
Low-Code Solution for IoT Testing

Hugo Cunha

Faculty of Engineering,
University of Porto

Porto, Portugal
Email: up201404587@fe.up.pt

João Pascoal Faria

INESC TEC and
Faculty of Engineering,

University of Porto
Porto, Portugal

Email: jpf@fe.up.pt

Bruno Lima

INESC TEC and
Faculty of Engineering,

University of Porto
Porto, Portugal

Email: bruno.lima@fe.up.pt

Abstract—In recent years, there has been an increase in the use
of Internet of Things (IoT), mostly resulting from the increase
in the number of ever-smaller devices being commercialized by
different vendors with different purposes. These devices and the
ecosystem that they are part of typically are highly complex due
to their heterogeneous nature and are typically end-user focused.
As a result, testing such systems becomes a challenge, especially
when the system logic is configured by end users. To address
such challenge, a low-code approach was designed that allows
users with no programming, or testing knowledge, to test an IoT
scenario with a set of sensors and actuators. This approach has a
set of test patterns implemented out-of-the-box so the user simply
executes the test suggested by the tool and observes the results.
The work was validated in a case study involving a group of
users with and without technical knowledge. The results showed
that both groups managed to finish the tasks selected with ease.
The results obtained during the validation phase with end users
affirm that the approach eases the process of testing such systems.

Keywords–Visual Interface; IoT; Integration Testing.

I. INTRODUCTION

Over the last few years, there has been a growth in the
usage of Internet of Things (IoT) devices [1]. These small
devices have been “turning heads” in terms of robustness,
price and general usability [1]. From sensors with the intent of
measuring the temperature or humidity of a room to actuators,
capable of turning the TV on or adjusting the air conditioning,
these devices are taking a leap forward in both technology
and also complexity. With the addition of more features and
the increasing number of manufacturers providing low-cost
solutions which do not provide integration techniques, there
is a rising problem - guarantee the correct communication and
functioning when grouped together.

One of the areas that is on the rise, regarding IoT,
is eHealth, automotive and home automation, or domotics.
eHealth is a somewhat recent area that integrates informatics
and health in the same domain [2]. In other words, is the
possibility of creation of new services in the healthcare domain
using the internet. Automotive is also another domain to get
certain attention [3]. Lately, a large number of companies
are attempting to create autonomous vehicles. These vehicles
are expected to not only detect all kinds of road hazards
- pedestrians, road signs, traffic lights - but also be able
to communicate with the infrastructure. Home automation,
or domotics, is an example of an area which is having an
increased use in our lives [4] for simple home solutions where,

for example, smart sensors, connected to an air conditioning
are able to control the temperature of a room.

From the previously observed domains (eHealth and au-
tomotive), it is perceptible that errors derived from these
activities may cause serious damage to human lives [5]. It
is critical that such infrastructures and systems are tested to
guarantee its correct functioning. In the case of domotics, it
is not such a critical area since it does not deal with human
lives directly but, nevertheless if, for example, a door lock is
connected to a device that fails to operate it becomes a crucial
safety problem.

Another problem that we can point out is the fact that most
of the products for such scenarios are developed on different
platforms, in different programming languages and manufac-
tured by distinct companies [6]. Communication between such
devices may be very hard to establish because of such aspects.

Lastly, the process of testing such complex scenarios is
still a difficult task and not everybody can accomplish. In fact,
there are already a large number of tools that allow for testing
of such devices mentioned, although most of them are proven
to be out of the domain we are presenting and are unable
to be used by people with low expertise in the area. Most are
focused on large-scale systems and require either programming
or a high level of technical knowledge to operate.

The rest of the paper is organized as follows: Section II
presents the proposed solution; evaluation is described in
Section III; related work is presented in Section IV and
conclusions and future work are presented in Section V.

II. PROPOSED SOLUTION

In this section, we present our proposed solution to reduce
the expertise needed for a user to test IoT scenarios.

A. Architecture
The developed low-code solution for IoT testing comprises

two components: a visual interface (Izinto Frontend in Figure
1) for the configuration of IoT test scenarios, selection of
applicable test patterns and visualization of test results; and
a second one which is a pattern-based integration testing
framework for IoT (Izinto Backend), developed in a previous
work [7], responsible for test execution.

The Frontend is a Node.js [8] web application coupled to
a diagram design framework, JointJS [9]. The framework al-
lowed for the development of the blocks, links and interaction

38Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

Figure 1. General architecture of the work developed

between them, and the Node.js is responsible to handle server-
side events, such as the test execution and test results report.

In the Frontend, the user visually designs the application
scenario, its connections and parameters. After that, the tool
will suggest test patterns that can be executed and the user
chooses the ones desired. Following, the tool will convert
the designed scenario into a format the Izinto backend can
understand and start its execution. After the tests are executed,
the results are reported back on the visual interface so the user
can understand what was successful or unsuccessful.

The Izinto backend comprises two main modules: test logic
module and IoT components module. The test logic module
implements a set of test patterns using JUnit [10]. The IoT
module is responsible for the necessary communication with
the IoT devices during test execution. As to input data, prior to
the starting of the integration test, the Izinto backend interprets
a configuration file, in JSON, with the information needed for
the application of the test patterns. An excerpt of this file can
be observed in Figure 3.

In Figure 1, it is possible to observe the components and
flow of our solution.

B. Visual Definition of Test Scenario

In Figure 2 we can observe the user interface of our tool.
In this picture, it is possible to distinguish five main parts, or
areas, each regarding different functionalities or objectives. In
this section, we will focus on the toolbox (1) and workspace
(4).

On the left (1), there is the toolbox in which the user can
start creating blocks/elements. The blocks are abstractions for
physical sensors, actuators, applications and notifications. Each
block has a small form for the user to fill in and specify the
parameters of the abstraction it represents and also for the test
to be executed. In the middle (4), there is the workspace in
which the user is able to move, connect and edit the block’s
properties and test parameters. Figure 2 shows the blocks and

links for the running example, as well as a form with the
properties of the blocks.

For a better user experience, the tool allows for exporting
and importing already designed scenarios as JSON files (5).

C. Test Selection
After describing the application scenario, the user must in-

dicate which tests he/she wishes to execute. In the Test Pattern
Arena (2) in Figure 2, there are five test patterns available:
action, alert, periodic readings, user triggered readings and
actuator.

At this stage, the users select the test patterns to apply. The
tool will check which tests the user is able to run, through
an algorithm which was developed to suggest test patterns, in
regard to the designed scenario. The execution of the algorithm
is triggered when there is any change in the workspace and
will attempt to find flows that represent one of, or more than
one the five available patterns. Once it detects a test pattern
able to be executed, it will make it available to run. In the
running example, the suggested test pattern is action, since
there is a sensor connected to a logic box which is connected
to an actuator.

D. Test Execution
When the user presses the test execution button (5), the

tool generates a JSON file, similar to the one present in
Figure 3. For each test pattern, a different configuration file
is generated, although they are all ran at the same time. The
Izinto backend will execute the tests by communicating with
the devices within the system under testing (sensors, actuators,
etc).

E. Visualization of Test Results
Upon test completion, the Izinto backend will return a

report in the format of text. Such report will be interpreted by
the logic module of the web application and will demonstrate
to the user the errors that may have occurred. There are three
ways the results are displayed to the user. Firstly, the user
will have ”drawn” beside each pattern a red cross (in case
of failure) or a green checkmark (in case of success), in the
Test Pattern Area (2). Secondly, these same figures will be
displayed inside each sub-test (each test is divided into smaller
and more specific tests). Lastly, the elements of the workspace
will be painted green, red or grey in case of success, failure or
not tested, accordingly. In Figure 4 we can observe the results
of a test which had some failures, but also some successes.
In this case, it was executed an action test, which involves a
sensor, a logic box and an actuator. As observable, in case
of the sensor that performed readings correctly and within
delay and deviation set by the user and failures. In case of
the actuator, it did not change its internal state upon having
received an order to do so by the application, so it is painted
as red since it failed.

III. EVALUATION

With the objective of validating the work developed, it
was conducted a usability evaluation experiment involving
users with the objective of assessing the following research
questions:

39Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

Figure 2. Workspace for scenario definition and pattern test suggestion to be applied to each scenario. The image is already split into the most important parts.

Figure 3. Excerpt of a configuration file as input to Izinto Backend.

Figure 4. Example of a test result with some successes, but also some
failures.

• RQ1: Do users find it easy and pleasant to create
and execute automated tests for IoT systems using the
developed solution?

• RQ2: Regarding RQ1, are there differences between
users with a low and high technical background?

• RQ3: Are users able to quickly create and execute
automated tests for IoT systems using the developed
solution?

• RQ4: Regarding RQ3, are there differences between
users with a low and high technical background?

The metrics used to evaluate were the time per task and
the results obtained on a questionnaire made at the end of each
task and also at the end of the test. The choosing of participants
was split into two parts. In the first, it was selected participants
with lower programming and testing knowledge and, secondly,
it was gathered users with higher expertise on both areas.

The test was composed of the developed solution and the
system under test. The test was executed in a lab which simu-
lates a smart house presented in Figure 5. In this scenario, there
is a temperature and humidity sensor, connected to a Raspberry
Pi, and a smart socket connected to an air conditioning. Both
the socket and the Raspberry Pi are connected to the Wi-
Fi of the building. The Raspberry Pi is able to control the
temperature of the room and toggle the air conditioning on, or
off, as the temperature reaches unwanted values.

The case study involved the execution of five tasks. In the
first one, the users only had to import an already set up scenario
from the computer and run the available test. Secondly, the
user had to test the correct functioning of an actuator. Thirdly,
the user would test the correct functioning of the temperature
and humidity sensor by running a test of periodic readings.
Fourthly, the user would test the triggering of an action when
the values read by the sensor would reach certain values, set by

40Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

Figure 5. Application example of an IoT system.

the user. The last task had the purpose of testing the triggering
of an alert (by sending an e-mail) when the values read by the
sensor would reach certain values.

Aggregated in Table I is the data gathered from both the
questionnaires at the end of each task and the time per task.
The table is split into tasks, one to five, and inside each
one, it is possible to observe the scores of both easiness and
pleasantness to execute it. Such scores range from one to five,
being one very difficult / very unpleasant, and five very easy
/ very pleasant. On the rightmost column, are present the T-
Test values for the difference of the two means [11], regarding
each parameter. The differences are not statistically significant
(T-Test values greater than 0.05) except one (time to perform
the last task).

We can conclude that, based on the results obtained, the
visual interface was considered very easy and pleasant to use
by both groups of users, allowing to prove RQ1 and RQ2.
Also, it is important to point out that, although there is a
time difference between the two, that gap is not that big -
RQ4. Although, there is a certain time difference between both
groups, in general, the times are somewhat small for a task of
this nature - RQ3.

The users were also asked to give some feedback regarding
the tasks, or the general application. This data was gathered
and analysed and most of the suggestions pointed out were
implemented. There were also a couple suggestions that were
considered as future work.

IV. RELATED WORK

In this section, it will be made reference to existing
solutions for IoT regarding both development and testing. It
will be made reference to its IoT layer, its test level, test
environment, supported platforms, its scope and the presence
of a visual interface.

PlatformIO [12]. It is an open-source IDE for IoT de-
velopment. It supports multiple platforms and a unit testing
system. It works on the edge layer and its tests are run within
the physical devices. It is a commercial tool and does not
possess a visual interface for test configuration. Has support
for multiple platforms.

IoTIFY [13]. It is a cloud-based IoT performance testing
platform for very large-scale scenarios. IoTIFY works on the
Edge, Fog and Cloud layers of IoT and has support for unit,
integration and system testing. The test environment in IoTIFY
is only for simulated devices. The interface is called ”Virtual
IoT lab” and enables the user to simulate a virtual hardware
lab.

FIT IoT-LAB [14]. It is a very large-scale infrastructure
with the purpose of testing a large number of small wireless
sensors and other heterogeneous communication devices. It
supports layers of IoT Edge, Fog and Cloud and its main
purpose is the testing of scenarios and not for the development
of IoT solutions. It is both for academic and commercial use
and allows unit, integration and system testing. It does feature
a visual interface.

MAMMotH [15]. It is a large-scale IoT emulator for
mobile connected devices through GPRS. MAMMotH works
on all IoT layers and allows for integration and system testing.
The connection to the devices is emulated and both the
platforms supported and its license are two aspects that remain
unknown, although MAMMotH was developed in an academic
environment. There is no information regarding the existence
of a visual interface.

TOSSIM [16]. It is a wireless sensor network simulator.
It was built with the specific goal to simulate TinyOS devices.
It is a tool focused on testing, supporting integration one
and only support the Edge IoT layer. It was developed in an
academic environment and its license is open to be reused. It
uses simulated radio connected devices and its graphical user
interface (GUI) is optimized for such goal.

SimpleIoTSimulator [17]. It is an IoT Sensor/device
simulator that creates test environments with a large number
of sensors and gateways. It is a framework with a focus on the
integration testing of devices. It is limited to the Edge and Fog
IoT layers and there is no information regarding the existence
of a visual interface or its domain. It does not use physical
devices and there is no information regarding the supported
platforms. It is a commercial tool and its license is closed.

MBTAAS [18]. It is an approach that combines Model-
Based Testing techniques and service-oriented solutions in a
platform that allows IoT testing. Allows for testing across
the four levels - Unit, Integration, System and Acceptance
and it also features support for all IoT Layers. There is
no information regarding the number of supported platforms
and it is considered an academic tool. Unfortunately, there
is no information regarding its license. It features a visual
interface for the selection of tests and results visualization,
unfortunately, there is still some expertise required to operate
it.

SWE Simulator [19]. It is a tool developed with the intent
of representing multiple types and different number of sensors
and integrate it with a standard sensor database. It is very
much focused on testing of wireless sensor networks and only
supports Edge IoT layer. In terms of testing, it only supports
system testing and does not use physical devices but simulated
ones. It features a GUI but with the objective of monitoring
the small wireless sensors’ activity. SWE Simulator is a tool
developed in an academic environment.

MobIoTSim [20]. It is a mobile IoT simulator to help
investigators handle multiple devices and demonstrate IoT

41Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

TABLE I. GROUPED TASKS’ QUESTIONNAIRES DATA

Tasks Question Global Average Higher Skill AVG Lower Skill AVG T-Test

#1
Easiness 4,91 4,88 5,00 0,351
Pleasantness 4,73 4,63 5,00 0,197
Time 0:33 0:29 0:46 0,063

#2
Easiness 5,00 5,00 5,00 -
Pleasantness 4,82 4,75 5,00 0,17
Time 1:46 1:43 1:53 0,587

#3
Easiness 5,00 5,00 5,00 -
Pleasantness 4,82 4,88 4,67 0,605
Time 1:43 1:38 1:55 0,091

#4
Easiness 4,91 5,00 4,67 0,423
Pleasantness 4,73 4,75 4,67 0,837
Time 3:58 3:51 4:18 0,540

#5
Easiness 5,00 5,00 5,00 -
Pleasantness 4,91 4,88 5,00 0,351
Time 1:38 1:10 2:52 0,2e-3

applications using them. It is a testing framework that focuses
on the Fog and Cloud IoT layers and supports integration
testing. It was developed in an academic environment and its
license is open to reuse. There is no information regarding the
number of platforms it supports and the only available visual
interface is an Android application so that the tester has access
to the values being read by the sensors.

DPWSim [21]. It is a framework that helps developers to
implement and test IoT applications by simulating physical
devices. Although the team involves one investigator from
the commercial scope, it is considered an academic tool.
DPWSim works on the Fog and Cloud IoT layers and supports
integration testing. It only supports DPWS platforms. Features
a visual interface but, unfortunately, only provides managing
and simulation support for DPWS devices.

Atomiton IoT Simulator [22]. It is a testing framework
that simulates virtual sensors, actuators and devices with
unique behaviours, which communicate in unique patterns. It
supports all types of test levels and works on every IoT layer.
Its license is closed and it features a visual interface but for
virtualization of devices. It does not support any forum or
community for developers to settle their doubts.

Node-RED [23]. It is a browser-based visual editor that
allows a user to connect and wire together online services and
API’s. It makes use of flow-based editing that makes it visually
easy for an average user to create simple, or more advanced,
connections between the referred entities. It is not focused
on neither testing or developing of IoT solutions but instead
a visual interface to connect multiple and diverse services,
sensors, actuators, etc.

Easyedge [24]. It is an IoT solution using a low-code ap-
proach for the connection of multiple devices without the need
for programming. It also possesses a flow-based programming
visual interface that enables the user to design their scenario.
This platform allows for devices to communicate through the
most popular cloud services.

In fact, there are already a large number of tools that
provide support for all IoT layers but a few do not allow

for integration testing, which is a downside. One of the most
important factors we can point out is a large number of closed
license tools and the test environment being mostly simulated.
Most tools also lack the extensibility needed to work over
multiple platforms and most of them are platform-centred. The
most crucial point to be evaluated was the existence of a visual
interface for easier interaction. We could conclude that most
tools did not provide the necessary UI or it was not the most
suited for the domain required. Although some are focused
on very large-scale systems, there are solutions for smaller
and simpler environments. Also, another common issue with
such tools is the complexity associated with its use and being
mainly focused for experts with very high technical knowledge
in the area. There is currently a necessity for tools that allow
users from all levels of technical knowledge to test smaller
scenarios.

V. CONCLUSIONS AND FUTURE WORK

With the development of this work, it was attempted to
reduce the expertise needed for a user to test IoT scenarios.
Thereby, a person with no programming, or testing knowledge,
can easily test their systems in the most common patterns.
Also, we tried to reduce the time a person with higher
knowledge would take to test an IoT environment.

In this article, it is made reference to a visual interface with
the objective of filling in the existing gap in IoT solutions for
people with lower technical skill. Such interface took advan-
tage of an already developed pattern-based testing framework
developed on previous work. This interface allows the user to
simulate a real scenario, with a set of devices and applications,
and perform integration tests with the help of Izinto as an
integration testing framework. The visual interface also allows
for the visualisation of test results. With such interface, it
is aimed to reduce both the time needed for every user to
parameterize its test and allow for a larger number of users to
test IoT scenarios.

The work was validated with a case study, including
users with a distinct level of technical skill. The case study

42Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

proved that the solution developed was very good. By the data
gathered and present in Table I, it is perceptible that even
users with no knowledge could complete the tasks. Overall
the feedback collected from the users was very good regarding
both the easiness of testing an IoT scenario and not needing a
high knowledge to use it.

As future work, there are certain factors it is possible to
point out, mainly regarding the addition of functionalities to
the current work. There are two paths to follow, one with more
focus on the addition of functionalities in Izinto and another
one by adding more functionalities to the visual interface and
better user experience.

In terms of addition of features to Izinto, it is possible to
identify a set of new patterns to be added. As of now, Izinto
covers the test of features. There are more patterns that can,
for example, cover the connectivity, performance, scalability
of IoT systems. By covering a greater set of patterns, it
is possible to ensure better functioning of such distinct and
heterogeneous systems and ensure their integration. There is
also the possibility of creating a new set of test patterns for
the scope of IoT.

In terms of the visual interface for testing, there is the
possibility of creating a module for displaying the sensor
readings, or the actuator’s state in real time. By doing this,
the tester would feel in a more controlled scenario of test and
feel in greater contact with the actual values being used for
test purpose.

REFERENCES

[1] F. Fernandez and G. C. Pallis, “Opportunities and challenges of the
internet of things for healthcare: Systems engineering perspective,” in
Wireless Mobile Communication and Healthcare (Mobihealth), 2014
EAI 4th International Conference on. IEEE, 2014, pp. 263–266.

[2] B. Farahani, F. Firouzi, V. Chang, M. Badaroglu, N. Constant, and
K. Mankodiya, “Towards fog-driven iot ehealth: Promises and chal-
lenges of iot in medicine and healthcare,” Future Generation Computer
Systems, vol. 78, 2018, pp. 659–676.

[3] X. Krasniqi and E. Hajrizi, “Use of iot technology to drive the auto-
motive industry from connected to full autonomous vehicles,” IFAC-
PapersOnLine, vol. 49, no. 29, 2016, pp. 269–274.

[4] A. Brush, B. Lee, R. Mahajan, S. Agarwal, S. Saroiu, and C. Dixon,
“Home automation in the wild: challenges and opportunities,” in pro-
ceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, 2011, pp. 2115–2124.

[5] E. Bringmann and A. Krämer, “Model-based testing of automotive
systems,” in 2008 1st international conference on software testing,
verification, and validation. IEEE, 2008, pp. 485–493.

[6] B. Lima and J. P. Faria, “A survey on testing distributed and heteroge-
neous systems: The state of the practice,” in International Conference
on Software Technologies. Springer, 2016, pp. 88–107.

[7] P. M. Pontes, B. Lima, and J. P. Faria, “Izinto: a pattern-based iot
testing framework,” in Companion Proceedings for the ISSTA/ECOOP
2018 Workshops. ACM, 2018, pp. 125–131.

[8] Node.js, “Node.js,” https://nodejs.org/en/, accessed: 2019-05-19.
[9] JointJS, “Jointjs,” https://www.jointjs.com/, accessed: 2019-05-19.

[10] T. J. Team, “Junit,” https://junit.org/junit5/, accessed: 2019-01-23.
[11] B. L. Welch, “The significance of the difference between two means

when the population variances are unequal,” Biometrika, vol. 29, no.
3/4, 1938, pp. 350–362.

[12] P. Plus, “Platformio,” http://platformio.org/, accessed: 2019-01-20.
[13] T. GmbH, “Iotify,” https://iotify.io/, accessed: 2019-01-20.
[14] F. F. I. T. Facility, “Iot-lab,” https://www.iot-lab.info/, accessed: 2019-

01-21.

[15] V. Looga, Z. Ou, Y. Deng, and A. Yla-Jaaski, “Mammoth: A massive-
scale emulation platform for internet of things,” in Cloud Computing
and Intelligent Systems (CCIS), 2012 IEEE 2nd International Confer-
ence on, vol. 3. IEEE, 2012, pp. 1235–1239.

[16] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: Accurate and
scalable simulation of entire tinyos applications,” in Proceedings of the
1st international conference on Embedded networked sensor systems.
ACM, 2003, pp. 126–137.

[17] SimpleSoft, “Simpleiotsimulator,” https://www.smplsft.com/, accessed:
2019-01-23.

[18] A. Ahmad, F. Bouquet, E. Fourneret, F. Le Gall, and B. Legeard,
“Model-based testing as a service for iot platforms,” in International
Symposium on Leveraging Applications of Formal Methods. Springer,
2016, pp. 727–742.

[19] P. Giménez, B. Molı́na, C. E. Palau, and M. Esteve, “Swe simulation
and testing for the iot,” in Systems, man, and cybernetics (SMC), 2013
IEEE international conference on. IEEE, 2013, pp. 356–361.

[20] T. Pflanzner, A. Kertész, B. Spinnewyn, and S. Latré, “Mobiotsim:
towards a mobile iot device simulator,” in 2016 IEEE 4th International
Conference on Future Internet of Things and Cloud Workshops (Fi-
CloudW). IEEE, 2016, pp. 21–27.

[21] S. N. Han, G. M. Lee, N. Crespi, K. Heo, N. Van Luong, M. Brut,
and P. Gatellier, “Dpwsim: A simulation toolkit for iot applications
using devices profile for web services,” in 2014 IEEE World Forum on
Internet of Things (WF-IoT). IEEE, 2014, pp. 544–547.

[22] Atomiton, “Atomiton,” http://www.atomiton.com/, accessed: 2019-02-
02.

[23] J. Foundation, “Node-red,” https://nodered.org/, accessed: 2019-01-23.
[24] Domatica, “easyedge,” https://www.easyedge.io/, accessed: 2019-01-20.

43Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

