
Learning Metamorphic Rules from Widening Control Flow Graphs

Marco Campion

Dipartimento di Informatica
University of Verona

Verona, Italy
email:marco.campion@univr.it

Mila Dalla Preda

Dipartimento di Informatica
University of Verona

Verona, Italy
email:mila.dallapreda@univr.it

Roberto Giacobazzi

Dipartimento di Informatica
University of Verona

Verona, Italy
email:roberto.giacobazzi@univr.it

Abstract—Metamorphic malware are self-modifying programs
which apply semantic preserving transformation rules to their
own code in order to foil detection systems based on signature
matching. Thus, a metamorphic malware is a malware equipped
with a metamorphic engine that takes the malware, or parts of it,
as input and morphs it at runtime to a syntactically different but
semantically equivalent variant. Examples of code transformation
rules used by the metamorphic engine are: dead code insertion,
registers swap and substitution of small sequences of instructions
with semantically equivalent ones. With the term metamorphic
signature, we refer to an abstract program representation that
ideally captures all the possible code variants that might be
generated during the execution of a metamorphic program. In
this paper, we consider the problem of automatically extracting
metamorphic signatures from the analysis of metamorphic mal-
ware variants. For this purpose, we developed MetaWDN, a tool
which takes as input a collection of simplified metamorphic code
variants and extracts their control flow graphs. MetaWDN uses
these graphs to build an approximated automaton, which over-
approximates the considered code variants. Learning techniques
are then applied in order to extract the code transformation rules
used by the metamorphic engine to generate the considered code
variants.

Keywords—Static binary analysis; Metamorphic malware detec-
tion; Program semantics; Widening automata; Learning grammars.

I. INTRODUCTION

Detecting and neutralizing computer malware, such as
worms, viruses, trojans, and spyware is a major challenge
in modern computer security, involving both sophisticated
intrusion detection strategies and advanced code manipulation
tools and methods. Traditional misuse malware detectors (also
known as signature-based detectors) are typically syntactic
in nature: they use pattern matching to compare the byte
sequence comprising the body of the malware against a
signature database [1]. Malware writers have responded by
using a variety of techniques in order to avoid detection:
encryption, oligomorphism with mutational decryption pat-
terns, and polymorphism with different encryption methods
for generating an endless sequence of decryption patterns are
typical strategies for achieving malware diversification.

Metamorphism emerged in the last decade as an effective
alternative strategy to foil misuse malware detectors. Metamor-
phic malware are self-modifying programs which iteratively
apply code transformation rules that preserve the semantics

of programs. These code transformations change the syntax
of code in order to foil detection systems based on signature
matching. These programs are equipped with a metamorphic
engine that usually represents the 90% of the whole program
code. This engine takes as input the malware and its own
code and it produces at run time a syntactically different but
semantically equivalent program. We call metamorphic variant
the program variants generated by the metamorphic engine.
At the assembly level these semantic preserving transforma-
tion include: semantic-nop/junk insertion, code permutation,
register swap and substitution of equivalent sequences of
instructions [2] (see Figure 1).

Figure 1. Examples of semantic preserving rules transformation.

The large amount of possible metamorphic variants makes
it impractical to maintain a signature set that is large enough
to cover most or all of these variants, thus making standard
signature-based detection ineffective. Heuristic techniques, on
the other side, may be prone to false positives or false
negatives. The key to identify these type of malicious pro-
grams consists in considering semantic program features and
not purely syntactic program features, thus capturing code
mutations while preserving the semantic intent [6]. For this
reason, we would like to capture those semantic aspects that
allow us to detect all the possible variants that can be generated
by the metamorphic engine. We use the term metamorphic
signature to refer to an abstract program representation that
ideally captures all the possible code variants that might be
generated during the execution of a metamorphic program. A
metamorphic signature is therefore any (possibly decidable)
approximation of the properties of code evolution.

The goal of this work is to statically extract a so called
metamorphic signature, i.e., a signature of the metamorphic
engine itself. In this setting, a metamorphic signature consists

7Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

of a set of rewriting rules that the malware can use to change
its code. These rules are represented as a pure context-free
grammar in which each instruction is a terminal symbol and
can be transformed into equivalent instructions following a
production of the grammar. For this purpose, we built a tool,
called MetaWDN, that takes as input simplified versions of
the metamorphic code variants, embeds them in an over-
approximating control flow graph (widening) and finally, it
tries to learn from the control flow graph the rewriting rules
used to generate each variant. The general structure of the tool
is represented in Figure 2.

Figure 2. Capturing the metamorphic signature.

In order to test the quality of the output on portions
of code that are actual metamorphic variants of the same
program, we have implemented a metamorphic engine. Our
metamorphic engine takes as inputs a program written in an
intermediate language very similar to the x86 assembly and
it randomly chooses the rewriting rules to apply in order to
generate the metamorphic variants. The metamorphic rules
implemented are a subset of ones used by the metamorphic
malware MetaPHOR [14]. The metamorphic engine allows
us to quickly generate numerous test sets, input them to the
tool and check the quality of the results by comparing the
rules inferred with those actually applied by the metamorphic
engine.

The rest of this paper is organized as follows: in Section II
we discuss some related work, Section III explains how the
tool can be executed and how it works, in Section IV we
present some results and consideration applied to one example
and finally the paper ends with conclusion and future work in
Section V.

II. RELATED WORK

In [3] the authors propose a malware detector scheme
based on the detection of suspicious system call sequences.
In particular, they consider only a reduction (subgraph) of
the control flow graph of the program, which contains only
the nodes that represent certain system calls and finally, they
check if this subgraph has some known malicious system call
sequences.

In [8] the authors describe a system of malware detection
based on containment and unification of languages. The ma-
licious code and the possible infected program are modeled
as an automaton with unresolved symbols and placeholders
for registers dealing with certain types of obfuscation. In this
configuration, a program exhibits malicious behavior if the

intersection between the malware’s automaton language and
the one of the program is not empty.

In [4] the authors specify malicious behavior through a
Linear Temporal Logic (LTL) formula and then use the SPIN
model checker to check if this property is satisfied by the
control flow graph of a suspicious program.

In [5] the authors introduce a new Computation Tree Predi-
cate Logic (CTPL) temporal logic, which is an extension of the
logic CTL, which takes into account the quantification of the
registers, allowing a natural presentation of malicious patterns.

In [9] they describe a malicious behavior model through a
template, that is a generalization of the malicious code that
expresses the malicious intent excluding the details of the im-
plementation. The idea is that the template does not distinguish
between irrelevant variants of the same malware obtained
through obfuscation processes. For example, a template will
use symbolic variables / constants to handle the renaming of
variables and registers, and will be related to the malware
control flow graph in order to handle code reordering. Finally,
they propose an algorithm that checks if a program presents the
behavior as a template, using a process of unification between
the variables / constants of the program and the symbolic
variables / constants of the malware.

In [7] Dalla Preda et al. consider the problem of automat-
ically extracting metamorphic signatures from metamorphic
code. They introduced a semantic for self-modifying code,
called phase semantics, and prove its correctness by proving
that it is an abstract interpretation of standard trace semantics.
Phase semantics precisely models the metamorphic behavior of
the code, providing a set of program traces which correspond
to the possible evolution of the metamorphic code during ex-
ecution. They therefore demonstrate that metamorphic signa-
tures can be automatically extracted by abstract interpretation
of phase semantics. In particular, they introduce the notion
of regular metamorphism, in which the invariants of phase
semantics can be modeled as a Finite State Automata (FSA)
representing the code structure of all possible metamorphic
changes of a metamorphic code.

In [10], the authors propose to model the behavior of a
metamorphic engine of a malicious program, with rewriting
systems also called term-rewriting systems and to formalize
the problem of constructing a normalizer for rewrite systems
(called NCP) that is able to reduce to the same normal
form, variants of malware generated by the same metamorphic
engine. From this problem, they propose a possible solution
by building a normalizer on a set of rules that maintain
three properties: termination, confluence and preservation of
equivalence.

All these approaches provide a model of the metamorphic
behavior that is based on the knowledge of the metamorphic
transformations, i.e., obfuscations, that malware typically use.
By knowing how the code mutates, it is possible to specify
suitable (semantics-based) equivalence relations which trace
code evolution and detect malware. This knowledge is typi-
cally the result of a time and cost consuming tracking analysis,
based on emulation and heuristics, which requires intensive

8Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

human interaction in order to achieve an abstract specification
of code features that are common to the malware variants
obtained through various obfuscations and mutations.

In this paper, we aim at defining an automatic technique for
the extraction of a metamorphic signature that does not need
any a priori knowledge of the code transformation rules used
by the metamorphic engine.

III. MetaWDN TOOL

MetaWDN is a program written in Python 3 language that
allows us to automatically generate a set of variants starting
from a given input program. Next, MetaWDN compacts them
all together through the widening operator and then it tries
to automatically derive the rewriting rules used to generate
them. Depending on the execution parameters, the tool can be
executed in one of the following ways (Figure 3):

- execution of the metamorphic engine to generate a de-
sired number of variants starting from a set of instructions
(which will be the starting program) written on an input
text file (1©);

- computing the widening between a set of variants given as
inputs in order to build an unique abstract representation
of the considered metamorphic variants (2©);

- inferring the rewriting rules from the program represen-
tation obtained through the widening process (2© → 3©);

- finally, you can run all the operation above (1© → 2© →
3©).

Figure 3. Phase of execution of MetaWDN.

The tool takes as input programs written in an inter-
mediate language very similar to the language used by
MetaPHOR [14], both with the aim of simplifying and ab-
stracting the x86 assembly language. Therefore, the input
is an extremely simplified version compared to the code
that can be found in any executable. You can use the
classic instructions of the x86 assembly code with Intel
syntax like: data manipulation (mov, push, pop, lea),
mathematical expressions (add, sub, and, xor, or),
jumps (je, jne, jl, jle, jg, jge, jmp, call),
etc. There are three kinds of operands: registers (eax, ebx,
ecx, edx, esp, ebp, esi, edi), immediate values
and memory values (decimal number or register between
square brackets, for example [77382]). For jump instruc-
tions, the memory value to which the instruction can jump
corresponds to the line number where the target instruction
is located (the first line starts from zero). Analogously, for
function calls we have that in the instruction call the value

of the operand corresponds to the line number of the first
statement of the function. Each function (including function
main) must end with the instruction ret.

A. The Metamorphic Engine

The tool can be executed as a metamorphic engine: it
takes as input a text file containing a program written in
the x86 intermediate language and the number of variants
to be generated. The implemented rewriting rules are instruc-
tions transformation that preserve the semantics, e.g., mov
→ push, pop which expands the instruction mov in two
instructions push and pop. A rewriting rule could be applied
either in expansion (following the rule from left to right) or in
reduction (right to left). After reading the file, the metamorphic
engine randomly selects: the rewriting rule to apply, the line of
the program where to apply the rule, and whether to apply the
rule as expansion or reduction. If it is not possible to apply
the rewriting rule to the selected instruction, the following
instruction is considered and if it is not possible to apply the
rule to the whole file then another rewriting rule is selected
randomly. The implemented rewriting rules are a subset of the
rules used by the MetaPHOR metamorphic engine [14].

B. Widening Control Flow Graphs

Each metamorphic variant is represented as a Control Flow
Graph (CFG). Each node of the CFG contains one instruction
that is abstracted according to an abstraction function that
removes details usually modified by the metamorphic trans-
formations. In particular, MetaWDN abstracts instructions by
eliminating the operands, so, e.g., the instruction mov eax,
4 is abstracted in mov. In the CFG representation of programs
the vertices contain the instructions to be executed, and the
edges represent possible control flow. For our purposes, it is
convenient to consider a dual representation where vertices
correspond to program locations and abstract instructions label
edges. The resulting representation is isomorphic to FSA
over an alphabet of instructions [13]. For this reason we use
the terms CFG and automaton interchangeably. In order to
compact the CFG of the metamorphic variants into an unique
representation we use a widening operator. This allows us
to obtain an unique representation that contains all the seen
metamorphic varinats but that also generalizes the considered
mutations. Given the equivalence between CFG and FSA, we
can use the widening operator for FSA defined in [13]. To this
end, we have to to compute the language of each node of the
CFG. According to [13], we define the language of length N
of a node of a CFG as the set of all the strings of length less
or equal than N that are reachable from the considered node.

Example III.1. Consider the following program P, where the
numbers on the left correspond to line numbers:

0: mov eax, 1 4: jmp 1
1: cmp eax, 1000 5: ret
2: jge 5 6: add eax, 1
3: call 6 7: ret

the CFG is represented in Figure 4. The alphabet of the

9Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

Figure 4. CFG of Example III.1.

CFG of P is {mov,cmp,jge,call,jmp,add,ret}, and
the language of length 2 recognized by the nodes is:

lang(0) = {(mov),(mov,cmp)}
lang(1) = {(cmp),(cmp,jge)}
lang(2) = {(jge),(jge,call),(jge,ret)}
lang(3) = {(call),(call,add)}
lang(4) = {(add),(add,ret)}
lang(5) = {(ret),(ret,jmp)}
lang(6) = {(jmp),(jmp,cmp)}
lang(7) = {(ret)}

Consider a set of code variants V1V2 . . .Vn generated from
the initial program P. The widening operator

`
is defined as:

W0 = α(P) Wi+1 =Wi

h

k

(Wi ∪ α(Vi))

where Wi with i > 0 is the widening CFG at step i (the
initial widening W0 is the CFG of the program itself), α
is the abstraction function that eliminates the operands of
instructions, and k is the length of the language of nodes.
Briefly, the widening operator merges all the nodes with the
same language of length k.

C. Learning Rewriting Rules

The section of the tool that infers the transformation rules
is called learner. The learning algorithm implemented in
MetaWDN is a simplified version of the algorithm proposed
in [16] for learning pure grammars from a set of words. The
general problem of inferring rewriting rules from a set of
positive examples, i.e., from a positive set, can be transformed
into the general problem of inferring a grammar starting from
a set of strings belonging to a language. In particular, we
try to infer a grammar that is able to generate at least all
the strings given as input to the algorithm and belonging to
the language to be studied. In our case, the language to be
learned includes all the possible variants generated by the
unknown metamorphic engine, while the grammar we want
to infer corresponds to the set of rewriting rules used by
the metamorphic engine to generate the metamorphic variants
given in input to the positive set. Pure grammars [11] have
been chosen as a formal representation for the rewriting rules,
because they do not present terminal symbols but all the
symbols are considered as non-terminals. In fact, the meta-
morphic transformation rules are all instructions of the same
type, that is, they can be transformed into other instructions

by applying the correct production. More in details, since the
general problem of learning pure grammars from a positive set
is undecidable [12], we move to the formalism of k-uniform
pure context-free grammars [11] where, each production has
the left part with one letter of the alphabet while the right part
has at most k symbols of the alphabet. All these restrictions,
of course, will lead to a loss of precision in the rules inferred
by the tool as it will only be possible to infer productions of
the form {x→ y | |x| = 1, |y| 6 k}. In our learning algorithm,
the constant k is always set to 2 since the rewriting rules
implemented in the tool have the right part of length 2. The
learning algorithm takes a CFG as input and operates in three
phases:

1. it builds the positive set;
2. it learns the rewriting rules;
3. finally, it eliminates the spurious inferred rules.

The positive set consists of a set of code variants where all the
instructions are abstracted (no operands). This set is built in the
widening phase and will be the input for inferring the rewriting
rules. The length min of the smallest variant is calculated, i.e.,
the variant with the fewest instructions. Then, all the paths of
length min of the graph that go from a root node (the first
instruction of a variant, those drawn with the double circle) to
the final node (the ret instruction) are visited. For each path
found, the set of instructions related to the visited nodes are
inserted in the positive set. During this process every time that
we visit an edge we mark it. When the path of length min
has been found, if all the edges are marked then the search is
interrupted without visiting other paths. Otherwise the variable
min is incremented.

Given a couple of code variants (Vi,Vj) with |Vi| < |Vj|,
the idea of the learning algorithm is to add a production rule r
of the form Vi

r→ Vj. The rewriting rule r is inferred through
simplification rules between the two variants (Vi,Vj). There
are three kinds of simplification rules:

- top simplification: compare the first instruction of Vi and
Vj and delete them if they are the same. This process
continues until two different instructions are encountered:
in this case, if |Vi| > 1 then the comparison restarts from
the last instruction of Vi and Vj, otherwise (|Vi| = 1) the
rule is added to the set of inferred rules;

- bottom simplification: it is similar to the previous one,
but starts from the last instruction;

- top and bottom simplification: compare the first instruc-
tion of Vi and Vj and, if they are equal, it deletes them
and starts again but from the bottom instruction of Vi

and Vj.

The algorithm applies the top simplification repeatedly until a
rule is added to the set of inferred rules and then it starts back
with bottom simplification and finally, with top and bottom
simplification.

Example III.2. Let us consider the following simple code
variants: xor,mov,push and xor,push,pop,push. After

10Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

applying two times the top simplification we get

xor,mov,push→ xor,push,pop,push

Since the left part is of length 1 then the rule mov→ push,pop
is added to the set of inferred rules. With the other two kinds
of simplification we get the same rewriting rule.

After the simplification phase, the algorithm has produced
a set of rewriting rules of the form: {x→ y | |x| = 1, |y| 6 k}.
However, most of these rules are superfluous since they can be
generated by other rules of the set. The elimination algorithm
tries to reduce the right part of each rewriting rule by applying
all rewriting rules inferred in the reduction form (from right
to left). If at the end of this procedure, the rule is reduced to
another rule already in the inferred set, then that rule can be
eliminated.

Example III.3. Let us suppose that there are two rewriting
rules inferred by the learning algorithm:

1) mov→ mov,mov

2) mov→ push,pop

Now suppose that the following rewriting rule is produced:
mov→ push,pop,mov,mov. This rule is spurious since:

push,pop,mov,mov
1)⇒ push,pop,mov

2)⇒ mov,mov

IV. CASE STUDIES

In the following section, we present some results and
considerations applied to a program of 21 instructions:

0: mov [ebp], [esp] 11: mov eax, ebx
1: sub ebp, 4 12: push eax
2: push 100 13: pop [440303]
3: pop ecx 14: pop [443905]
4: cmp eax, exc 15: xor eax, 0
5: xor eax, 0 16: xor eax, eax
6: test eax, eax 17: nop
7: mov eax, 4 18: test eax, 0
8: sub eax, 1 19: xor eax, 0
9: cmp eax, ebx 20: ret
10: nop

We have used MetaWDN to generate 50 variants of this
program. Next we have randomly selected a subset of 25 code
variants that are obtained by applying all the rewriting rules
implemented in MetaWDN. This subset is provided as input
to the widening process (with language length sets to 2) and
next to the learning process. The final graph of the widening
is shown in the Figure 5. The rewriting rules inferred by the
tool is the empty set. This looks like a mistake, however, by
looking more carefully at the possible paths of the graph we
observe that all paths from any root node to the ret node,
starting from the minimum length (the smallest variant in
terms of instructions), are already visited. For this reason,
the set of positive examples contains all code variants of
the same length and therefore it is not possible to infer any
rewriting rule. This result is caused by the numerous spurious
variants inserted by the widening process that agglomerates
the nodes with the same language of length 2. In fact, due to

Figure 5. Graph obtained by the widening operator with length sets to 2.

the numerous cycles, i.e., regularities inserted by the widening,
a path from the root to the end node of length less than any
true variant is ”increased” until reaching the minimum length
(in this example equal to 20) thus creating a spurious variant.

If we increase the level of precision of the widening by
setting the parameter of the language length to 3, we obtain the
graph in Figure 6 with the following rewriting rules inferred:

cmp -> [’cmp’, ’mov’] mov -> [’push’, ’mov’]
mov -> [’push’, ’pop’] mov -> [’mov’, ’push’]
mov -> [’pop’, ’mov’] nop -> [’pop’, ’push’]
nop -> [’pop’, ’mov’] nop -> [’nop’, ’mov’]
pop -> [’pop’, ’push’] pop -> [’pop’, ’mov’]
pop -> [’mov’, ’pop’] pop -> [’nop’, ’mov’]
push -> [’mov’, ’push’] sub -> [’mov’, ’sub’]
test -> [’test’, ’mov’] xor -> [’mov’, ’xor’]

Figure 6. Graph obtained by the widening operator with length sets to 3.

Clearly, by increasing the length of the widening language
we obtain a graph with more nodes but more precise. In fact,
in this case it is possible to infer the rewriting rules even if

11Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

there are numerous spurious rules still due to the presence of
spurious paths induced by the widening.

If we increase the level of precision of the widening, setting
the length of the language to 4 we obtain the following
rewriting rules inferred:

cmp -> [’cmp’, ’mov’] cmp -> [’mov’, ’cmp’]
mov -> [’push’, ’pop’] mov -> [’mov’, ’mov’]
nop -> [’nop’, ’mov’] nop -> [’pop’, ’push’]
pop -> [’pop’, ’mov’] pop -> [’mov’, ’pop’]
push -> [’mov’, ’push’] sub -> [’mov’, ’sub’]
test -> [’test’, ’mov’] xor -> [’mov’, ’xor’]

Thanks to the greater precision of the widening, this time
the inferred rules are more precise and they represent an
acceptable result. Moreover, with a language length equal to
5 the same rules are still obtained.

V. CONCLUSION AND FUTURE WORK

In this work we tried to capture the behavior of the meta-
morphic engine itself, namely we tried to find a set of rules that
allow us to predict possible mutations of code variants starting
from a set of examples. To this end, we presented the tool
MetaWDN that has three main functions: metamorphic engine,
widening of code variants and learning of rewriting rules.
Thanks to the metamorphic engine, it is possible to quickly
generate numerous variants in an intermediate language similar
to x86. These variants are created by randomly applying
rewriting rules implemented in the tool. The goal is to capture,
starting from a subset of these code variants, the rewriting rules
used by the metamorphic engine to generate them. Starting
from the set of code variants, MetaWDN uses a widening
operator to generate a graph that approximates all the variants
of the set. Rewriting rules are then represented as productions
of a k-uniform pure context-free grammar. From the learning
algorithm and the elimination of superfluous rewriting rules
algorithm, it is possible to obtain a set of rules that describes,
in an approximate way, the possible evolution of code variants.
The experimental results show us how the choice of the
language length parameter of the widening operator affects the
precision of the learned rules. The lower the value is, the more
the nodes will be joined together because they will be more
likely to present the same language. In this case the presence
of spurious paths will be higher therefore there will be less
precision in the results inferred by the learner. On the contrary,
the higher the length of the language is and the greater is the
precision of the graph. This means that the widening graph
presents fewer spurious paths and therefore it allows us to
infer more precise rewriting rules. Of course, the increase
in precision comes at a cost in terms of time execution and
memory consumption.

As a priority of future work, we will try to apply this tool to
a set of real malware variants. In this work only one level of
abstraction on the instructions has been considered, that is, the
one that does not consider the operands. It would be interesting
to consider different abstractions, assigning, for example, to
the operands symbolic values such as those of [15]. Finally,
an implementation of new rewriting rules in the tool and a
new learner should be considered as a future work. The new

learner needs to be able to learn, in an approximate way, more
complex rewriting rules in order to catch more sophisticated
metamorphic engine.

ACKNOWLEDGMENT

This paper has been supported by the grant PRIN2017
(code: 201784YSZ5) by MIUR Italy.

REFERENCES

[1] P. Szr, ”The Art of Computer Virus Research and Defense”, Addison-
Wesley Professional, Boston, MA, USA, 2005.

[2] D. Bruschi, L. Martignoni, and M. Monga, ”Code normalization for
self-mutating malware”, IEEE Security and Privacy, vol. 5, no. 2, pp.
4654, 2007.

[3] J. Bergeron, M. Debbabi, J. Desharnais, M. Erhioui, Y. Lavoie, and
N. Tawbi, ”Static detection of malicious code in executable programs”,
Symposium on Requirements Engineering for Information Security, vo.
2001, no. 79, pp. 184-189, 2001.

[4] P. Singh, and A. Lakhotia, ”Static verification of worm and virus
behaviour in binary executables using model checking”, IEEE Systems,
Man and Cybernetics Society Information Assurance Workshop, pp.
298-300, 2003.

[5] J. Kinder, S. Katzenbeisser, C. Schallhart, and H. Veith, ”Detecting ma-
licious code by model checking”, International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment, pp. 174-187,
2005.

[6] M. Dalla Preda, ”The grand challenge in metamorphic analysis”, Inter-
national Conference on Information Systems, Technology and Manage-
ment, vol. 285, pp. 439-444, 2012.

[7] M. Dalla Preda, R. Giacobazzi, and S. Debray, ”Unveiling meta-
morphism by abstract interpretation of code properties”, Theoretical
Computer Science, vo. 577, pp. 74-97, 2015.

[8] M. Christodorescu and S. Jha, ”Static analysis of executables to detect
malicious patterns”, Symposium on USENIX Security, 2003.

[9] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and R. E. Bryant,
”Semantics-aware malware detection”, IEEE Symposium on Security
and Privacy, pp. 32-46, 2005.

[10] A. Walestein, R. Mathur, M. R. Chouchane, and A. Lakhotia, ”Construct-
ing malware normalizers using term rewriting”, Journal in Computer
Virology, vo. 4, no. 4, pp. 307-322, 2008.

[11] H. A. Maurer, A. Salornaa, and D. Wood, ”Pure grammars”, Inform.
Control, vo. 44, pp. 47-72, 1980.

[12] T. Koshiba, E. Mkinen, and Y. Takada, ”Inferring pure context-free
languages from positive data”, Journal in Acta Cybernetica, vo. 14, no.
3, pp. 469-477, 2000.

[13] V. D’Silva, ”Widening for automata”, Diploma thesis, Institut Fur
Informatick, Universitat Zurich, 2006.

[14] P. Beaucamps, ”Advanced Metamorphic Techniques in Computer
Viruses”, International Conference on Computer, Electrical, Systems
Science, and Engineering, 2007.

[15] A. Lakhotia, M. Dalla Preda, and R. Giacobazzi, ”Fast location of similar
code fragments using semantic Juice”, In PPREW@ POPL, 2013.

[16] C. Higuera, ”Grammatical inference: learning automata and grammars”,
Cambridge University Press, 2010.

12Copyright (c) IARIA, 2019. ISBN: 978-1-61208-755-9

VALID 2019 : The Eleventh International Conference on Advances in System Testing and Validation Lifecycle

