
attitude information. Integration causes errors to accumulate
[2][8] resulting in huge drifts over time that growth without
bounds.

On the other side, GPS systems provide consistent long
term accuracy giving position and velocity updates using
GPS satellites signals processing [1][12]. A major problem
of GPS is signal blockage and multi-path in urban canyons,
under buildings, and tunnels. In these environments, signal
may be difficult to acquire or number of satellites available
may be not sufficient to provide position information [25].

Based on the complementary error characteristics of INS
and GPS, an integrated solution using both systems is often
used. Although there are many approaches to fuse data from
both systems, KF is most widely used [1][12][19]. KF
utilizes an error dynamic model of the INS system errors to
implement two main steps: Prediction step and Update step.
Prediction step is done as long as no GPS update is
available. In this step, the system uses the error dynamic
model to estimate the INS errors. In the update step, GPS
velocity and position measurements are used to get optimal
estimate of INS errors. Thus, by subtracting INS errors from
the INS output, accurate navigation information is obtained.
This integration scheme is called loosely coupled which is
utilized here in this work. This scheme is shown in Fig. 1.
The challenge with INS/GPS systems is that during GPS
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outages, the system depends only on the INS error dynamic
model which is, in most of the cases, an approximate
linearized model. This leads to poor errors estimates during
GPS outages. Thus, the performance degrades significantly
during GPS outages. This paper presents an enhanced
GPS/Reduced INS integrated navigation system that is
based on nonlinear systems identification technique called
Fast Orthogonal Search (FOS). The novelty aspects of this
work lies in the utilization of fast nonlinear modeling of INS
errors using FOS. Compared to existing linear estimation,
such as KF [1], and existing nonlinear filtering techniques
such as Particle Filter [28], the utilization of FOS is
significantly faster and more reliable.

Figure 1. INS/GPS Integration in Loosely Coupled scheme

The remaining of the paper is organized as follows:
Section II describes the problem. Section III describes the
methodology including the reduced IMU/GPS navigation
system, the FOS algorithm, and the proposed bridging
technique. Section IV describes experimental work and
results.

II. PROBLEM DEFINITION AND RESEARCH
OBJECTIVES

GPS/INS integration is based on KF, where a linearized
dynamic models for INS errors is utilized. If Low-Cost
MEMS-based inertial sensors with complex stochastic error
nonlinearity are used, performance degrades significantly
during GPS-outages. Although several solutions to bridge
GPS outages were introduced [4][5][6][8][9]. Majority of
these solutions are based on utilizing Artificial Intelligence
(AI) techniques to train INS errors estimation model that
can be used during GPS outages instead of KF update step.
One problem of these bridging schemes is that the resulting
models may be over-learned the data records that they were
trained on. This leads to another problem which is the short
availability period of the models. Thus, these models may
be useful in short GPS outages, but degrade significantly if
outages periods are several minutes [3-6][9]. In addition, the
scheme in which these bridging techniques is used is to
totally depend on such AI-trained model separately, without
interaction with KF. This scheme prevents such bridging
techniques from the optimal estimation that KF provides.

Moreover, these methods use models with sophisticated
parameters that need to be estimated during good GPS
availability, which add complexity and computational load
to the navigation system.

The primary objectives of this research is as follows:
 To propose a KF algorithm with new GPS outage

bridging scheme to mitigate large drifts during GPS
outages.

 The bridging technique should not add much
complexity to the integrated INS/GPS solution to be
suitable for real-time realization.

 To provide this INS/GPS vehicular navigation
system at low cost using a reduced IMU consists of
single vertical gyro and two level accelerometer
aided by vehicle speed measurements.

III. METHODOLOGY

A. GPS/Reduced IMU System

The proposed GPS outages bridging technique is
realized on low-cost 3D land-vehicles tracking system using
Reduced IMU integrated with GPS, based on Kalman
Filtering. A low-cost 3D Reduced IMU platform consists of
one MEMS grade vertically aligned gyroscope, two
horizontal accelerometers, and vehicle odometer. This
platform is shown in Fig. 2.

Figure 2. 3D Reduced IMU platform

The state of the vehicle is determined by the vector:

},,,,,,,,{ kkkkkkkkk VuVnVehprA  , where k is the

latitude of the vehicle, k is its longitude, and kh is its

altitude, kkk VuVnVe ,, are the East, North, and up

velocity, respectively, kp is the pitch angle (inclination),

kr is the roll angle, and kA is the azimuth angle (heading

from north). The INS error state vector kx [ kA ,, kr

kp , k k, kh, kVe, kVn, kVu, , oda

, xf , yf , zw ] where zyxod wffa  ,,, are errors

of the odometer-derived acceleration, transversal
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accelerometer, forward accelerometer, and the gyroscope,
respectively.

The nonlinear vehicle state dynamic model is generally
given by

),,( 111  kkkk wuxfx (1)

where ku are the sensors reading, and kw is the noise

contaminating sensors measurements (process noise). The
detailed mathematical equations of this dynamic model can
be found in [28]. The measurement model involves GPS
velocity, position, and azimuth updates and it is given
generally as

),( kkk vxhz  (2)

where kz are sub-set of Reduced INS system error state

vector whose elements can be directly observed from the
difference between Reduced INS output and GPS
measurements which are velocity, position, and azimuth.

The kv is the GPS measurement noise.

In KF reduced INS/GPS integrated system, both
Reduced INS errors and GPS measurement dynamic models
in (1) (2) are linearized using Taylor series expansion [1] to
apply Kalman Filtering. After linearization, systems models
are given by

111   kkkk wGuxx 3)

kkk vHxz  (4)

When GPS observations are available, deviations of
Reduced INS output (position, velocity, and azimuth) from

GPS measurements ( GPS

kz ) is used as observations to KF

which use the difference between the actual system output

( kz ) and the observation ( GPS

kz ) to derive the system to

correct its state which is Reduced INS error state vector.

Having the observations ( GPS

kkk zzz  ) , Reduced

INS error state kx is now partially known from kz . Hence,

KF performs the update step to estimate the complete

Reduced INS error state vector kx as follows:

kkk yKxx  (5)

where K is the Kalman gain. Hence, Reduced INS
navigation output is corrected by subtracting errors state
from it. For more details about KF equations and Kalman
gain derivations, we refer the reader to [1][12][19].

B. Fast Orthogonal Search (FOS)

Orthogonal Search [26][27] is a general purpose nonlinear
systems identification tool that can model any general
system as seen in Fig. 3, and as explained in the following
figure, using the following general model:

][][][
1

0
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C

m
mjmj 





(6)

where [ ]mP n is a set of arbitrary candidates , jma are

coefficients and [ ]je n is the residual errors. The purpose of

FOS is to select the best set of candidates [ ]mP n and the

coefficients jma that minimizes [ ]je n . The candidates

[ ]mP n can be any arbitrary function of system inputs and

outputs. For example, in an autoregressive model, the

candidates [ ]mP n would be the system input delayed with

specific number of samples ( [ ], 1, 2,...., Lx n l l  ). In

Orthogonal Search techniques, a Gram–Schmidt procedure

[26][27] is used to replace the functions
][nPm by a set of

orthogonal basis functions [ ]mW n where the model for a

specific j is represented by the following corresponding
model:
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In orthogonal basis function space, the coefficients mg that

minimize the mean square error over the observations is
given by
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where the over-bar in denotes the time average. The mean
square error is given by:
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Where
(10)
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The reduction in mean square error resulting from adding a

term [ ]m ma P n is mQ . The fast orthogonal search

procedure makes use of the fact that it is not necessary to

create the orthogonal functions [ ]mW n explicitly. Only

their correlations with [ ]mP n , the data [ ]Y n , and with

themselves are required. By eliminating the generation of

the orthogonal functions [ ]mW n explicitly, the FOS

performance is much faster than existing traditional
modeling techniques. This enables the FOS to work well in
real-time applications that require superior performance,
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such as video streaming, for high speed networks, such as
ATM and Internet.

Figure 3. FOS Nonlinear Systems Identification Technique

C. Bridging GPS outages using FOS

During GPS reliable availability, we have valuable
information that should not be ignored. We have the
corrected vehicle state which is the most accurate state
estimation according to all available knowledge till the
moment. In addition, we have the current sensors readings
and the Reduced INS output deviations from GPS
measurements. This valuable information represents the
error characteristics of INS or Reduced INS solution by
giving us data points that map the current vehicle state with
current sensors readings (as input) and the INS or Reduced
INS errors in position, velocity, and attitude (as output). If
enough number of data points is collected in a data set in the
format shown in Table 1, a FOS model can learn this data
set mapping [18] and provide predictions of data points that
are not seen before in the data set we already collected.

TABLE 1. INPUT/OUTPUT DATA FOR FOS MODELING

INPUT OUTPUT
Corrected Vehicle
State (velocity and

Attitude)

Sensors Readings Reduced INS output
deviations from GPS
velocity and attitude

……. ……. …….

During GPS outages, FOS equations (3) and (4) are
used to predict the Reduced INS output deviations (part of
error state vector x), which then are fed to KF as a virtual
GPS updates to estimate all Reduced INS output errors. The
mechanism is shown in Fig. 4 and Fig. 5.

Figure 4. FOS-Aided Reduced INS/GPS Mechanism in training

Figure 5. FOS-Aided Reduced INS/GPS Mechanism in service

IV. EXPERIMENTAL WORK AND RESULTS

The developed INS/GPS loosely coupled KF algorithm
was tested on physical road data records collected over two
different trajectories. The set of equipment used in
experiments are as follows: Honeywell HG1700 AG11
tactical grade Inertial Measurement Unit (IMU) , Novatel
GPS receiver, CarChip E/X (8225) data logger [17] of a
General Motors Passenger Van, and Laptop computer to
control the equipments and log recorded data. Novatel CDU
interface software was used to record GPS and IMU data
which provide USB ports interface. G2 Pro-Pack Span unit
developed by Novatel provides a tightly coupled INS/GPS
navigation solution, which was used as a reference to
evaluate proposed technique. Fig. 6 shows the testing
trajectory as it appears in GPS Visualizer tool.

Figure 6. Testing Trajectory

The Root Mean Square error (RMSE) [8] of the horizontal
position of the vehicle during GPS outage was used as a
performance measure. RMSE during 20 minutes of GPS-
outage is shown in Fig. 7, which is compared with and
without the FOS-bridging technique. The FOS was trained
for only 6 minutes of good GPS availability period before
the GPS-outage starts.
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Figure 7. RMSE during 20 minutes of GPS-outage

Figure 8. Relationship between RMSE percentage improvements vs GPS-
outage period

Fig. 8 shows the relationship between the GPS-outage period
and the improvements in RMSE obtained by applying the
proposed FOS-based bridging technique. Obviously the FOS
performs better with longer GPS-outages.

V. CONCLUSION AND FUTURE WORK

This work presented an enhanced multi-sensors
INS/GPS tracking systems for land vehicles using Fast
Orthogonal Search (FOS) as a nonlinear identification
technique. the proposed bridging scheme of Kalman Filter
INS/GPS tracking systems successfully prevents the large
drifts that occur during long GPS outages periods. The
bridging scheme utilized FOS-based measurements
prediction to enable Kalman Filter to perform update step on
virtual aiding measurements. Experimental results show
great RMSE improvement in longer GPS-outages. The
proposed bridging scheme can be used with any AI-based
modeling method or non-linear systems identification
technique. Future work includes applying the same
mechanism on full 3D IMU/GPS configuration [2] instead
of the reduced IMU configuration. In this case, it is
expected that more FOS candidates may be required [26].
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