
Addressing EvoSuite’s Limitations: Method-Specific Test Case Generation and
Execution in Controlled Environments

Carlos Galindo, Manuel Gregorio, Josep Silva
Valencian Research Institute for Artificial Intelligence

Universitat Politècnica de València
Valencia, Spain

e-mail: {carlosgalindo,magre1,josilga}@upv.es

Abstract— Unit testing is crucial for ensuring software quality
and reliability. Although recent advancements in artificial
intelligence, particularly Large Language Models (LLMs),
offer promise for automating unit test generation, they often
struggle with compilation due to an insufficient understanding
of specific code rules and execution errors, primarily caused by
incorrect assertions. This paper focuses on EvoSuite, a leading
state-of-the-art Search-Based Software Testing (SBST) tool
that originated in academic research and has proven to be a
more reliable alternative for generating unit tests, particularly
in Java. EvoSuite excels by directly targeting code coverage
and optimizing test generation based on actual program
behavior, overcoming many challenges LLMs face. We share
our experiences and challenges with EvoSuite across various
projects, which have provided valuable insights for its
subsequent application in ASys, a system for automatically
evaluating Java code. The study explores challenges such as
generating tests for overloaded methods and running tests
across different environments. We also discuss solutions for
these challenges, including method-specific test generation
strategies and ensuring test execution compatibility. Our
findings highlight the limitations and potential improvements
for EvoSuite, offering valuable insights for developers and
researchers aiming to enhance automated unit test generation
in their projects.

Keywords- EvoSuite; automated test unit generation.

I. INTRODUCTION

Unit tests are a type of software testing that focuses on
verifying the functionality of the smallest unit of a program,
typically a single function or method. These tests are
fundamental in the software development process to ensure
the quality and reliability of systems. However, writing unit
tests can be complex and time-consuming, especially as
program complexity increases. With the advancement of
Artificial Intelligence (AI), particularly Large Language
Models (LLMs), new opportunities have emerged for
automating the generation of unit tests. Recent studies have
explored using ChatGPT [1] for this purpose, but the results
have shown that the generated tests often have numerous
compilation errors, mainly because the tool lacks a deep
understanding of specific code rules, such as access
restrictions and the proper use of abstract classes, and
execution errors, primarily caused by incorrect assertions due
to an inadequate grasp of the focal method's intention [2].
Tools like ChatTester [2] and ChatUnitTest [3] have been
developed to address these limitations, improving the

generated tests' accuracy. ChatUnitTest achieves this by
integrating with the ChatGPT API, albeit at an additional
cost.

Despite these advancements in AI, Search-Based
Software Testing (SBST) techniques [3] remain the most
effective solution for generating unit tests in Java. These
techniques, used by various tools, have demonstrated
superior results compared to LLMs, due to their specialized
focus on testing [4]. One of the most powerful and extended
techniques is EvoSuite [5], initially developed as an
academic research tool to advance automated unit test
generation techniques. EvoSuite has excelled in competitions
such as the SBST Tool Competition 2022 [6] and the SBFT
Tool Competition 2023 [7], demonstrating its effectiveness
and obtaining the highest overall mark despite challenges
related to usability and inherent limitations of the Java
language [8]. Due to its open-source licensing, EvoSuite has
not only become a cornerstone in academic research, where
its testing architecture has been widely adopted and extended
in various projects, but it has also been tested and applied in
industrial contexts. This includes experiments on large-scale
open-source projects and even some industrial systems,
confirming its potential in practical applications [9]. While
these industrial applications demonstrate the tool's
versatility, they also highlight challenges in scaling up to the
complexity of real-world systems, an area where continued
research and development are essential.

Nevertheless, EvoSuite has its own issues. Despite being
the leading tool in its field and having proven that individual
developers may not be able to find more faults than EvoSuite
[10], it faces challenges that reflect broader issues within
automated test generation tools. For instance, while
achieving a completely bug-free software might be
unrealistic, the focus remains on identifying and mitigating
specific challenges that can hinder fault detection. Studies,
such as [11], have pointed out that automatically generated
tests often struggle with issues like incorrect oracles and
unexpected exceptions, which can significantly impact their
effectiveness. Moreover, as highlighted in [12], although
high code coverage is correlated with an increased likelihood
of fault detection, it is not a definitive guarantee. In practice,
this means that while EvoSuite can achieve high coverage,
certain types of faults, particularly those related to more
complex software behaviors, might still go undetected. The
study shown in [13] further elaborates on this, indicating that
code coverage serves as a moderate indicator of fault
detection effectiveness, with its strength varying depending

15Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

on the testing profile. Similarly, [14] discusses the link
between coverage and software reliability, supporting the
notion that focusing on coverage is still a practical approach,
though not without its limitations.

Given these findings, while recognizing the limitations,
our work continues to prioritize coverage in the use of
EvoSuite, as it remains a practical and widely accepted
measure of test suite effectiveness in detecting faults.
However, we acknowledge that the ultimate goal is not
solely to achieve high coverage but also to ensure that the
generated tests effectively uncover real and critical bugs in
the software. This dual focus on coverage and fault detection
is crucial for improving the reliability of automated testing
tools like EvoSuite. By refining these tools to better handle
complex scenarios and enhance the accuracy of test oracles,
we strive to contribute to the ongoing efforts in advancing
automated testing practices, ultimately aiming for more
dependable and effective software testing outcomes.

The contributions of this paper include a detailed
exploration of the practical application of EvoSuite in ASys
[15], a system designed to grade Java programs
automatically. ASys relies heavily on reflection to inspect
the source code of the target program and discover its
internal structure and dependencies. With the information
gathered, ASys can modify the target program’s source code
at runtime to facilitate the generation of white-box unit tests.
In this context, unit tests are crucial in validating students'
code submissions by providing precise and targeted feedback
on individual functions or methods. This targeted validation
aligns with ASys's educational objectives, ensuring that each
aspect of the student's solution is thoroughly evaluated. To
achieve this, ASys leverages EvoSuite, which is executed by
ASys at runtime on the user’s machine. To facilitate this
integration, we conducted numerous tests to explore the
feasibility of most of the options and facilities offered by
EvoSuite. ASys began as a desktop application but has
evolved into a client-server architecture with a third
component installed on the end user’s machine. This third
component is responsible for grading and evaluating
programming exercises and has been extended to also handle
the generation and execution of unit tests using EvoSuite. As
a result, ASys now poses challenges on EvoSuite, such as the
need to distinguish test cases generated for overloaded
methods and the need for running the test cases on different
environments (the teacher and the student side).

This paper aims to share our experience with EvoSuite,
illustrating specific issues we identified, such as the
insufficient handling of polymorphism and the lack of
efficiency and effectiveness in generating tests for specific
methods. While EvoSuite provides a solid foundation, our
findings suggest that more advanced engines could
incorporate features like improved static analysis and
dynamic adaptability to better manage these challenges.
Developing these new engines would enhance coverage
accuracy, reduce the overhead of test generation, and offer
more precise testing capabilities, ultimately providing a more
robust solution for developers and researchers. We stressed
EvoSuite and found errors in its core. Throughout our work,
we encountered several challenges and limitations. In this

paper, we highlight the problems faced, the solutions
implemented, and the findings made. These findings cannot
be found in the official tutorials [16], in the StackOverflow
responses related to EvoSuite [17], or in the official GitHub
repository for the tool [18]. We hope our experience will be a
useful guide for future developers and researchers who wish
to use EvoSuite in their projects.

Section 2 outlines our discoveries and challenges. In
Section 3, we conclude by summarizing our experiences with
EvoSuite, highlighting solutions implemented and lessons
learned.

II. FINDINGS AND CHALLENGES

This section explains the main problems found when
using EvoSuite in challenging contexts. It also describes
some possible solutions to these problems.

A. Producing tests for specific methods

For many research and industrial tasks, e.g., to produce
regression tests, it is necessary to generate unit tests for each
method under study. Unfortunately, the default behavior of
EvoSuite is to generate test files for each class in the
application but not for each method. As a result, EvoSuite
generates methods test00, test01… for a given class, and
it is difficult to identify which specific methods are being
tested by each generated test. This lack of clarity can
significantly impact test coverage, hindering developers'
ability to assess whether all relevant methods have been
adequately tested. According to previous studies [19], well-
named unit tests are essential for understanding the purpose
of a test and for navigating through a suite of tests.
Descriptive names help developers quickly identify gaps in
coverage and ensure that critical paths are thoroughly tested.
To address the problem of identifying the methods being
tested, we explored two different approaches within
EvoSuite that allow for more granular test generation. Each
approach comes with its own set of advantages and
disadvantages.

Name-based strategy. One strategy to identify the method
targeted by a generated unit test is to use the -

Dtest_naming_strategy=COVERAGE property, which
applies the algorithm proposed in [19]. This allows us to
identify the tested method in scenarios where a class contains
methods with distinct names, as shown in Table I.

TABLE I. EVOSUITE-GENERATED TESTS’ NAMES FOR METHODS WITH

DISTINCT NAMES.

Method signature Test names

boolean is9(int a) testIs9, testIs9WithNegative

boolean is10(int a)
testIs10, testIs10ReturningTrue,
testIs10WithPositive

boolean is11(int a) testIs11, testIs11ReturningTrue

Nevertheless, our tests showed that polymorphism causes the
generation of descriptive names to fail, especially when
overloaded methods have the same name but different

16Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

signatures. In particular, when overloaded methods have at
least two parameters with different types, the name
generation becomes inaccurate, making it difficult to
understand what is being tested (see Table II). Therefore,
while this approach improves the identification of the
methods under test in many cases, there are still limitations
when dealing with polymorphism, and a complementary
approach is needed.

TABLE II. EVOSUITE-GENERATED TESTS’ NAMES FOR OVERLOADED

METHODS (PROBLEMATIC POLYMORPHISM).

Method signature Test names

boolean is9(int a, int b)
testIs9Taking2Ints,
testIs9Taking2IntsReturningTrue

boolean is9(int a, float b)

testIs9Taking1And1ReturningTru
eAndIs9Taking1And1AndIs9Taki
ng1And1AndIs9Taking1And1Wit
hPositive0

boolean is9(int a, String b)

testIs9Taking1And1ReturningTru
eAndIs9Taking1And1AndIs9Taki
ng1And1AndIs9Taking1And1Wit
hPositive0, testIs9Taking1And1,
testIs9Taking1And1WithEmptyStr
ing

Target method. Another alternative is to use the -

Dtarget_method property, which requires the bytecode
signature of the method to be tested [20]. Unlike relying on
method names, which can sometimes be ambiguous or
prone to changes, specifying the target method via its
bytecode signature provides a precise and unambiguous
identification. EvoSuite generates a separate test file for
each method under test using this property.

This approach eliminates the need to parse the method's
name to understand which method is being tested, as each
test file is explicitly associated with a specific method
through its bytecode signature. Moreover, this method-based
separation simplifies the organization and management of
tests, making it easier to locate and maintain test cases for
individual methods within a codebase. However, this
approach also has limitations: as we show next, it can only
be used under certain circumstances.
1. In EvoSuite 1.0.6, the -Dtarget_method property is

compatible only with the BRANCH, ONLYBRANCH, and
INPUT coverage criteria. Otherwise, it is ignored.
Therefore, we can only use it by forcing these three
coverage criteria using -criterion argument.

2. Another critical issue, reported in [21] but not resolved
yet, affects EvoSuite 1.1.0 and 1.2.0 versions and
produces a NullPointerException in a class within
the library responsible for generating tests for the
WEAKMUTATION and STRONGMUTATION coverage
criterion. This library is invoked by the main class of the
search algorithm that EvoSuite has been using since
version 1.1.0, called DynaMOSA. Therefore, there are
two ways to avoid this error. The first is to change
EvoSuite's search algorithm using the -Dalgorithm
property. However, it is important to note that this

algorithm is the most effective for generating unit tests
[22]; so the cost of using this solution is a loss of
coverage, ranging from -3% to -21% with single criteria,
and from -8% to -36% with multiple criteria. Another
solution to this problem is to keep using DynaMOSA but
avoid using the weak and strong mutation coverage
criterion. This can be done by specifying the default
criteria with -Dcriterion and skipping the
WEAKMUTATION and STRONGMUTATION criteria. In this
case, the cost of this solution is a loss of mutation score
of 0.04 with weak mutation and 0.17 with strong
mutation [23].
Our tests have revealed that another problem can appear

together with the previous one: EvoSuite 1.1.0 and 1.2.0 may
struggle to achieve 100% branch coverage, which prevents
reaching 100% in other coverage criteria. This problem
occurs when methods work with arrays or objects that
implement java.lang.Collection, as shown in Example
1.

Example 1: Low branch coverage in the presence of
collections. Consider the following method:

public boolean checkEmpty(java.util.List list) {
if (list == null || list.isEmpty())

return false;
 else return true;
}

EvoSuite cannot achieve 100% branch coverage if we
generate test cases for this method (i.e., using the
target_method property). The else branch remains un-
covered, and EvoSuite times out while attempting to cover
this branch. In such situations, it may be useful to consider
reducing the timeout using -Dsearch_budget.

To analyze this case, we conducted a small experiment
using the code from Part 2 of the EvoSuite’s tutorial. The
results are shown in Table III, where Target indicates
whether tests are generated for each class or method. Version
is the EvoSuite version used. Coverage requested is the type
of coverage that EvoSuite tries to maximize, and resulting
coverage shows the results obtained. Finally, runtime
displays the time consumed with different timeouts for each
target (15 and 60s).

TABLE III. COMPARISON OF COVERAGE AND GENERATION TIMES FOR

DIFFERENT EVOSUITE CONFIGURATIONS AND VERSIONS.

Target Version
Coverage Resulting coverage Runtime
requested Cov. Type Cov. (60s) (15s)

Class
(default)

Any
Default

Output 97.00%

185 s 49 s
MethodNoEx. 93.75%

WeakMutation 98.25%

Others 100.00%

Branch Branch 100.00% 7 s 7 s

Method

1.0.6 Branch Branch 100.00% - 179 s

≥ 1.1.0 Branch Branch 82.92% - 224 s

≥ 1.1.0 Default

Line 93.45%

- 224 s
Branch 82.92%

MethodNoEx. 83.33%

WeakMutation 34.37%

17Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

CBranch 82.92%

Output 68.33%

Others 100.00%

When running EvoSuite with its default configuration,
we achieved 100% coverage in almost all default criteria
regardless of the version. However, as we did not reach
100% in all cases, EvoSuite continues attempting to do so
until the timeout expires. Reducing the timeout from 60 to 15
seconds produced the same results in less time. We achieved
100% coverage in just 7 seconds when generating tests using
only the branch criterion. In tests with target_method, we
used the default algorithm of EvoSuite 1.0.6
(MONOTONIC_GA). These tests were revealing, as
EvoSuite seems not to generate tests until the timeout
expires, significantly increasing the test generation time for
each method. Although versions higher than 1.0.6 support
various coverage criteria, achieving a good result is
challenging. In contrast, focusing solely on branch coverage
in version 1.0.6 may be more efficient and effective. This
complements the results of [24], which showed that Default
test case generation achieves better results (i.e., higher or
same coverage) than Branch testing. This can be explained
by the fact that in later versions, EvoSuite with the
target_method property struggles to achieve 100% branch
coverage, which it would obtain without using this property.
Even if we execute EvoSuite ≥ 1.1.0 focusing only on
branch coverage, version 1.0.6 achieves better results (better
coverage and less runtime). This highlights the importance of
considering older versions, such as 1.0.6, which, despite
lacking some newer features, offer better stability and
coverage performance under certain conditions.The observed
challenges in achieving 100% branch coverage, particularly
in more recent versions of EvoSuite when using the
target_method property, point to a broader concern regarding
the potential impact of reduced coverage on fault detection.
Studies have shown that higher code coverage generally
correlates with an increased likelihood of fault detection
[12]. However, as highlighted in [13], code coverage is only
a moderate indicator of fault detection across a test set, with
its effectiveness being more pronounced in exceptional test
cases. The drop in coverage, especially in complex scenarios
like those involving collections, may lead to undetected
faults, thus compromising the overall reliability of the
software. This risk underscores the importance of
maintaining high coverage levels where possible, while also
recognizing the need for complementary testing strategies to
address any gaps.

B. Controlled Environment Execution

Generating and executing unit tests in different systems
is not possible by default. The cause is that EvoSuite's
generated tests come with scaffolding that prepares the
EvoSuite environment using @Before/@After methods.
One such method is setSystemProperties, which sets
properties (e.g., user.dir) that depend on the machine
where the tests were generated and may differ from the
machine where they will be executed. This can be avoided
by disabling the sandboxing system with the properties -

Dsandbox=false and -Dfilter_sandbox_tests

=true, which, in turn, removes these dependences to the
generation environment. Nevertheless, disabling the sandbox
introduces security risks, as the test cases can execute
potentially malicious user code without the sandbox’s
protection [25].

To address the security risks, we have implemented an
architecture where the third component of ASys, installed on
the user’s machine (either teacher or student), handles the
generation and execution of unit tests. For teachers, this
component generates the tests using EvoSuite, ensuring they
are tailored to the specific programming exercises. For
students, the same component runs the tests against their
solutions, including both grading and evaluating their
submissions.

EvoSuite enhances security by isolating potentially
harmful code through sandboxing mechanisms. However,
ASys takes a different approach by performing the grading
and test execution directly on the client side, specifically on
the student’s machine. This strategy ensures that any risks
associated with executing code are confined to the local
environment, thus protecting the broader system
infrastructure. This client-side grading not only secures the
ASys infrastructure but also enhances performance,
compatibility, and flexibility in a distributed system.

III. RELATED WORK

The generation of tests for specific methods and their
execution in different environments are topics that have
received little attention in the literature. While the
development of EvoSuite has been supported by numerous
studies highlighting its challenges [8] and identifying its
ineffectiveness in certain situations [11], most of this work
focuses on the execution of EvoSuite at the project level,
without clearly distinguishing the tested methods. This poses
a significant problem because, even if tests successfully
detect faults, it becomes difficult to contextualize these
issues without tests being specifically documented for each
method.

One area that has been explored is the impact of
parameter tuning on EvoSuite's performance. Studies like
[26] have shown that appropriate parameter tuning can
improve EvoSuite's performance, although, in most cases,
default values are sufficient. However, these investigations
do not address the granularity of test generation at the
method level, leaving an important gap in the literature.

The study in [19] partially addresses this issue by
introducing an algorithm that attempts to assign descriptive
names to the tested methods, improving the identification
and contextualization of tests. Despite this advancement,
there is still work to be done to achieve more effective
documentation of the generated tests.

Regarding the sandboxing employed by EvoSuite,
developers have made significant efforts to use bytecode
instrumentation to automatically separate code from its
environmental dependencies and to set the state of the
environment as part of the generated call sequences [27].
However, EvoSuite also implements a custom Security
Manager that restricts many dangerous interactions with the

18Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

environment, while still allowing specific system
configurations, such as user.dir, to ensure that tests execute
consistently [9]. This explains why certain system properties
remain set in the automatically generated tests, despite
efforts to isolate the environment.

Although there are autograding solutions in the literature
that employ various security techniques, such as those
mentioned in [25], there is no documented use of these
techniques in combination with EvoSuite, particularly
focusing on client-side security. This highlights a gap that
our work addresses by implementing security at the client
side in ASys.

IV. CONCLUSIONS

Our experience with EvoSuite has been instrumental in
identifying various challenges and solutions in configuring
and generating automated unit tests. We have thoroughly
explored the wide range of configurable parameters offered
by EvoSuite, providing guidance on how to find the right
values to solve problems and optimize test generation.

One significant challenge we encountered was the
generation of specific tests for individual methods.
EvoSuite's default behavior of producing non-descriptive test
names (e.g., test00, test01, etc.) complicates the
identification of which specific methods are being tested,
which can significantly impact test coverage. To address this,
we explored two distinct approaches: a name-based strategy,
which is a valid option when there is no method overloading.
However, this approach is limited by issues related to
polymorphism, particularly when overloaded methods are
involved, leading to inaccurate or unclear test names. The
second approach involves the use of the target_method
parameter, but we also encountered errors and limitations
with this option, such as compatibility issues and difficulties
in achieving full branch coverage, especially when methods
involve java.lang.Collection.

Moreover, while newer versions of EvoSuite offer
additional features, our tests revealed that these versions
sometimes struggle with issues like reduced branch coverage
when using the target_method property with data
structures like java.lang.Collection. In contrast, older
versions, such as 1.0.6, demonstrated better stability and
coverage performance under certain conditions. This
highlights the importance of carefully selecting the version
of EvoSuite based on the project's specific needs, even if it
means foregoing some of the newer features.

We also addressed the risk of dependencies produced in
the generated test cases with the environment in which they
were generated. This was particularly challenging in
distributed environments where tests needed to be executed
on multiple machines. By disabling EvoSuite's sandboxing
system, we mitigated environment-specific dependencies,
but this introduced security risks, as it allowed potentially
malicious code to execute without the sandbox’s protection.
To solve this, we implemented an architecture in ASys that
allows tests to be generated on the teacher's machine and
executed on the student's machine, thereby confining any
risks to the local environment.

In conclusion, our practical experience with EvoSuite
provides useful knowledge for identifying common
challenges in generating automated unit tests and offering
practical solutions to overcome them. We are confident that
our findings will benefit other development teams looking to
leverage the capabilities of EvoSuite to the fullest in their
software projects.

Looking ahead, we plan to expand our experiments by
applying the target_method parameter of EvoSuite to the
SF100 benchmark, a statistically sound collection of Java
projects from SourceForge [28]. This will allow us to
evaluate our solutions in a more diverse and realistic
environment, identifying opportunities for improving
coverage and effectiveness in more complex contexts.
Additionally, we aim to explore the generation of tests for
scenarios involving inheritance and method overriding,
addressing the challenges EvoSuite faces in these situations.
This exploration will help us determine whether the issues
encountered with overloaded methods also apply to inherited
and overridden methods, ensuring a more comprehensive
understanding of EvoSuite’s capabilities and limitations in
object-oriented programming contexts. By enhancing the
tool's ability to manage these complexities, we hope to
ensure more comprehensive and accurate testing across a
wider range of software projects.

ACKNOWLEDGEMENT

This work has been partially supported by the Spanish
MCIN/AEI under grant PID2019-104735RB-C41 and by
Generalitat Valenciana under grant CIPROM/2022/6
(Fasslow). Carlos Galindo was partially supported by the
Spanish Ministerio de Universidades under grant
FPU20/03861.

REFERENCES

[1] OpenAI, “Introducing ChatGPT.” Accessed: May
26, 2024. [Online]. Available:
https://openai.com/chatgpt/

[2] Z. Yuan et al., “No More Manual Tests? Evaluating
and Improving ChatGPT for Unit Test Generation,”
2024.

[3] M. Harman, S. A. Mansouri, and Y. Zhang,
“Search-based software engineering: Trends,
techniques and applications,” ACM Comput. Surv.,
vol. 45, no. 1, Dec. 2012, doi:
10.1145/2379776.2379787.

[4] Y. Tang, Z. Liu, Z. Zhou, and X. Luo, “ChatGPT vs
SBST: A Comparative Assessment of Unit Test
Suite Generation,” 2023.

[5] G. Fraser and A. Arcuri, “EvoSuite: Automatic test
suite generation for object-oriented software,” in
SIGSOFT/FSE 2011 - Proceedings of the 19th ACM
SIGSOFT Symposium on Foundations of Software
Engineering, Oct. 2011, pp. 416–419. doi:
10.1145/2025113.2025179.

19Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

[6] A. Gambi, G. Jahangirova, V. Riccio, and F.
Zampetti, “SBST Tool Competition 2022,” in 2022
IEEE/ACM 15th International Workshop on Search-
Based Software Testing (SBST), 2022, pp. 25–32.
doi: 10.1145/3526072.3527538.

[7] G. Jahangirova and V. Terragni, “SBFT Tool
Competition 2023 - Java Test Case Generation
Track,” in 2023 IEEE/ACM International Workshop
on Search-Based and Fuzz Testing (SBFT), IEEE,
May 2023, pp. 61–64. doi:
10.1109/SBFT59156.2023.00025.

[8] G. Fraser and A. Arcuri, “Evosuite: On the
challenges of test case generation in the real world,”
in 2013 IEEE sixth international conference on
software testing, verification and validation, 2013,
pp. 362–369.

[9] G. Fraser and A. Arcuri, “A Large-Scale Evaluation
of Automated Unit Test Generation Using
EvoSuite,” ACM Trans. Softw. Eng. Methodol., vol.
24, no. 2, Dec. 2014, doi: 10.1145/2685612.

[10] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F.
Padberg, “Does automated white-box test generation
really help software testers?,” in Proceedings of the
2013 International Symposium on Software Testing
and Analysis, in ISSTA 2013. New York, NY,
USA: Association for Computing Machinery, 2013,
pp. 291–301. doi: 10.1145/2483760.2483774.

[11] Z. Fan, “A Systematic Evaluation of Problematic
Tests Generated by EvoSuite,” in 2019 IEEE/ACM
41st International Conference on Software
Engineering: Companion Proceedings (ICSE-
Companion), 2019, pp. 165–167. doi:
10.1109/ICSE-Companion.2019.00068.

[12] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P.
McMinn, and A. Arcuri, “Do Automatically
Generated Unit Tests Find Real Faults? An
Empirical Study of Effectiveness and Challenges
(T),” in 2015 30th IEEE/ACM International
Conference on Automated Software Engineering
(ASE), 2015, pp. 201–211. doi:
10.1109/ASE.2015.86.

[13] X. Cai and M. R. Lyu, “The effect of code coverage
on fault detection under different testing profiles,”
SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1–7,
May 2005, doi: 10.1145/1082983.1083288.

[14] F. Del Frate, P. Garg, A. P. Mathur, and A.
Pasquini, “On the correlation between code
coverage and software reliability,” in Proceedings
of Sixth International Symposium on Software
Reliability Engineering. ISSRE’95, 1995, pp. 124–
132. doi: 10.1109/ISSRE.1995.497650.

[15] D. Insa, S. Pérez, J. Silva, and S. Tamarit,
“Semiautomatic generation and assessment of Java
exercises in engineering education,” Computer
Applications in Engineering Education, 2020, doi:
10.1002/cae.22356.

[16] G. Fraser, “A Tutorial on Using and Extending the
EvoSuite Search-Based Test Generator,” in Search-
Based Software Engineering, P. Colanzi Thelma
Elita and McMinn, Ed., Cham: Springer
International Publishing, 2018, pp. 106–130.

[17] “StackOverflow - EvoSuite questions.” Accessed:
May 26, 2024. [Online]. Available:
https://stackoverflow.com/questions/tagged/evosuite

[18] “EvoSuite GitHub repo.” Accessed: Jan. 01, 2024.
[Online]. Available:
https://github.com/EvoSuite/evosuite

[19] E. Daka, J. M. Rojas, and G. Fraser, “Generating
unit tests with descriptive names or: would you
name your children thing1 and thing2?,” in
Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and
Analysis, in ISSTA 2017. New York, NY, USA:
Association for Computing Machinery, 2017, pp.
57–67. doi: 10.1145/3092703.3092727.

[20] “JNI Types and Data Structures.” Accessed: Jun. 02,
2024. [Online]. Available:
https://docs.oracle.com/javase/7/docs/technotes/guid
es/jni/spec/types.html#wp276

[21] “EvoSuite Issues - Using EvoSuite target_method.”
Accessed: Jun. 02, 2024. [Online]. Available:
https://github.com/EvoSuite/evosuite/issues/439

[22] J. Campos, Y. Ge, N. Albunian, G. Fraser, M. Eler,
and A. Arcuri, “An empirical evaluation of
evolutionary algorithms for unit test suite
generation,” Inf Softw Technol, vol. 104, pp. 207–
235, 2018, doi:
https://doi.org/10.1016/j.infsof.2018.08.010.

[23] G. Fraser and A. Arcuri, “Achieving scalable
mutation-based generation of whole test suites,”
Empir Softw Eng, vol. 20, no. 3, pp. 783–812, 2015,
doi: 10.1007/s10664-013-9299-z.

[24] G. Fraser and A. Arcuri, “Whole Test Suite
Generation,” IEEE Transactions on Software
Engineering, vol. 39, no. 2, pp. 276–291, 2013, doi:
10.1109/TSE.2012.14.

[25] P. Ihantola, T. Ahoniemi, V. Karavirta, and O.
Seppälä, “Review of recent systems for automatic
assessment of programming assignments,” in
Proceedings of the 10th Koli Calling International
Conference on Computing Education Research,
New York, NY, USA: ACM, Oct. 2010, pp. 86–93.
doi: 10.1145/1930464.1930480.

[26] A. Arcuri and G. Fraser, “Parameter tuning or
default values? An empirical investigation in search-
based software engineering,” Empir Softw Eng, vol.
18, no. 3, pp. 594–623, 2013, doi: 10.1007/s10664-
013-9249-9.

[27] A. Arcuri, G. Fraser, and J. P. Galeotti, “Automated
unit test generation for classes with environment
dependencies,” in Proceedings of the 29th
ACM/IEEE International Conference on Automated

20Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

Software Engineering, in ASE ’14. New York, NY,
USA: Association for Computing Machinery, 2014,
pp. 79–90. doi: 10.1145/2642937.2642986.

[28] G. Fraser and A. Arcuri, “Sound empirical evidence
in software testing,” in 2012 34th International
Conference on Software Engineering (ICSE), 2012,
pp. 178–188. doi: 10.1109/ICSE.2012.6227195.

21Copyright (c) IARIA, 2024. ISBN: 978-1-68558-199-2

Courtesy of IARIA Board and IARIA Press. Original source: ThinkMind Digital Library https://www.thinkmind.org

VALID 2024 : The Sixteenth International Conference on Advances in System Testing and Validation Lifecycle

