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Abstract—Cloud-native patterns have reshaped application 

development over the past decade. With the benefits of agility, 

resiliency, and scalability, the network domain starts 

embracing the cloud-native patterns to accelerate its evolution. 

Containerization becomes another solution of network function 

virtualization. Leveraging existing network services and the 

mature container orchestration platform, cloud-native 

networks attract wide attention, however the performance and 

scalability challenges in design and testing arise as the 

architecture advances. This paper presents an overview of 

cloud-native networks, the design and testing challenges and 

the development activities from open-source communities 

towards overcoming those issues. Performance optimization 

and hardware and software co-design are critical for the future 

success of cloud-native networks.  
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I.  INTRODUCTION 

Since Amazon first launched cloud computing platforms, 
delivering compute and storage resources through the 
Internet in 2006, on-demand and scalable cloud 
infrastructure has overwhelmingly reshaped the development 
of software and business [1]. Application architecture shifts 
from monoliths to microservices. Combining microservices 
with containerization and Continuous Integration and 
Continuous Delivery (CI/CD), the cloud-native concept 
emerged around 2010. As one of the pioneers, Netflix 
redesigned their systems in a cloud-native way and migrated 
all the services and data to the cloud through a seven-year 
journey, which facilitates rapid product release, new 
resource-hungry features and ever-growing volumes of data 
[2].  

With proven success, cloud-native becomes a modern 
way of developing software. In 2015, Cloud Native 
Computing Foundation (CNCF) [3], a Linux Foundation 
project, was founded to advance container technology and 
align industry practice around its evolution. Since then, the 
cloud-native technologies and tools have thrived and taken 
great strides. Kubernetes [4], a container orchestration 
platform for automated container deployment, scaling and 
management is the first CNCF project. The plugin-based 
design and high extensibility build its success and make it to 
be the most adopted container orchestration system. Along 
with orchestration, a configurable infrastructure layer called 
service mesh is designed to ensure the security, resiliency, 
and observability of the communications between services. 
These two key components pave the way for container 

deployment and runtime management and significantly 
accelerate the cloud-native patterns adoption. In addition, 
CNCF launched many other projects covering different 
perspectives, including continuous integration and delivery, 
container runtime, cloud-native network, etc.  

In the 5G and cloud era, communication service 
providers seek solutions to advance networks to meet ever-
changing customer needs, optimize network utilization, and 
support new application scenarios, e.g., augmented reality, 
virtual reality, Internet of things. Cloud-native principles are 
meant to increase the velocity of the business. With API 
enabled design, CI/CD and Development and Operations 
(DevOps) practices, the cloud-native technologies improve 
the service agility and time-to-market. Therefore, network 
equipment vendors and communication service providers 
start adopting cloud-native architecture, containerizing 
network functions, more importantly, leveraging open-source 
cloud-native tools to modernize networks, e.g., orchestration, 
automation, monitoring. Together with application, network 
development joins the cloud-native journey. Milestones are 
illustrated in Figure 1.  

 

Figure 1.  Cloud-native Journey from Applications to Networks. 

This paper aims to provide an overview of the current 
landscape of cloud-native networks, with focus on 
contributions from open-source communities. The definition 
and reference architecture of cloud-native networks are first 
introduced in Section II. The challenges and network specific 
requirements are discussed in Section III. Good design 
practice and guidance are summarized in Section IV. Testing 
flow and performance testing are presented in Section V. 
Conclusions are presented at the end.   

II. CLOUD-NATIVE NETWORKS 

Network architecture has evolved from individual 
physical machines for each Physical Network Functions 
(PNFs), to Virtual Network Functions (VNFs) running on 
VMware or OpenStack, to what the CNCF sees as the next 
wave of Cloud-native Network Functions (CNFs) running on 
Kubernetes. CNFs are like VNFs, but they run on lighter 
weight containers, simpler to upgrade, easier to secure, and 
cheaper to operate. 
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Cloud-native networks can be understood from two 
perspectives. The first is networks are built with cloud-native 
principles, which means network functions are containerized, 
with both control and data plane composed of microservices. 
The other is that networks are to provide connectivity and 
security to cloud-native applications in a cloud environment. 
Therefore, the network itself and the workloads that it serves 
both are considerably evolved. However, considering of the 
existing infrastructure, the compatibility with the PNFs and 
VNFs is needed in some scenarios.   

As Kubernetes is the most adopted container 
orchestration platform, the cloud-native networks discussed 
in the remainder of the paper are in the context of 
Kubernetes. Kubernetes networking is based on a plugin 
model, which is open to third-party implementations. A 
network plugin needs to provide connectivity and 
reachability in pod networking. A pod is a group of 
containers that are deployed together on the same host in 
Kubernetes. Each pod has a unique and dynamic IP. All the 
pods in a cluster are connected through a flat network. 
Project Container Networking Interface (CNI) defines the 
standards on how network plugins should look, and how 
container runtime should invoke them [5]. It also provides a 
set of basic plugins as reference.  

 

Figure 2.  Container Networking Block Diagram. 

In Figure 2, a simplified network block diagram is shown 
to illustrate the communication between pods across two 
diffident nodes. A CNF module first builds the connectivity 
between the pods and host network, and then it creates the 
overlay network between hosts based on different protocols, 
e.g., VXLAN or IPIP. This CNF can be implemented either 
in a kernel bypass manner to improve performance or with 
Linux kernel networking stack for the sake of simplicity. 
Together with this CNF, an agent pod is typically used for 
routes and network policy configuration. Project Flannel [6] 
and Calico [7] are the two commonly used CNI solutions. 

III. NETWORK SPECIFIC DESIGN 

Network workloads, responsible for low-level traffic 
forwarding, are different from the generic application 
workloads running in the cloud. A containerized network 
function may require multiple interfaces, faster data pipeline, 
comprehensive network policies, etc. In this section, the 
network specific requirements and solutions are discussed.  

A. Multiple Networks Attachment 

When Kubernetes initiate a pod, only one interface is 
created by default. In order to provide multiple interfaces, a 
CNCF network plumbing working group was formed, and a 
meta-plugin solution was proposed to create multiple 

network interfaces and manage multi-network policy. An 
illustration is shown in Figure 3. Compared to one standard 
CNI, multiple CNI plugins can be chained to form a meta-
plugin. Then, multiple networks can be attached to a single 
pod. Project Multus [8] and CNI-Genie [9] provide reference 
implementations. 

 

Figure 3.  Standard vs Multiple Network Interfaces Attachment. 

B. Host Networking Performance Improvement  

CNI often leverages Linux host networking to implement 
network functions and policy. For example, iptables, a user-
space utility program, is used to configure the IP packet filter 
rules. The filters are organized in different tables of chains to 
treat packets with specific rules. However, it becomes a 
bottleneck when large numbers of pods are under 
orchestration, since each host needs updates if any pod 
changes in the cluster. 

An alternative of using iptables is implementing the 
function with extended Berkeley Packet Filter (eBPF), a 
Linux kernel technology, which compiles user programs to 
bytecode and attached to the kernel to be more performant 
[10]. eBPF enables the dynamic insertion of security, 
visibility, and networking control logic to the kernel. The 
flow is illustrated in Figure 4. The ability to run user-
supplied programs inside the Linux kernel makes eBPF a 
powerful tool in terms of performance and convenience. 
Project Cilium is an eBPF-based CNI [11]. Detailed 
workflow and performance improvement can be found on 
Cilium’s blog [12].   

 

Figure 4.  The Flow of eBPF Program Inserted to Linux Kernel. 

C. Data Plane Acceleration 

When a packet goes from user space to kernel space, an 
expensive copy occurs. To avoid the copy overhead, DPDK 
is widely used to process packets in user space and directly 
interact with network hardware bypassing the Linux kernel 
[13][14]. A data path comparison is shown in Figure 5. To 
further improve the performance, a high-performance virtual 
switch, e.g., Open vSwitch (OVS) can be added too. Project 
Antrea implemented OVS based CNI. With offloading the 
OVS function to supported Network Interface Card (NIC), 
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the network bandwidth is increased by more than 3 times 
[15]. In order to provide high performance computing and 
networking in hyperscale data centers, hardware acceleration 
moves beyond CPUs and turn to dedicated chips [16].  
Fortunately, Kubernetes provides a device plugin framework 
to allow specific hardware in the cluster, e.g., Graphic 
Processing Unit (GPU), NIC, which provides more 
possibilities for hardware acceleration.  

 

Figure 5.  Data Plane Acceleration Bypass Linux Kernel. 

D. Hybrid Multi-cloud Networking Orchestration 

So far, the networks discussed above are intra-cluster 
networks, i.e., the communication is within the same cluster. 
However, as multi-cloud and hybrid cloud become more 
prevalent in today’s business model, the inter-cluster 
network becomes a critical problem.  

 

Figure 6.  Multi-cluster Networking. 

To connect two different clusters, traffic typically goes 
through the public Internet. An IPsec tunnel is often the 
choice to ensure secure communication. Figure 6 shows a 
simplified architecture of multi-cluster networking. A broker 
is used to exchange the information between clusters, and a 
gateway node is responsible for establishing IPsec tunnels 
and updating local cluster information to the central broker. 
Route agent runs on each node to configure the routes and 
rules. Project Submariner is a reference solution for this 
architecture [17]. For more comprehensive networking 
features, Project Network Service Mesh (NSM) [18] and 
Tungsten Fabric [19] can be referred.   

IV. DESIGN PRINCIPLES  

According to Sections II and III, the cloud-native 
networks typically consist of agents on each node to forward 
traffic and implement policies, a centralized control module 
to communicate with the container runtime and agents, and a 
data store to keep configurations and states. To design such a 
system with cloud-native principles, the following guidance 
is summarized from the best practices.  

• Modularization 
Each network function should be packed in its own 

container and orchestrated in a dynamic way. Complex 
network functions can be created by service function 

chaining. Service dependency can be programmed through a 
Helm chart in a unified format. Kubernetes style API is 
recommended to allow unified control. 

• State Separation  
Network functions should be separated to stateless and 

stateful, in order to scale the stateless functions smoothly. 
The states of stateful functions can be stored in etcd, a 
distributed key-value store in Kubernetes. 

• Infrastructure as code 

Network resources should be managed with machine-
readable files. All the changes should be documented into 
files. Therefore, tasks like provision and roll back can be 
easily automated. Compared to the traditional management 
with command-line interface, automation removes the risk 
associated with human error and decreases system 
downtime. 

• Low-Level Acceleration 

Dedicated chips and hardware components are essential 
to build future intelligent cloud infrastructure [13]. With 
Kubernetes’s device plugin feature, hardware functions can 
be exposed to containers for performance improvement. The 
design of hardware APIs should be consistent and reusable. 

• Built-in Observability and Analytics (AI ready) 

The observability of CNFs should be considered during 
the design phase, in order to enable continuous monitoring 
and automated troubleshooting. Output formats should be 
standardized and compatible with existing monitoring tools 
like Prometheus [20] and Grafana [21]. Thus, full-stack 
performance monitoring and analytics, from infrastructure to 
application, can be supported. In addition, structured data 
make artificial intelligence easy to apply and pave the way to 
autonomous network. 

• Platform Agnostic  

The network services should be able to be deployed and 
orchestrated seamlessly among public cloud, private cloud, 
and edge cloud. The CNFs should require no changes under 
different platforms. 

V. TESTING METHODOLOGIES 

Software testing today has been modernized by CI/CD 
and DevOps, two important characteristics of cloud-native 
patterns. Testing becomes a continuous activity in design, 
deployment, and operation. In this section, the generic test 
flow under CI/CD is first introduced, followed by 
performance testing. Lastly, the observability in CNFs is 
discussed. 

CI is to establish a consistent and automated pipeline to 
build, package and test applications. With regularly 
checking new code, testing and integrating it with other 
parts of the system, organizations can reduce development 
and testing time from months down to days, even hours. 
Test suites are often written alongside new features. Unit 
tests ensure the committed code itself works. Integration 
tests ensure no breaks are introduced into the main code 
line. End-to-end tests ensure end user’s experience by 
testing the entire product. Common CNF CI jobs provide 
the test coverage on command-line interface, authorization, 
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storage, connectivity, network policy, etc. Security scan and 
compliance tests are typically included as well.  

CD automates the software delivery process. It ensures 
the verified code changes from development environments 
can be pushed into production seamlessly. An interesting 
feature brought by CI/CD is canary testing, which releases 
the new version of the software only to a small percentage 
of users, to perform in-production test. New versions can be 
easily rolled back with Kubernetes orchestration.  

Besides functional testing, performance testing is critical 
for cloud-native networks. The performance requirements of 
cloud-native networks are twofold. One is the performance 
of a CNF alone, e.g., how many packets a CNF can process 
per second. The other is the scalability of handling large 
amounts of network requests from web scale services, e.g., 
how fast the CNFs can provision one thousand endpoints or 
update network policies on thousands of hosts. In order to 
enable organizations to reliably test and compare 
performance between VNFs and CNFs, CNCF launched the 
CNF Testbed project in 2019. 

The CNF Testbed project targets to build a repeatable test 
environment by using immutable hardware, version control 
on all configurations including underlay networking, and 
bootstrapping workload repeatably with automation pipeline 
[22]. The test framework typically includes a Kubernetes 
cluster with CNFs under test, traffic generator, and underlay 
networks illustrated in Figure 7. Traffic can be generated 
either within the cluster or from an external generator. The 
test steps are listed in TABLE I. The performance metrics 
evaluated often include CNF deployment time, endpoints 
provisioning time, network policy update time, idle-time 
CPU and memory usage, runtime CPU and memory usage, 
network throughput and latency.  

 

Figure 7.  CNF Testbed Framework. 

TABLE I.  PERFORMANCE TESTING STEPS 

1. Provision hardware and Kubernetes cluster 
2. Deploy CNFs 

3. Deploy traffic generator 

4. Run the traffic benchmarks and tests 
5. Collect performance metrics  

 
According to CNF Testbed’s initial results, from VNFs to 

CNFs, the change will not affect the overall networking 
performance [22]. In fact, the lightness of container 
technology allows switching user context more quickly than 
with VM Hypervisors, and containerized workload could 
have a more direct interaction with underlying hardware. 
Communities are looking for more use cases to make more 
comprehensive comparison. 

Since continuous testing and continuous monitoring 
become the norm today, the observability is critical. 

Observability includes tracing, metrics, and logs at various 
levels like cluster level, container level and kernel level. 
Kernel level tracing is particularly important for the CNFs. 
Standard Linux tracing tools like perf, ftrace, SysDig can be 
leveraged. To customize the network tracing, eBPF can be 
used to translate and load user programs to the kernel. 
Therefore, kernel networking events can be probed and 
monitored. Furthermore, the probes can be added into the 
CNFs program as well. Project IOVisor [23] implemented 
eBPF based monitoring tools, e.g., trace TCP passive and 
active connections, trace TCP packet drops with details, 
trace TCP retransmits. In a customized CNF, eBPF 
programs can be added to trace the changes of interface 
counters, interface address, routing tables and network 
address translation sessions, etc. It is an ongoing project to 
enrich eBPF-based monitoring tools. With more detailed 
and critical information extracted, fine-grained testing, fault 
isolation, and smart analytics are possible [24]. 

 

VI. CONCLUSIONS 

Cloud-native principles and technologies bring 
tremendous benefits in terms of business agility, scalability 
and resiliency. Modern networks adopt this trend to 
accelerate development speed, improve resiliency with 
dynamic scaling and safe upgrades, and reduce costs. 
Kubernetes, a powerful production-grade orchestration 
platform with high extensibility, accelerates the process of 
network function containerization.   

From PNFs to VNFs and CNFs, the implementation of 
network functions keeps evolving. There are advantages and 
issues for each paradigm. Although CNF brings many 
benefits, not all the workloads could fit perfectly for 
containers. Considering the performance advantages of 
network specific hardware, the data plane acceleration with 
hardware offloading cannot be neglect. This also brings new 
opportunities for next-generation hardware design. Network 
equipment and service providers could take a top-down 
approach, according to the requirements of containerized 
applications to do the hardware and software co-design, in 
order to achieve the optimal network solutions and meet the 
market needs in the cloud era.   
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