
Application of Extended Timed Automata to Automotive Integration Testing

Jan Sobotka 1, Jiří Novák 1
1 Czech Technical University in Prague, Faculty of Electrical Engineering,

Prague, Czech Republic

email:jan.sobotka@fel.cvut.cz, www.fel.cvut.cz

Abstract— Deployment of the Model-based Testing methods in

practice has not achieved the level it deserves. To help

dissemination, as well as to improve the testing process in a

particular domain, this paper presents a new Test Generation

tool on a case study. The domain is automotive integration

testing. The new tool is named Taster and utilizes Timed

Automata for the online Model-based test generation. The

objective of these tests is testing of integration of automotive

comfort systems. The proposed concept, the system modeling,

and the new software tool is evaluated on testing of a Keyless

Access System. Purpose of the paper is to present an approach

for automatic test generation intended for automotive

integration testing.

Keywords- Model-Based; Integration; Testing; Timed;

Automaton; Automotive; ECU

I. INTRODUCTION

This paper presents an application (new tool
implementation) of Model-Based Testing (MBT) approach
to the integration testing of automotive electronics systems -
i.e. a cluster of Electronic Control Units (ECU). In current
practice, the original test suite is developed by test engineers
as a sequence diagrams. The test suite development is labor
intensive, and amount of work should not grow in future. On
the other hand complexity of automotive systems still grows.
Test suite complement in the form of automatically
generated test cases is offered, to keep the amount of test
development works reasonably.

The key idea is to supplement a test suite developed
traditionally by a test suite generated using the MBT
principles. These additional test cases are generated by a
software tool called Taster. MBT process is driven by a
Timed Automata model. One of the limitations of traditional
test suites is that test cases are designed using driver-oriented
point of view. One of the goals of presented work is to
overlook from this narrow use case and, using the MBT
techniques, to produce traces, which examine system by
more diverse, but still reasonable stimuli. In other words, we
presume that usefully complement test suite created by
engineers with machine-generated ones can significantly
increase the number of revealed faults. The proposed
solution is evaluated on a short case study with the objective
to judge the suitability of the developed test generation tool
Taster for future research. The proposed solution is depicted
in Fig. 1. A short overview of related work follows.

Many model checkers or formal verification tools are
based on the Theory of Timed Automata. Also, there are at
least hundreds of Timed Automata variants [1]. Usage of this

theory for testing is less common than for model verification.
TRON [2] and CoVer [3] from the UPPAAL connected tools
family are probably the most relevant research for presented
approach. Both tools use the UPPAAL model checking
engine for the test generation. Presented tool Taster uses a
different technique. It uses own algorithms based on graph
search theory. Taster tool evolves on a basis of our
conceptual work [4]. This paragraph is focused on Timed
Automata linked works. Besides introduced tools, RT -Tester
[5] can be mentioned as it is targeted to similar SUT class.
RT-Tester uses a subset of UML or SysML as modeling
format.

Paper is organized in following structure. Section II
describes the problems of the current practice of integration
testing in more details. Section III shows overall testing
concept and system modeling - Timed Automata model with
an extension. In Section IV are presented algorithms
developed for the test generation and our test generation tool
Taster. Section V contains the Keyless Access System
(KESSY) case study, which is subdivided into four
subsections. Last two sections are Conclusion (VI) and
Future work (VII).

II. PROBLEM STATEMENT

Consider an automotive integration testing scenario. For
a System under Test (SUT), a test suite based on the test plan
is developed. This test plan covers demands from
compulsory road regulation, internal standards, and a system
specification. The specification is usually created and
maintained by requirement management software (e.g.,
Rational DOORS). An SUT is tested using black box
approach – no internal structure or similar information is
employed to test suite design. All test cases are developed
from a driver point of view (a typical driver use case). The
testing process itself is driven by EXAM [6], which covers
tasks from individual test case implementation to
management, execution, and assessment of complex test
suites. Despite careful and hard testing work, it is not
possible to cover all possibilities by a manually developed
test suite. The reason is in the system complexity and
associated well-known State space explosion problem [7]
together with limited time and cost resources.

In this process, various improvement possibilities can be
identified. First of all, manual development of the integration
tests manually is very labor intensive. Therefore, decreasing
of a size of original test suite in behalf of automatically
generated one should be significantly beneficial. Also,
complementing the suite by test cases developed differently

7Copyright (c) IARIA, 2017. ISBN: 978-1-61208-593-7

VALID 2017 : The Ninth International Conference on Advances in System Testing and Validation Lifecycle

could help achieve better test diversity. This work addresses
these challenges by the development of an MBT test tool
able to operate with an SUT controlled by EXAM.

III. CONCEPT AND SYSTEM MODELING

Overview of proposed concept is depicted in Fig. 1. The
textual specification is presumed as the basis for the model
development. SUT is modeled as a network of Timed
Automata. UPPAAL [8] is used in the role of model editor.
Complete testing is driven by this model – no other models
or configuration files are used.

Taster tool explores the models using graph theory

algorithms. Test inputs are produced online, and the SUT
outputs are checked against expected ones. The model
simulation is directly used for test generation. The
algorithms are described in detail in Section VI. Interaction
with an SUT is done by NI VeriStand or EXAM test adapter.

The proposed solution employs UPPAAL tool [8] as a
modeling environment. The system is modeled as a network
of Timed Automata. The underlying theoretical concept is
denoted Timed Safely Automata. Beyond theoretically
described [1] time and transition properties, the UPPAAL
implementation offers usage of variables, conditions,
synchronization channels and another language construct to
provide a certain level of expressivity (in theory summarized
by term action). The used modeling language is a subset of
UPPAAL modeling language summarized in Tab 1.

TABLE I. SUPPORTED SUBSET OF UPPAAL MODELLING LANGUAGE

 Action

Data type Guard Update Sync

clock  reset 

chan   

bool   

int   

The subset is chosen concerning tested system class.

Supported data types are bool, int, clock and synchronization
type chan. Edges can contain guard, sync, and update
expressions.

Besides Timed Automata modeling language
implemented by UPPAAL tool, Taster additionally utilizes
labeling of Timed Automata states by relevance. Relevance

is a natural number assigned to an automaton state. The
parameter expresses the importance of a model state
summarized by one number. The higher value implies the
higher testing priority. Relevancies are assigned according to
the SUT expert knowledge. It is determined in a manual or
automatic way and originates in for example safety impact,
the impact on rest of the system operability, and previously
revealed issues (bugs). KESSY testing example presented
later in this paper shows usage of Relevancies on
environment models of start and door buttons.

The success of proposed solution strongly depends on the

reasonability of used model. In this work, two types of
models are used. The first category is environment Models,
which produces inputs for an SUT during simulation. The
second category is observer models which have the Oracle
function – they check expected SUT outputs. Correct output
is expressed as an invariant condition. SUT behavior is
considered valid if invariant in an active state is satisfied.
The division of the model into environment and observer
parts is only imaginary, and it is possible to combine input
and output actions to single Timed Automaton. Nevertheless,
partitioning of entire model to these two model types is
recommended to keep clarity.

IV. ALGORITHMS AND TOOL

The test generation is based on the model exploration
using graph search techniques. Timed automata model is
simulated in a Real-time. The SUT input and outputs are
linked to the model variables. Consequently, variable
assignment on model edges produces test stimuli. The SUT
outputs are observed using variables utilized in location
invariant conditions. The progress of the time is discrete, and
it is equal to the time of simulation step. Developed
algorithms are described in pseudo code. The first
algorithm (Fig. 2) describes the overall testing process.

Figure 2. Algorithm 1

Specification

Taster

Timed Automata Model NI VeriStand or EXAM

System under Test

Figure 1. Concept of implemented solution

8Copyright (c) IARIA, 2017. ISBN: 978-1-61208-593-7

VALID 2017 : The Ninth International Conference on Advances in System Testing and Validation Lifecycle

Three different strategies are used to choose next step
(i.e. edge to be taken). First step common for all strategies is
the creation of a list of allowed edges in that time. Allowed
edge is an edge with satisfied guard condition. If the edge
triggers synchronization, corresponding edge waiting for
synchronization has to be allowed. In case the list of allowed
edges is empty, no edge is taken, clocks are incremented and
the loop continues to next iteration. The loop is stopped if the
invariant is violated, coverage criterion is satisfied, or test is
stopped by the test operator. Algorithms 2 and 3 take next
edge randomly from the list of allowed edges. Algorithm 2
(Fig. 3) works with discrete uniform distribution –
probability of pickup is the same for all edges in the list.

Figure 3. Algorithm 2

Algorithm 3 (Fig. 4) modifies discrete uniform
distribution using Relevance numbers defined in the previous
section. Probability of taking for an edge i from the list of
allowed edges is:

E

E

i
rel

rel
EP i


)((1)

Implicit Relevance is equal to one. Relevance is assigned

to an edge from its target node. It may be confusing, but
reason is to preserve compatibility with UPPAAL model
format. Relevance is stored as a node comment, which is not
possible with an edge.

Figure 4. Algorithm 3

Figure 5. Algorithm 4

Algorithm 4 (Fig. 5) refers edge with the lowest takes
count from a list of allowed edges. Model exploration is
more deterministic than in the case of the random strategy.
This behavior may speed up structural model coverage if it is
desired. Concerning black box testing approach only, the
model coverage criteria are feasible. Condition
coverageCriterionNotSatisfied unify coverage of all
Timed Automata model nodes or edges.

The proposed concept with the MBT theory and
algorithms results in the implementation of a testing tool
named Taster. The first version of this tool was implemented
in [9]. Taster works with models stored in UPPAAL 4
format. After a model is loaded, it is possible to performed
testing as proposed. The SUT is connected by a test adapter.
In following sections, the Taster is described in the order
same as testing workflow. First is the model parser and last is
the result viewer. The code is written in C# using .NET
Framework 4.5.

The software architecture is divided into the model parser
and the test execution part. First part is responsible for
syntactical check and data structures preparation. Second
part implements testing engine itself. The execution part also
contains trace logger with replay function.

Syntactical analyzer code is generated by language
recognition software ANTLR [10]. Expression evaluation is
solved by Shunting-yard algorithm [11]. Syntactical analyzer
code is generated by language recognition software ANTLR
[10]. Expression evaluation is solved by Shunting-yard
algorithm [11]. Traces are stored in an XML file for further
analysis.

Figure 6. Taster – Test Execution and Control

The usage of the testing tool is displayed in Fig. 6. First

is screen (not depicted) is the model viewer where a model is
loaded. Second screen is the run screen. On the run screen
the test adapter is initialized and a test run is executed
according to selected algorithm. A test run is terminated by
one of the following actions: invariant is violated, coverage
criterion is satisfied, and the test time has passed or by
termination by a user request.

9Copyright (c) IARIA, 2017. ISBN: 978-1-61208-593-7

VALID 2017 : The Ninth International Conference on Advances in System Testing and Validation Lifecycle

V. KESSY SYSTEM TESTING

The following example shows the application of
presented concept on testing of a keyless access system. As
the name suggest, the purpose of keyless access system is to
allow vehicle entry and engine start without using a key
(only the key’s RFID tag have to be detected).

A. Specification

 The example system function (i.e. textual specification)
is captured by this description. The door locking system is
controlled by the lock button built in the driver side door
handle. The Start/stop button works as the ignition switch.
The short press is designated to turn the ignition on and
button long press is the command for engine start operation.
Button press longer than one second is considered long.
Ability to lock and unlock the door, as well as start or stop
the engine, is determined by detected key position. The
system contains two equal keys RFID tags marked Key 1
and Key 2. The system recognizes following states of each
key: detected outside the car, detected inside the car and not
detected. The door unlocking is not possible if no key is
detected outside the car. The door locking is not allowed if a
key is detected inside the car. The engine start requires a key
to be detected inside a car.

In modern Vehicles, the KESSY system is implemented
as distributed system. Let’s consider a system composed
from three ECUs. First ECU is the KESSY system itself
which cooperates with a Body Control Module (BCM) and
Engine Control Unit. All ECUs are interconnected by a
Controller Area Network (CAN) bus. The KESSY ECU is
responsible for keys and button status monitoring. Based on
its commands, the BCM controls power supply system and
individual door locks. Engine start and stop procedure are
driven by the ECU. The system inputs are described in the
previous paragraph. The system is observable by four digital
outputs. Door locking system has locked and unlocked
states. Start button controls ignition system which controls
three power supply branches. German language prefix
Klemme (KL) for individual clamps is preserved as, it is
standardized by DIN 72552 standard and ISO equivalent
does not exist. The system controls KL 15, 50 and S. KL 15
is active if the ignition is on. KL 50 is active during engine
startup only and in this work it is used for engine start
monitoring. KL S is turned on by switching the ignition on,
and it is active until the car is locked. Its common usage is
for audio system powering.

B. Models

The example system is modeled by the network of nine
Timed Automata. Every system input is modeled by a single
automaton. The KESSY system provides two functions –
ignition switch controlled by Start/stop button and door
locking system control. Correct behavior of each is observed
by separate automaton. The relation between keys position
and corresponding system behavior is modeled by another
three automata. Overall characteristic of the model is stated
in Tab. 2.

TABLE II. KESSY MODEL SUMMARY

Entity Count

Templates 8

Instances 9

Nodes 30

Edges 39

Clocks 7

Variables 15

In/Out variables 6

Due to limited paper range, only Start/stop button model

and one of two observer models are described. The first
model, the start/stop button, is depicted in Fig. 7. In the case
of the Start/stop button, the long and short press are
distinguished, in opposite to the door lock button, which has
two states only (press and release). Models also contain
auxiliary wait states which are used for simulation of user
inactivity. Labeling the automaton states by Relevance
parameter is used for preferring inactivity (wait state) against
button pressed. Similarly, it is favored short press before the
long press.

The most important parts for distinguishing between
expected and incorrect SUT reactions are observer models.
Our example uses two observers. Locking System Observer
and Ignition System Observer, which is shown in Fig. 8. The
system behavior is checked by location invariants. Variables
in invariant conditions are mapped to the system outputs.
Observers are synchronized with button handling models by
synchronization channels.

Figure 7. Start button model

A set of simple models capture relation between keys
position and allowed system behavior. A key location
determines whether it is possible to unlock, lock and start the
car. The models produce corresponding signals to handle this
situation.

C. Implementation

The experimental SUT was developed using NI
VeriStand Real-Time Testing Software. This platform was
chosen on the basis of previous experience during
development of an HIL test place with our industrial partner.
Real KESSY ECU was replaced by an own implementation,
as fault injection is much less complicated in its case.

10Copyright (c) IARIA, 2017. ISBN: 978-1-61208-593-7

VALID 2017 : The Ninth International Conference on Advances in System Testing and Validation Lifecycle

Figure 8. Ignition System Observer

KESSY system, described by specification in Section
VIII.A, is implemented as three simulation models executed
by NI VeriStand Real-Time engine. Partitioning of the SUT
into multiple models better reflects distributed nature of a
real automotive system. Communication between models is
realized by VeriStand channels. The connection of Taster
tool to the SUT is done by test adapter which uses VeriStand
.NET API [12].

D. Results

Example KESSY system specification was implemented
in LabView as VeriStand simulation models and modeled in
UPPAAL using Taster supported language constructs. The
implementation was afterwards tested by the Taster. Test
step period was 100 ms and frequency of the Primary
Control Loop of VeriStand was 50 Hz. The objective of the
first set of tests was an error detection capability and it was
evaluated by injection of three independent faults into SUT.

Fault 1: KL S goes off after 2s from turning the ignition on.
Fault 2: Short start button press is not recognized while the
ignition is on – it is not possible to shut down the ignition.
Fault 3: Car is not able to be locked if both keys are detected
outside the car.

Faults were injected by modification of implementation
models. All inserted faults were successfully detected.
Detailed results are summarized in Tab. 3.

TABLE III. KESSY - FAULT INJECTION RESULTS

Fault Detected
Time to

detect

Trace

steps

State of

detection

F1  39s 392 ign_on

F2  28s 276 power_off

F3  99s 992 check_locked

Detection time is lengthened by key position templates;

they wait for arbitrary time quanta between key position
changes. Fault 1 and 2 needs at least one key inside the car to
allow switching ignition on. Otherwise, the fault is not
detectable. Fault 3 is exposed if Key 1 and 2 detected outside

the car. Optimization for time or step count is possible in
future work and was not objective of presented work.
Algorithm 2 – Random strategy was used for fault detection
experiment.

Correct implementation was evaluated by performing
nine test runs summarized in Tab. 4. No fault was revealed.
Node coverage of complete model was selected as stop
condition. The SUT model was not optimized for the fastest
possible node coverage.

TABLE IV. KESSY – OVERVIEW OF PERFORMED TEST RUNS

Trace Strategy

Test

Time

[s]

Steps

Lock

state

change

Engine

Start-

Stop

TR 1 Random 45 446 2 2

TR 2 Random 46 458 10 1

TR 3 Random 195 1950 57 2

TR 4
Relevance
Random

152 1525 43 1

TR 5
Relevance

Random
36 363 1 1

TR 6
Relevance
Random

84 841 25 2

TR 7 Systematic 300* 3005 78 9

TR 8 Systematic 300* 3002 78 9

TR 9 Systematic 300* 3004 79 9

 *test run was terminated after 300s because it is not possible

to reach node coverage

The testing ability for the specific SUT is expressed by a
number of locking state changes and engine start and stop
cycles included in a test trace. If these two features are
examined, the major part of SUT functionality is tested,
because they are conditioned by the correct reaction to key
position and door and start buttons. Test runs that use
Algorithm 4 (systematic) discovered impossibility to achieve
node coverage. The reason is in demand of generation of two
short start button presses in a row, which is not possible with
systematic exploration. Without two consequent short
presses, it is not possible to test switching ignition on and off
without engine start.

11Copyright (c) IARIA, 2017. ISBN: 978-1-61208-593-7

VALID 2017 : The Ninth International Conference on Advances in System Testing and Validation Lifecycle

VI. CONCLUSION

New practical approach to the Online MBT test
generation based on the simulation of Timed Automata
based model is proposed. The suggested method utilizes
well-known Timed Automata formalism as system
description language. Test traces are generated directly
during the model simulation. Model is simulated by
randomized exploration. Testing stimuli are produced by
variables included in the model and connected to an SUT by
a test adaptor. Correct tested system behavior is checked by
invariant conditions. Three variants of exploration algorithm
are presented. The proposed concept is implemented as a
part of MBT tool Taster. The implementation utilizes
UPPAAL tool as model editor and uses a subset of UPPAAL
modeling language in UPPAAL 4 file format. On the other
hand, Relevance parameter coupled with nodes was defined
to allow prioritization of certain part of the state space. The
target application is the testing of comfort part of vehicle
electronics systems, such as door locking, exterior/interior
lighting, and air condition. Test adapters for NI VeriStand
and EXAM were implemented for connection to a testbed. A
case study on a KESSY system was done to validate
expected Taster capabilities. Results are promising and
indicate the suitability of presented approach for automotive
testing application. Last but not least, utilization of UPPAAL
models allows performing formal verification besides the
testing for the specific part of the SUT.

VII. FUTURE WORK

Presented work can be viewed as a basic step or creation
of background for future research in the area of automotive
integration testing. Implementation of proposed concept had
to address many challenges. The range of performed works
was too broad to addressed individual problems thoroughly.
Further work is planned to be much specific. In the following
paragraphs, two of these specific objectives are outlined.

Described solution is presented as a complement to the
original test suite. Let's presume it is developed in EXAM.
Both suites should not contain similar test cases. The
question is how to algorithmically analyze Taster test runs
and EXAM test cases in a comparable way. Comparison of
the content of Timed Automata traces with sequence
diagrams, or underlying Python code will be useful for
assurance of required diversity between Taster and EXAM
test cases. Solving of this problem is necessary for the truly
synergic effect of the deployment of presented Taster tool
beside human developed test cases.

The concept of labeling of Timed Automaton states by
Relevancies numbers was proposed in System modeling
section. In this work are these number assigned manually by
an expert knowledge. This concept could become powerful
with a machine extraction of the Relevancies. Source of
information could be some test hypothesis or test results
database.

ACKNOWLEDGMENT

We would like to thank former master degree student
Tomáš Grus for the first implementation of the test tool and
the help with the project in the beginning.

This work was supported by the Grant Agency of the
Czech Technical University in Prague, project Model-Based
Testing methods for automotive electronics systems (Grant
No. SGS16/171/OHK3/2T/13) and by the support of EU
Regional Development Fund in OP R&D for Innovations
(OP VaVpI) and The Ministry of Education, Youth and
Sports, Czech Republic, project # CZ.1.05/2.1.00/03.0125
Acquisition of Technology for Vehicle Center of Sustainable
Mobility.

REFERENCES

[1] M. T. B. Waez, J. Dingel, and K. Rudie, “A survey of timed
automata for the development of real-time systems,”
Computer Science Review, 9, pp. 1–26,
doi:10.1016/j.cosrev.2013.05.001

[2] K. G. Larsen, M. Mikucionis, B. Nielsen, and A. Skou,
“Testing real-time embedded software using UPPAAL-
TRON: an industrial case study,” In Proceedings of the 5th
ACM international conference on Embedded software
(EMSOFT '05). ACM, New York, NY, USA, pp. 299-306.
DOI=http://dx.doi.org/10.1145/1086228.1086283

[3] A. Hessel, and P. Pettersson, “CoVer-a real-time test case
generation tool,” In: 19th IFIP International Conference on
Testing of Communicating Systems and 7th International
Workshop on Formal Approaches to Testing of Software,
2007

[4] J. Sobotka, and J. Novak, “Automation of automotive
integration testing process,” Proceedings of the 2013 IEEE
7th International Conference on Intelligent Data Acquisition
and Advanced Computing Systems, IDAACS 2013, pp. 349–
352. doi:10.1109/IDAACS.2013.6662704

[5] J. Peleska, E. Vorobev, F. Lapschies, and C. Zahlten,
“Automated model-based testing with RT-Tester,” Technical
report, University of Bremen. 2011-05-25

[6] EXAM, MicroNova AG, 2017-09-04, URL:http://www.exam-
ta.de/en.html, Accessed: 9, 2017, (Archived by WebCite® at
http://www.webcitation.org/6tESeHUn6)

[7] J. F. Groote, T. W. D. M. Kouters, and A. Osaiweran,
“Specification guidelines to avoid the state space explosion
problem,” Software Testing, Verification and Reliability, vol.
25, no. 1, pp. 4–33, 2015. http://doi.org/10.1002/stvr.1536

[8] K. G. Larsen, P. Pettersson, and Wang Yi, “UPPAAL in a
nutshell,” International Journal on Software Tools for
Technology Transfer (STTT), 1, pp. 134-152, 1997

[9] T. Grus, “Implementation of Integration Testing Test Cases
Generation Tool,” Master’s Thesis, CTU in Prague, 2014.

[10] T. Parr, “The Definite ANTLR 4 Reference,” The Pragmatic
Programmers, http://doi.org/10.1016/j.anbehav.2003.06.004

[11] N. Reed, “The Shunting-Yard Algorithm,” 2017-09-04,
URL:http://www.reedbeta.com/blog/2011/12/11/the-shunting-
yard-algorithm/, Accessed: 9, 2017. (Archived by WebCite®
at http://www.webcitation.org/6tETNRkl3)

[12] “NI VeriStand™ .NET API Help,” National Instruments,
URL:http://zone.ni.com/reference/en-XX/help/372846J-
01/vsnetapis/bp_vsnetapis/, Accessed: 9, 2017, (Archived by
WebCite® at http://www.webcitation.org/6tETbzWi6)

12Copyright (c) IARIA, 2017. ISBN: 978-1-61208-593-7

VALID 2017 : The Ninth International Conference on Advances in System Testing and Validation Lifecycle

