
An Exploration of Maven-Based Java Repositories and Their Testing Practices

Canol Simsek
Department of Computer Engineering

Izmir Institute of Technology
Izmir, Turkiye

email: canolsimsekk@gmail.com

Tugkan Tuglular
Department of Computer Engineering

Izmir Institute of Technology
Izmir, Turkiye

email: tugkantuglular@iyte.edu.tr

Abstract—With the increasing significance of testing in
software development, particularly in gaming and e-commerce,
these industries continue to thrive and evolve, ensuring that the
software systems powering them are robust, reliable, and
capable of delivering an exceptional user experience. The
research aims to compare the testing practices of two GitHub
fields and automate repository mining, test code scanning, and
gathering source code metric processes. The study aims to
uncover common testing usage compared to class and method
counts in the gaming and e-commerce software repositories.
This exploration provides valuable insights regarding overall
test coverage on repositories and how test usage affects code
quality. An automated tool is developed for repository mining
that clones repositories from desired topics. The main objective
of this project is to gather the test usage data and source code
sizes by creating and using static source code analysis tools to
answer if the test usage in terms of test classes and test
methods changes by the sizes of the repositories and does
testing have a negative correlation with code smells. Our
findings align with our test usage and size metrics expectations.

Keywords-unit testing; repository mining; e-commerce
software; game software.

I. INTRODUCTION
The project is motivated to provide insights into

developers’ knowledge of testing used in industries, how
other industries handle testing compared to theirs, and guide
how to improve testing practices and determine if these
topics can be automated. With the increasing significance of
testing in software development, particularly in gaming and
e-commerce, these industries continue to thrive and evolve,
ensuring that the software systems powering them are robust,
reliable, and capable of delivering an exceptional user
experience. Testing plays a pivotal role in achieving these
objectives by detecting and addressing potential issues,
enhancing system performance, and safeguarding against
vulnerabilities. By comparing the testing practices of gaming
and e-commerce repositories, valuable insights can be gained
into the similarities, differences, and overall effectiveness of
testing approaches in these domains. This knowledge will
benefit developers by providing them with guidance on
improving their testing methodologies and empowering
stakeholders to make informed decisions regarding software
quality assurance. Ultimately, the findings of this project aim
to contribute to the continuous improvement of software
quality.

This project aims to mine public repositories, analyze
their source codes, and test usages. An automated tool, which
clones repositories from desired topics, is developed for
repository mining. The main objective of this project is to
gather the test usage data and source code sizes by creating
and using static source code analysis tools. Collected metric
data is processed to create tables and graphs to compare the
two GitHub topics: gaming and e-commerce. These visuals
provide insights into these questions:

• How does the test usage change with the size of the
repositories in terms of test classes and overall
classes?

• How does the test usage change with the size of the
repositories in terms of the test methods and overall
methods?

Our approach for these topics is creating repository miner
software to clone public repositories of desired topics from
GitHub. After that, create and utilize static source code
analysis tools that will scan cloned repositories for their test
class count, test method count, class count, and method
count. Cloned repositories will be uploaded to SonarQube
for analysis and inspection by their code metrics. The
repositories successfully uploaded to SonarQube are then
scanned by our test code analysis tool, which will search the
repository for test classes and methods. Following these
steps, each project result from SonarQube and our analysis
tool will be combined and used to create tables. From these
tables, visuals will be created to gain insights about our
topics.

The paper is organized as follows: Section II presents the
related work. Section III explains the proposed approach.
Section IV presents the result and discussion, and the last
section concludes the paper.

II. RELATED WORK
CORVIG [1] created a pioneering study about patch

coverage. The paper helps to create a well-developed code
review with a highly efficient approach. Its main objective is
to spot possible errors and bugs in the systems. With this
paper, we learn how to create such infrastructure and a
deeper understanding of code analysis. This paper helped us
to understand both code inspection infrastructure and to
create a tracker tool for our repositories [1].

In [2], Hassan et al. presented a brief history of the
Mining Software Repositories (MSR) field and showed
guidance about recent methods for pinpointing the bugs,

1Copyright (c) IARIA, 2023. ISBN: 978-1-68558-101-5

VALID 2023 : The Fifteenth International Conference on Advances in System Testing and Validation Lifecycle

deployment logs, archived communications, or essential
aspects of repositories. Then, they discussed the
opportunities for what can be performed to improve this field
[2].

Williams et al. [3] studied code coverage with their
evolution and provided a tool for bug findings on source
code. They describe a method to use the source code change
history for refining them and searching for bugs. With the
bug database that developers and users of the applications
can contribute, they applied mining source code materials
and checked over them for bug findings. A static source code
checker has done this process. The results are more effective
using historical data than other static scanners. They
indicated that this project needs to expand, not relying on the
user and developer bug reports; projects can provide a new
set of bug record data with new types of bugs [3].

Gousios and Spinellis [4] provided a valuable study
about how data obtained from GitHub is unsuitable for every
research aspect and how this data can be used in large-scale
projects. They have used a quarriable offline mirror of
GitHub API data for this project to pinpoint the pitfall
avoidance strategies. They showcased a GitHub API for
streaming metadata from repositories for writing, managing,
and optimizing complex queries [4].

Cosentino et al. [5] conducted a meta-analysis of 93
research papers on how they handled data mining from
GitHub. The research addressed three dimensions of those 93
papers and addressed poor sampling techniques, lack of
longitudinal studies, and replicability issues. Improvements
can be made to these topics by developer’s data and solution
sharing and researchers comparing their results with each
other. They can also make guides to how they can clone their
projects to make comparisons. They believed these steps
could make a general change in confidence in GitHub data
[5].

When searching or creating a database in GitHub,
researchers had problems with GitHub limitations. Sampling
Projects in GitHub for MSR Studies (Dabic et al. [6]
provided a GitHub Search dataset with 735,669 repositories
to address these issues. With GitHub’s millions of
repositories, a research paper addressed how much of this
data is useful. The systems combine many selection criteria
to get the most valuable combinations on GitHub [6].

Kalliamvakou et al. [7] studied quality and available data
on GitHub. They analyzed how users handle GitHub features
and pointed out the difference between actual data and mined
data. They pointed out that maybe the biggest problem for
data validity is bias to personal use. Nearly 40% of all pull
requests do not appear as merged, even though they were,
and half of the users do not have public activity. The paper
provides recommendations for developers about how to
approach the data on GitHub. As a rule of thumb, the best
way to identify a project’s activeness is to look at its pulls
and commits requests, and the committers are more
significant than two [7].

Chaturvedi et al. [8] retrieved all the papers from 2004 to
2013 about Mining Software Repositories published in
ICSE. They have analyzed the papers that contained
experimental tools or techniques for data mining and

repository mining. They have categorized the tools used in
MSR on the topics of newly developed, traditional data
mining tools, prototype states, and current scripts [8].

By the topic of co-evolution, software needs to evolve, or
it will become less valuable over time. Studying the co-
evolution of production and test code, Zaidman et al. [9]
provided three views that combine information from change
history, growth history, and test coverage evolution reports.
They applied these three views to two open-source projects
and one industrial case to make observations. With these
points of view, developers can define different co-evolution
scenarios. They also indicated that mining a version control
system will provide insight into the testing process [9].

In 2005, Mierle et al. [10] assembled over 200 second-
year undergraduate repositories. They have implemented a
complete system that parses repositories into an SQL
database. The paper examined these repositories' student
behaviors, code quality, and code metrics by examining
individuals working on the same project separately.
However, they point out that the performance indicators
cannot predict grade performance. Their results suggest that
students' habits and code quality have little effect on their
performance [10].

Arcuri and Yao [11] introduced a new view to the co-
evolution of software programs and test development. Their
approach is to competitive evolution so that both software
and testing should directly affect each other. Thus, they co-
evolve like prey and predators in nature. The framework is
based on co-evolution and search-based software testing
[11].

Zaidman et al. [12] studied co-evolution to create
awareness among developers and managers alike about the
following testing process. In the paper named ‘Mining
Software Repositories to Study Co-Evolution of Production
& Test Code,’ they have investigated whether production
code and the accompanying tests co-evolve by exploring a
project’s versioning system, code coverage reports, and size
metrics and evaluated their results with the help of log-
messages and the developers of the systems [12].

Yalçın [13] developed a co-evolution tracker tool for
software with acceptance criteria. The thesis contained 21
real-world projects. Projects are analyzed for every updated
and co-evolution process that has been documented. They
indicated that when considering Semantic Versioning, Major
and Minor version updates have a better ratio for test
updates. However, for the result, they found out that even
considering major and minor updates, the test update to all
update count ratio is not always close to 1.0 [13].

With the evolving complexity of software and test
methods, a Literature Review on Software Testing
Techniques by Jamil et al. [14] discussed the existing and
future testing techniques and how they can be more efficient
and enchanted. The paper aims to guide developers to
understand and develop their current understanding of
software testing techniques for both pre- and post-
development cycles [14].

Our work differs from above literature in concentrating
on two specific domains and compares the projects with top
test usage to explore any patterns.

2Copyright (c) IARIA, 2023. ISBN: 978-1-68558-101-5

VALID 2023 : The Fifteenth International Conference on Advances in System Testing and Validation Lifecycle

III. PROPOSED APPROACH
The proposed approach is composed of three steps:

1. Cloning GitHub repositories
2. Scanning GitHub repositories for tests
3. Analysis of GitHub repositories with

SonarQube
4. Data analysis

The first three steps are explained in detail in this section.
The fourth step is presented in the following section with
results and discussion.

A. Cloning GitHub Repositories
Repositories are cloned from GitHub by a repository

mining tool. This tool works by sending GET requests with
GitHub API. This tool loops through GitHub search pages
and projects to decide if the projects provide the requested
aspects. If these aspects are provided, it clones them to the
local library and creates a folder for them. Here is the
example API search line:

'https://api.github.com/search/repositories?q=topic:gamin
g+language:java&sort=stars&order=desc&per_page=100&p
age=1'

‘/search/repositories’: Base URL for the repository
search. Provides access to GitHub functionalities. The query
component of this URL, denoted by ‘?q=topic:
gaming+language: java’: is searching for repositories that are
tagged in gaming topic (‘topic: gaming’) and written in Java
(‘language: Java’). The parameter '&sort=stars' shows the
results are arranged based on the number of stars they've
received, which is a good indicator of the popularity among
the GitHub. In addition, '&order=desc' makes sure these
sorted results are presented in a descending order, meaning
repositories with the highest number of stars appear first. The
number of results can be changed by changing the
‘per_page’ parameter.

In this research, our tool will look at the top one hundred
repositories of desired pages to efficiently collect
repositories. GitHub will limit the request per second if the
process is anonymous. This limit will slow down the search
process. To bypass GitHub limitations, a user token is
needed. The user can get this token from authentication
settings in GitHub. The tool then sends a Get request and
retrieves a JSON response. It will be cleaned if the repository
name has an invalid character that may cause problems.
However, not every search result will be cloned. To
efficiently scan the repositories, third-party programs will be
in use. These programs will work best for Maven-based
projects. These projects will have a characteristic file named
pom.xml. The tool will search for the pom.xml file in the
repositories. This search is performed by checking the
‘get_contents’ method provided by the GitHub package. The
‘pomCheck’ method will take two parameters
(‘parent_directory and ‘repo’). ‘list’ is a list of repositories
from search parameters. It will loop through every repository
on the API calls. ‘Repo’ is an instance of the ‘repository’
class from the ‘GitHub’ Package. It refers to the repository
for the method that will be examined.

If the search string ‘havepom = repo.get_contents(path
='pom.xml')’ returns true with no exception, this means the

repository has the pom.xml file. The reason behind checking
the pom.xml file is that our tool analyzes only Java projects
that used Maven as its build tool. Pom.xml is a Maven-
specific Project Object Model (POM) XML file that contains
project layout and configuration information. After the
project passes the pom.xml file check, the repository will be
cloned, and a folder will be created by its name in the local
directory. This process will loop through searched all
repositories. With 100 repositories for each page, the
program will take some time to clone all projects. So, it will
also count the repositories for the user and give an indicator
on the console so that the user will have knowledge about
what part of the search process they are in at that current
time.

After all the process is completed, there will be olders
depending on the user selection of the topics. In this
research, there are two topics: Gaming and E-commerce.

B. Scanning GitHub Repositories for Tests
Our static source code analysis tool has been used to get

repositories’ test usage metrics. The tool is designed to
analyze Maven projects to gather test usage data.

The ‘os’ and ‘glob’ packages form the backbone for this
tool as they have been used to navigate the folders and
operating systems and efficiently retrieve files based on
specified path patterns. To ensure accurate reading of the file
content regardless of the encoding, the ‘FileUtils’ class uses
the ‘charset’ package. As a universal encoding detector,
‘charset’ identifies the encoding of a file, thus enabling
‘FileUtils’ to read the file content without errors.

On the other hand, the ‘javalang’ package is a critical
component for two classes: ‘TestClassCounter’ and
‘TestMethodCounter’. This package, targeted at parsing Java
8 source code, helps convert the code into an Abstract
Syntax Tree (AST), reflecting the hierarchical structure of
the source code. The ‘TestClassCounter’ class uses
‘javalang’ to parse code into AST and iterates through it to
count class declarations. If an error occurs, it ensures a
graceful fallback, returning 0 and an empty list. The ‘glob’
package gets files from pathnames or specified file path
patterns. It is used to find all test files from the provided
path. The ‘pandas’ package is a data processing package that
stores the results from this analysis. The tool contains five
classes. The ‘Main’ class contains the logic of execution.
The ‘FileUtils’ class reads the file content and encoding
detection. The ‘RepoParser’ class finds test files in the given
repository. ‘TestClassCounter’ is used for counting the test
class counts in a given Java repository. This class parses the
given code into an Abstract Syntax Tree using the ‘javalang’
package and then iterates through it to find class
declarations. If it gives an error, it returns 0 and an empty
list.’ TestMethodCounter’ is like the ‘TestClassCounter’
class, which counts method counts in each repository. It also
provides total lines of code in the test methods.

The ‘Main’ class initializes a list of directories to be
scanned. After the initialization, it looks for git repositories
using the ‘get_repos()’ method from the ‘RepoParser’ class.
It then finds all the repository's test files, opens them, and
checks their encodings using ‘chart.’ The ‘FileUtils’ class

3Copyright (c) IARIA, 2023. ISBN: 978-1-68558-101-5

VALID 2023 : The Fifteenth International Conference on Advances in System Testing and Validation Lifecycle

reads the test codes, and ‘TestClassCounter’ with
‘’TestMethodCounter’ is called. With these findings, the
database is created with methods with their method names,
classes that methods are located, files that classes contained,
folder paths that these files contained, and each repository
with their total test lines of codes.

C. Analysis of GitHub Repositories with SonarQube
SonarQube is an open-source platform [15]. It provides

continuing code quality management with static code
analysis. It can detect bugs, code smells, security issues, and
overall code quality. The reason it has been selected for this
research is that it can give us valuable metrics about
repository sizes so that these can be compared to understand
the relationships between them.

SonarQube can be run on different operating systems.
The user must select the operating system they are currently
using and run the ‘sonar.bat’ file in the folder. The program
will set up its configurations and launch a local server. By
default, it will be ‘localhost:9000’. The SonarQube server
has the following aspects: A web server that serves as the
user interface, a search server that utilizes Elasticsearch, a
computation engine for code analysis reports, and a database
for storing code metrics and instance configurations. It is
helpful to note that, in some instances, there might be
multiple Java versions on the user’s server. In this case, the
user needs to define what Java version will be used in the
search process. Instead, it is also possible by setting the
environmental path for Java to ‘SONAR_JAVA_PATH’ in
the user’s local path settings.

Once the analysis is performed, repository metrics can be
received from SonarQube. For this, different automation
tools have been developed. This tool is also written in
Python and uses ‘requests’ and ‘pandas’ packages. It
communicates with SonarQube and collects code quality
metrics. The desired metrics can be selected, or all can be
included. After that, it creates an Excel file to store them.
With the SonarQube authentications like previous usage,
users must have a URL, Username, and Password. Then, the
tool will send Get requests with authentication to SonarQube
API to retrieve metric data. It then processes the JSON
response to extract the metrics by their domain. It then
creates a dictionary named ‘metric_domains’ where each
metric key is a new domain. It then iterates over all
repositories. For each repository, it creates a
‘project_metrics’ dictionary. The results are gathered from
JSON and stored in that dictionary. After these steps, the tool
opens ‘ExcelWriter’ with the ‘XlsxWriter’ engine. Then, for
each domain that is keyed, it creates a new sheet in the file.

In our research, the following metrics are evaluated:
• Class count: Number of classes written in the project

(without test classes).
• Test Class Count: Number of test classes written in the

project.
• Method count: Number of methods written in the

project (without test methods).
• Test Method Count: Number of test methods written in

the project.

IV. RESULTS AND DISCUSSION
With the repository mining, source code scanning, and

retrieving data from API finished, metrics tables are created.
The goal is to compare the two topics’ test usage metrics to
their sizes and code quality metrics to their test usages.
Linear regression, scatter plots, and cluster graphs is used for
these tasks. These methods help us to visualize these topics.
Intuitive correlations between the metrics are as follows: A
positive relationship is expected between class counts and
test class counts. Test usage should also be expanded as
codebases expand to reduce bugs, errors, code smells, and
unwanted program behavior. A positive relationship is also
expected with method counts and test method counts. The
reason is the same as the class/test class comparison. Test
usage is essential for code development and expansion.

Metrics about gaming software repositories can be seen
in Table 1. Table 1 lists class count, test class count, method
count, and test method count for the five projects with the
highest test class counts. Although the ezyfox-server project
has the highest number of tests classes among the projects
under consideration, it has comparatively less test method
than the base project. The base project has the highest
number of test methods. The Open Realm of Stars project
has the highest test class-test method ratio. Class counts and
test class counts would be expected to be similar in optimal
cases. However, for the projects in Table 1, there is barely
any correlation. Test usage, i.e., test class count and test
method count, can be highly different from one repository to
another. The same observation can be made for method and
test method behaviors.

TABLE I. TOTAL CLASSES/METHODS AND TEST CLASSES/METHODS
FOR GAMING SOFTWARE

GitHub Projects Class
count

Test class
count

Method
count

Test
method
count

ezyfox-server 663 337 2553 943

base 785 314 3742 4256

Open Realm of
Stars

302 190 3471 1245

jeveassets 1024 76 8987 743

mmo 184 14 1633 44

The same metrics are collected for the five e-commerce

software projects with the highest test class counts and
presented in Table 2. Although the io.spot project has the
highest number of test classes and of test methods, there are
only 11 test classes and 25 test methods. The IOM Project
Bootstrap Archetype project has the highest class count-test
class count ratio, whereas the productsv project has the
highest method count-method class count ratio. The test
usage rate seems independent of repository size. There are
repositories that have thousands of methods and still have
less than 25 test methods.

4Copyright (c) IARIA, 2023. ISBN: 978-1-68558-101-5

VALID 2023 : The Fifteenth International Conference on Advances in System Testing and Validation Lifecycle

TABLE II. TOTAL CLASSES/METHODS AND TEST CLASSES/METHODS
FOR E-COMMERCE SOFTWARE

GitHub Projects Class
count

Test class
count

Method
count

Test
method
count

io.spot-
next:spot-
framework

430 11 2025 25

microservices-
event-
sourcing/parent

203 9 479 16

IOM Test
Framework

337 6 1667 20

productsv 27 6 73 12

[Tool] IOM
Project
Bootstrap
Archetype

16 4 56 6

Figure 1. Test Class Count by Total Class Count for Gaming Topic.

Figure 2. Test Class Count by Total Class Count for E-Cmmerce Topic.

Figure 1 and Figure 2 represent scatter plots of the
highest five projects for gaming and e-commerce software
projects, respectively. Gaming software projects have higher
class and test class counts and higher test class/class ratios.
The game software developers tend to write more tests than
the e-commerce software developers. Still, both domains
need to improve their test development effort.

This project aimed to find answers to these two
questions:

• How does the test usage change with the size of the
repositories in terms of test classes and overall
classes? Answer: Every Java repository has different
characteristics. With the Gaming and E-Commerce
topics, test usage changes from topic to topic and
even between projects. While gaming repositories
are much larger than e-commerce repositories, their
test usage is unsatisfactory. On the other hand, in e-
commerce topic, results are slightly better than
gaming. Their repository sizes are pretty small. But
they have a better class ratio than gaming topics. So,
test usage is expected to have a positive relationship
with the class counts in the source code.

• How does the test usage change with the size of the
repositories in terms of the test methods and overall
methods? Answer: Method counts, and test method
usage depend on the software projects'
characteristics. It stays the same regardless of the
topic. However, in method counts behavior, classes
can have multiple functionalities or be small-
abstract based. The more methods a class has, the
more complicated they can become. It is the same
for both source code and testing methods. For our
two topics, methods are like class counts in the
gaming section, and test usage is the same as
expected. In the e-commerce section, classes have
fewer methods than gaming topics, and test classes
have fewer test methods than gaming topics.

The results of this research cannot be generalized neither
to the domains under consideration nor to other domains due
to the following reasons:

• the study uses a small sample size, and the results
are not statistically significant enough to represent
the larger population.

• the study sample might not be representative of the
whole population.

• the study uses a non-random sampling method,
which can introduce bias.

• the study uses a tool, developed by the authors, that
might have some inaccuracies or limitations.

V. CONCLUSION
In this research, software projects from GitHub that are

written in Java language have been gathered. Then, they
were analyzed by code metrics such as source class/methods
and (test class/methods. These processes are automated and
can be reused for other Maven-based directories. It turns out
that Java repositories may differ quite a lot. Also, test usages
are unique from project to project. Test usage is essential for
quality products and systems, as more robust tests mean
fewer bugs, errors, and unintended behavior. It seems that
community projects are being deployed without
implementing these principles. Our database extracted
dozens of repositories because they had zero test cases.

On the other hand, working with SonarQube and Maven
has its own benefits, but these also come with some
problems. SonarQube is usually used for developing a
project from the start and monitoring it. With already

y = 0,1187x + 115,97

0

100

200

300

400

0 200 400 600 800 1000 1200

Te
st

 c
la

ss
 c

ou
nt

Class count

'Test class count' by 'Class count'

y = 0,0112x + 4,939

0

5

10

15

0 100 200 300 400 500

Te
st

 c
la

ss
 c

ou
nt

Class count

'Test class count' by 'Class count'

5Copyright (c) IARIA, 2023. ISBN: 978-1-68558-101-5

VALID 2023 : The Fifteenth International Conference on Advances in System Testing and Validation Lifecycle

existing projects, even though it has the requested structure,
there might be version and dependency errors with the API
and Maven. In conclusion, these processes can be automated
using parsers and third-party tools.

For future work, a database of repositories could be
expanded by solving these problems mentioned above. For
the analysis, more insight might be used for the clustering to
gain a deeper understanding of the correlations of the
metrics. Moreover, we plan do an in-depth experimentation
in order to find correlations of any statistical significance of
findings.

REFERENCES
[1] P. Marinescu, P. Hosek, and C. Cadar, “Covrig: a framework

for the analysis of code, test, and coverage evolution in real
software,” The Proceedings of the 2014 International
Symposium on Software Testing and Analysis, San Jose CA
USA: ACM, Jul. 2014, pp. 93–104. doi:
10.1145/2610384.2610419.

[2] A. E. Hassan, “The road ahead for Mining Software
Repositories,” The Proceedings of the Frontiers of Software
Maintenance, Beijing, China: IEEE, Sep. 2008, pp. 48–57.
doi: 10.1109/FOSM.2008.4659248.

[3] C. C. Williams and J. K. Hollingsworth, “Automatic mining
of source code repositories to improve bug finding
techniques,” IEEE Trans. Softw. Eng., vol. 31, no. 6, pp. 466–
480, Jun. 2005, doi: 10.1109/TSE.2005.63.

[4] G. Gousios and D. Spinellis, “Mining Software Engineering
Data from GitHub,” The Proceedings of the IEEE/ACM 39th
International Conference on Software Engineering
Companion (ICSE-C), Buenos Aires, Argentina: IEEE, May
2017, pp. 501–502. doi: 10.1109/ICSE-C.2017.164.

[5] V. Cosentino, J. Luis, and J. Cabot, “Findings from GitHub:
methods, datasets and limitations,” The Proceedings of the
13th International Conference on Mining Software
Repositories, Austin Texas: ACM, May 2016, pp. 137–141.
doi: 10.1145/2901739.2901776.

[6] O. Dabic, E. Aghajani, and G. Bavota, “Sampling Projects in
GitHub for MSR Studies.” arXiv, Mar. 08, 2021. Retrieved:
July, 2023 [Online]. Available from:
http://arxiv.org/abs/2103.04682

[7] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D.M.
German, and D. Damian, “The promises and perils of mining
github,” The Proceedings of the 11th working conference on
mining software repositories, ACM, May. 2014, pp. 92-101.

[8] K. K. Chaturvedi, V. B. Sing, and P. Singh, “Tools in Mining
Software Repositories,” The 13th Proceedings of the
International Conference on Computational Science and Its
Applications, Jun. 2013, pp. 89–98. doi:
10.1109/ICCSA.2013.22.

[9] A. Zaidman, B. Van Rompaey, A. van Deursen, and S.
Demeyer, “Studying the co-evolution of production and test
code in open source and industrial developer test processes
through repository mining,” Empir. Softw. Eng., vol. 16, no.
3, pp. 325–364, Jun. 2011, doi: 10.1007/s10664-010-9143-7.

[10] K. Mierle, K. Laven, S. Roweis, and G. Wilson, “Mining
student CVS repositories for performance indicators,” ACM
SIGSOFT Softw. Eng. Notes, vol. 30, no. 4, pp. 1–5, May
2005, doi: 10.1145/1082983.1083150.

[11] A. Arcuri and X. Yao, “A novel co-evolutionary approach to
automatic software bug fixing,” The Proceedings of the 2008
IEEE Congress on Evolutionary Computation (IEEE World
Congress on Computational Intelligence), Jun. 2008, pp. 162–
168. doi: 10.1109/CEC.2008.4630793.

[12] A. Zaidman, B. Van Rompaey, S. Demeyer, and A. van
Deursen, “Mining Software Repositories to Study Co-
Evolution of Production & Test Code,” The Proceedings of
the 1st International Conference on Software Testing,
Verification, and Validation, Apr. 2008, pp. 220–229. doi:
10.1109/ICST.2008.47.

[13] A. G. Yalçın, “Development of co-evolution tracker tool for
software with acceptance criteria,” Master Thesis, Izmir
Institute of Technology, 2022. Retrieved: July, 2023 [Online].
Available from: https://gcris.iyte.edu.tr/handle/11147/12714.

[14] M. A. Jamil, M. Arif, N. S. A. Abubakar, and A. Ahmad,
“Software Testing Techniques: A Literature Review,” The
Proceedings of the 6th International Conference on
Information and Communication Technology for The Muslim
World (ICT4M), Nov. 2016, pp. 177–182. doi:
10.1109/ICT4M.2016.045.

[15] “SonarQube Tutorial Documentation,” Retrieved: July, 2023
[Online]. Available from:
https://docs.sonarsource.com/sonarqube/9.7/extension-
guide/web-api/.

6Copyright (c) IARIA, 2023. ISBN: 978-1-68558-101-5

VALID 2023 : The Fifteenth International Conference on Advances in System Testing and Validation Lifecycle

