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Abstract—Software testing is a crucial component of the
software development life-cycle, playing a key role in ensuring the
quality and robustness of software products. However, test code,
like production code, is susceptible to poor design choices or "test
smells", which can compromise its effectiveness and maintainabil-
ity. This article investigates the prevalence and impact of various
test smells across open-source software projects, using advanced
detection tools such as JNose and TestSmellDetector. The research
highlights that certain test smells, such as "Assertion Roulette,"
"Magic Number Test," and "Lazy Test," are notably prevalent.
The study also examines the co-occurrence of different test
smells, providing understanding of how these issues interrelate.
Additionally, the article compares the effectiveness of JNose and
TestSmellDetector in detecting test smells, providing insights into
their strengths and limitations.

Keywords-Test Smells; Software Testing; Empirical Software
Engineering.

I. INTRODUCTION

Software testing is a fundamental part of the software de-
velopment process and has significant importance in ensuring
the quality of software [1]. Test cases exhibit a crucial role
in the early detection of software bugs during the software
development process.

The quality of the test suite is measured with test coverage
analysis where the number of different structural components
(functions, instructions, branches, and lines of code) included
in the test suite is considered [2]. Nevertheless, despite having
a large amount of code coverage, the test code may still
contain design choices that are not well-executed, known as
test smells. The inclusion of smells in test code has the
potential to affect the overall quality of test suites, hence
impacting the quality of the production code.

The motivation behind this research stems from the ob-
servation that despite the critical role of testing in software
development, test smells are often overlooked. Developers and
testers may inadvertently introduce these smells into the test
code, not through a lack of skill, but due to pressures of
deadlines, lack of awareness, or inadequate tool support.

This study contributes to the field by providing empirical
data on the detection and impact of test smells across a
broad spectrum of open-source software projects. It leverages
modern test smell detection tools-JNose [3] and TestSmellDe-
tector [4] tools-to gather insights into the prevalence and co-
occurrence of different smells, thereby offering a granular
understanding of how these smells interrelate and the potential
for cascading effects within the test code. Moreover, for
these two tools, a comparison was made on issues such as

the differences between them, which test smells are detected
better, which device detects more test smells.

The structure of this thesis is organized as follows: Follow-
ing this introduction, Section II reviews STATE OF THE ART
in the field, laying a theoretical foundation for understanding
test smells. Section III describes the TOOL INFRASTRUC-
TURE used in the study, including a detailed examination of
the JNose and TestSmellDetector tools. Section IV presents
a CASE STUDY analysis, where these tools are applied to
a dataset of software projects to identify and analyze test
smells. Section V shows the observed RESULTS and Section
VI concludes findings and directions for future research.

II. STATE OF THE ART

Modern studies are going in the direction of discovering,
defining, and eliminating various categories of code smells,
and explaining their origins and influence on the overall
program quality. Such studies utilize several approaches, in-
cluding empirical analysis of open-source software projects
and constructing and testing elaborate security tools.

A study by Silva Junior et al. [5], the researchers exam-
ined the awareness of test practitioners and the unknowingly
incorporation of smells to test code development. A survey
is conducted with 60 chosen professionals from different
organizations to investigate the frequency and situations in
which they encounter smells, particularly 14 types of test
smells, which are frequently used in cutting-edge test smell
detection tools.

In another study [6] related to the severity of test smells
by Campos et al., a set of tests that cause problematic
consequences are targeted and the developers’ point of view
on the issue of test smells is mentioned. By working with its
developer participants from six open-source software projects
on GitHub, the study aims at characterizing to which extent
developers perceive test smells to affect the test code they
implement.

In a similar study by Davide Spadini et al. [7], sever-
ity thresholds for test smells are investigated. Using 1489
java projects from Apache and Eclipse ecosystems and
TestSmellDetector tool, they considered 4 test smells-
Assertion Roulette, Eager Test, Verbose Test, and Conditional
Test Logic-are higher thresholds than others.

In our study, with extending the total number of test smell
types, 21 types of test smells are used, and with using 500
open-source GitHub projects (more than 5000 Java test files),
"Magic Number Test" and "Assertion Roulette" are detected as
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most frequent test smells. “Empty Test”, “Sleepy Test”, and
“Mystery Guest” are 3 of the 5 lowest test smells detected
using JNose tool [3] and TestSmellDetector tool [4].

Another study [8] by Michele Tufano et al. presented (i) a
survey among 19 developers is carried out to find out how they
rated test smells as design issues, and (ii) a huge empirical
study based on commit history of 152 open source projects
and focused on identifying aspects of both software systems
such as when test smells are introduced, how long they last
and their relationship with code smells affecting the classes
tested.

In our study, to detect test smells, we used two differ-
ent automated test smell detection tool "JNose Tool” and
TestSmellDetector Tool" and the results show that all test files
have at least one type of test smell, and to have better test
code quality, all test smells should be resolved by developers.

In another study [9] by Soares et al., an innovative way
to raise the quality of test code using the JUnit 5 features is
described. As part of this research, a mixed-method survey is
executed, covering 485 of the most widely used Java open-
source projects, finding out that JUnit 5 is used by only a tiny
share (15,9%).

In the paper [10] by Annibale Panichella et al., authors scru-
tinize test smells in the context of automatic test generation.
They critically examine whether such smell detection tools
work well on sets of tests generated by tool EVOSUITE that
test 100 classes of Java programs, in which there are 2340 test
cases. Two tools are used in the study. Static detection rules
are the first one among the tools suggested by Bavota et al.
[11], Grano et al. [12] also use this same tool to detect test
smells in test codes. The next tool is TestSmellDetector tool,
which is available on GitHub and can be used publicly. The
frequency of detection of test smells in Static Detection rules is
significantly lower if we compare the findings between Static
Detection rules and TestSmellDetector tool. The TestSmellDe-
tector tool demonstrates slightly superior outcomes. Martins et
al. [13] also use TestSmellDetector tool to detect test smells
and investigate co-occurrence values between different test
smells.

Benefiting from previous articles, in addition to similarities,
in this article, a research was conducted for the first time using
the two mentioned tools and 21 types of test smells with using
huge number of projects "around 500", and the results obtained
for both tools were compared. Additionally, the co-occurance
of the test smells for both tools were compared.

III. TOOL INFRASTRUCTURE

This section mainly explains the tool infrastructure used to
detect test smells, in which a detailed analysis about JNose
and TestSmellDetector tools are presented. It introduces the
working principles of these tools by detailing how they analyze
and recognize test smells in test code.

A. JNose Tool

The JNose Test tool enables testers to review the past
versions of the software projects and find the test coverage

Figure 1. High-level architecture of Jnose tool

and the test smells that often bother the code quality. This fact
enables us to compare various quality metrics of the project
over the course of its development process. There are three
crucial procedures in the JNose Test operation as shown in
Figure 1.

• Data Input: This part receives the input set of command
parameters for the tool execution, such as test smell
types of lists, analysis mode (code coverage, test smells
detection and evolution), and the project for analysis.

• Project Analysis: This component presents the analysis
of the program by choosing the analysis mode.

• Data Output: By this component, the status of the
execution is being rendered and the comma-separated
value (CSV) file containing the results of the analysis
is generated.

The JNose Tool offers the capability to detect and analyze
smells in various ways. Firstly, it can detect smells in a
specific test class using the TestClass method, which provides
information about the quantity of each type of smell detected
in the test class. Secondly, it can detect smells across multiple
project versions using the Evolution method, which provides
information about the authors and timestamps of the test
smell’s insertion in the test code. Lastly, the detection can
be used to identify the precise location of a test smell using
the TestSmell method, which returns the method location of
the smell for the purpose of analyzing the quality of the test
code.

In accordance with the GNU General Public License, the
JNose Test tool is licensed. The software tool is developed as
a Java project and consists of four packages: (i) core, which
is responsible for detecting test smells and coverage metrics;
(ii) page, which is responsible for displaying web pages and
their content; (iii) dto, which includes the classes used in data
transfer (Data Transfer Object); (iV) util, which is responsible
for identifying tests and production classes and saving results
into CSV files.

B. TestSmellDetector Tool

The objective of including TestSmellDetector tool is to
offer developers an automated methodology for enhancing the
quality of their test suites. The TestSmellDetector tool can
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Figure 2. High-level architecture of TestSmellDetector tool

identify 19 smells present in Junit-based unit test files. The
TestSmellDetector tool software provides a comprehensive list
of detected smells, accompanied by their respective definitions
and detection algorithms. The algorithm receives software
project source code as input and initially distinguishes between
unit test files and production source files.

TestSmellDetector tool is a Java jar file that is open-
source and may be used as a command line program. The
implementation of TestSmellDetector tool as a self-contained
executable file, as opposed to a plugin, eliminates the need for
users to own a dedicated Integrated Development Environment
(IDE) on their system for the purpose of identifying smells in
their test code.

Figure 2 illustrates a comprehensive overview of the ar-
chitectural design of the TestSmellDetector tool. The project
structure is used in 1 and 2 to identify the test and production
files. TestSmellDetector tool determines whether test smells
are present in the test files in 3 and 4. The test smell detection
process findings are saved in 5.

IV. CASE STUDY

To understand test smell impaction of test code quality,
we used two different tools which are JNose Tool and
TestSmellDetector Tool then we analyzed the result of output
files of both tools using projects that they used from Test
Smells and Structural Metrics (TSSM) dataset [13].

Figure 3 shows an overview of our study. Mainly in this
study, there are four parts to get results to compare and to
answer our research questions.

• Project Selection and Preparations: to select projects and
preparations to use JNose and TestSmellDetector tools.

• Using TestSmellDetector tool: to follow a way to get
results after using TestSmellDetector tool.

• Using JNose tool: to follow a way to get results after
using JNose tool.

• Analyzing results: to obtain results to answer research
questions.

A. Project Selection

These procedures led to the collection of data from 13,703
open-source Java projects that make up the TSSM dataset.

Figure 3. High-level architecture of our study

500 distinct projects are randomly chosen from this collection
of open-source Java projects. These projects work with the
TestSmellDetector Tool as well as the JNose Tool. Java is
among the most common languages today [14] and contains a
large number of test codes. This gives us a lot of test code to
examine. Additionally, since the two tools used work on Java
codes, we decided to work with Java projects. Every project
is tested separately at first, and if it works successfully with
both tools, it is included in the list.

B. Implementation of Automated Scripts

In this study, four fundamental Python files were imple-
mented. We will do the explanation of these files’ roles and
functions in detail. Each file has the sole aim of automating
and facilitating a different aspect of testing smell analysis pro-
cess, which in turn makes the identification, comparison, and
understanding of test smells in many projects more efficient
and accurate.

1) Python File for Preparation of Using Tools: In this file,
six functions are created for preparation of using tools. These
functions simply do these steps:

• Picking out necessary column names from input CSV file.
• Creating empty folder with using GitHub projects’

names.
• Cloning GitHub projects into created empty folders one

by one.
• Testing files and their associated source files within

GitHub project folders.
• Removing the files, where the lines’ sole content are

comments.
• Creating a structured CSV file, which is originally named

with output.csv and it is specifically designed to meet the
given inputs of the TestSmellDetector application.
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2) Python File for Using Tools: In this file, six functions
are created for using tools. These functions simply do these
steps:

• Executing TestSmellDetector Tool with ’output.csv’ as a
file input.

• Deleting files left over from past executions.
• Reading results clearly going through the created CSV

file after executing TestSmellDetector tool. Then, creating
txt file after reading CSV file.

• Reading results clearly going through the created CSV
files after executing JNose tool. Then, creating txt file
after reading all files.

• merging results by two different tools, into one conclusive
file titled. After merging, findings might not be next to
each other. Therefore, reorganizing findings after merg-
ing.

3) Python File for Comparing Results of Each Tools:
Comparing the results of different testing methods, which are
used in the detection of smells. Co-occurrence Analysis, Ratio
Calculation and Comparison and Visualization are done in this
file.

4) Python File for Connecting JNose Tool’s Website: To
accesses the webpage, which is related to Jnose Tool. It auto-
matically inputs GitHub project links into the local server ad-
dress "http://127.0.0.1:8080" and analyze each project. Then,
it downloads results in the CSV format.

V. RESULTS
In this analysis, we compare the effectiveness of two soft-

ware testing tools, JNose Tool and TestSmellDetector Tool,
in identifying several types of test smells within software
projects. Test smells play a critical role in ensuring the reliabil-
ity and efficacy of software testing procedures by identifying
any flaws in the test code that could undermine their quality
or effectiveness.

The JNose Tool detected 81773 test smells in total using all
files. The TestSmellDetector tool detected 89497 test smells
in total using all files.

Figure 4 shows a comparative analysis of file affectation by
test smells, the total number of files examined alongside those
unaffected by test smells as identified by two separate tools:
JNose and TestSmellDetector. It is evident that a comprehen-
sive set of 5478 files were subjected to the analysis. JNose Tool
identified 1550 files that exhibited no test smells, representing
a significant portion of the total, yet still suggesting that
many files could contain at least one form of test smell. In
contrast, the TestSmellDetector Tool demonstrated a higher
identification rate, with 1075 files reported as unaffected.
Intriguingly, the bar labeled ’No Affected (Both)’ is shown
at a value of zero, indicating that there were no files, which
both tools concurrently identified as free of test smells.

The data serves as a more encompassing and detailed
view of the detection capabilities of both tools as they work
across a range of test smells. The fact that different detection
rates for various test smells are shown by the two tools
indicates a noticeable difference as shown in Figure 5. The

Figure 4. Number of Affected and not Affected Files

Figure 5. Total Number of Test Smells with using JNose and TestSmellDe-
tector Tools in all files

TestSmellDetector Tool, for instance, is very effective in
identifying ’Magic Number Test’ smell with 28,443 instances
detected entirely outperforming the 11,264 instances detected
by the JNose Tool. The pattern of higher detection rates by
the TestSmellDetector Tool is also observed in the other types
of tests smells like ’Exception Catching Throwing’ and ’Lazy
Test’, which the tool detected 13,612 and 16,570 occurrences,
respectively and thus demonstrating its sensitivity towards
these particular smells.For ’Assertion Roulette, TestSmellDe-
tector Tool detected 10,488 occurence.

On the other hand, JNose Tool proved to be more ef-
fective than TestSmellDetector Tool in discovering the ’As-
sertion Roulette’ instances, which were 41,876 compared to
TestSmellDetector Tool, which discovered 10,488 instances as
shown in Figure 5. This revelation of the JNose Tool’s effec-
tiveness in this case indicates that it can be particularly useful
for scenarios where the tests contain multiple non-documented
assertions, resulting in unclear test outcomes. In addition, the
JNose Tool exhibits greater detection rates for various sorts
of test smells, such as the ’Magic Number Test’ and ’Lazy
Test’, with detection rates of 11,264 and 3984 occurrences,
respectively. This demonstrates the tool’s sensitivity towards
these specific smells. JNose tool also performed high detection
rates for ‘Eager Test’ with detection rate of 3692.

This analysis provides the absolute number of files affected
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Figure 6. Number of Affected Files by Each Test Smells

by each test smell and allows an assessment of the extent of
testing and detection of smell testing for both tools across
various categories of test smell as shown in Figure 6.

By using the TestSmellDetector tool, highest numbers of
affected files by ’Magic Number Test’, ’Assertion Roulette’,
’Exception Catching Throwing’, ’Eager Test’, ’Lazy Test’, and
’Unknown Test’ are detected as 4222, 2503, 2463, 1126, 1070,
and 1030. On the other hand, by using the JNose tool, high-
est numbers of affected files by ’Assertion Roulette’, ’Lazy
Test’, ’Magic Number Test’, ’Exception Catching Throwing’,
’Unknown Test’, and ’Eager Test’ are detected as 3056, 1396,
1364, 969, and 905.

The analysis also highlights test smells that are most and
least prevalent in the datasets. ’Magic Number Test’, ’Asser-
tion Roulette’, ’Exception Catching Throwing’, ’Eager Test’,
’Lazy Test’, and ’Unknown Test’ are among the most affecting
test smells, with both tools identifying a considerable number
of affected files. In contrast, ’Constructor Initialization’, ’De-
fault Test’, and ’Dependent Test’ show minimal to no detection
across both tools.

The utilization of co-occurrence matrices serves as an
analytical cornerstone for uncovering the underlying patterns
of test smell interactions within software testing environments.
The matrices of The JNose Tool and TestSmellDetector Tool
explain these patterns, illustrating both pronounced and neg-
ligible relationships among various test smells. In the interest
of refining testing strategies, it becomes necessary to research
into the specifics of these relationships.

Results for the JNose Tool as shown Figure 7, the one,
which stands out the most is a correlation established between
’Conditional Test Logic’ and ’Eager Test’ with a co-occurrence
value of [1.00], indicating a strong likelihood of these issues
to arise simultaneously.

Similarly, the pairing of ’Exception Catching Throwing’
with ’Unknown Test’ and a high co-occurrence rate of [0.99]
of using JNose Tool shows a strong correlation.

Next strong correlations are the one observed between
’Sleepy Test’ and ’Constructor Initialization’, with a co-
occurrence value of [0.96] for the JNose Tool.

Figure 7. Co-occurrence Matrix for JNose Tool

Conversely for the JNose tool, a pair exposes relationships
that are markedly tenuous, as is the case between ’Magic
Number Test’ and ’Redundant Assertion’, with a negligible
co-occurrence rate of [0.01]. Another pair exhibiting minimal
interdependence comprises ’Mystery Guest’ and ’Assertion
Roulette’ and, ’Empty Test’ and ’Assertion Roulette’ where
the co-occurrence rate stands at [0.01] for both pairs.

Results for the TestSmellDetector Tool as shown in Figure
8, the notable correlation observed in this case is between
’Unknown Test’ and ’Eager Test’ and their co-occurrence
value of [0.97].

The pairing of ’Source Optimism’ with ’Mystery Guest’
also has a strong co-occurrence rate of [0.95] with using
TestSmellDetector Tool.

Conversely, the matrix unveils relationships that are
markedly tenuous, as is the case between ’Magic Number Test’
and ’Redundant Assertion’, ’Magic Number Test’ and ’Sleepy
Test’, ’Assertion Roulette’ and ’Empty Test’, ’Empty Test’
and ’Exception Catching Throwing’, ’Empty Test’ and ’Lazy
Test’, so on with a negligible co-occurrence rate of [0.01] with
using TestSmellDetector Tool.

VI. CONCLUSION AND FUTURE WORK

Testing is currently considered to be an essential process
for improving the quality of software. Unfortunately, past
literature has shown that test code can often be of low quality
and may contain design flaws, also known as test smells. This
paper presented a comparison of the results of the most well-
known test smell detector tools (JNose and TestSmellDetector)
using 500 distinct open-source GitHub projects. These results
give us (i) the number of detection of test smells by each tool,
(ii) the number of affected test code files by test smells, and
(iii) the co-occurrence rate of detected test smells with the
mentioned tools.
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Figure 8. Co-occurrence Matrix for TestSmellDetector Tool

• (i) The ’Assertion Roulette’ is the most prevalent smell
in the JNose Tool with 41,876 detections. Like ’As-
sertion Roulette’, other common the test smells ’Magic
Number Test’ with 11264 detections, ’Lazy Test’ with
3984 detections, ’Eager Test’ with 3692 detections, ‘Con-
ditional Test Logic’ with 3679 detections, ‘Exception
Catching Throwing’ with 3236 detections, and ’Unknown
Test’ with 3202 detections. On the other hand, the
TestSmellDetector tool has found that the test smells
’Magic Number Test’ with 28443 detections and ’Lazy
Test’ with 16570 detections are the most frequently ob-
served. Furthermore, the test smells ’Exception Catching
Throwing’ with 13612 detections, ’Assertion Roulette’
with 10488 detections, ’General Fixture’ with 4274 detec-
tions, and ’Eager Test’ with 3780 detections are observed
in all files.

• (ii) The TestSmellDetector tool detected several files
affected by the test smells (’Magic Number Test’, ’As-
sertion Roulette’, ’Exception Catching Throwing’, ’Eager
Test’, ’Lazy Test’, and ’Unknown Test’), with respective
counts of 4222, 2503, 2463, 1126, 1070, and 1030. On
the other hand, the JNose tool detected several affected
files by ’Assertion Roulette’, ’Lazy Test’, ’Magic Number
Test’, ’Exception Catching Throwing’, ’Unknown Test’,
and ’Eager Test’ are detected as 3056, 1396, 1364, 969,
and 905.

• (iii) The JNose tool showed that there is a strong
correlation between the test smells ’Conditional Test
Logic’ and ’Eager Test’, as indicated by a co-occurrence
value of [1.00]. Furthermore, the JNose tool reveals a
strong relationship between the pairs ’Exception Catching
Throwing’ and ’Unknown Test’, as evidenced by a high
co-occurrence rate of [0.99]. In contrast, a high-rated

correlation was noticed in this significant relationship
between the test smells ’Unknown Test’ and ’Eager Test’,
with a co-occurrence value of [0.97] when using the
TestSmellDetector tool. Furthermore, the TestSmellDe-
tector Tool exhibited a combination of ’Source Optimism’
and ’Mystery Guest’, with a significant co-occurrence rate
of [0.95].
As future work, we plan to replicate this study with larger
projects, including a more extensive set of test smells. We
also plan to implement a new tool to detect test smells
and refactor them further. Then, we plan to compare these
three tools with larger projects and to show decreased
number of detected test smells after refactoring.
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