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Abstract— Deployment of the Model-based Testing methods in 

practice has not achieved the level it deserves. To help 

dissemination, as well as to improve the testing process in a 

particular domain, this paper presents a new Test Generation 

tool on a case study. The domain is automotive integration 

testing. The new tool is named Taster and utilizes Timed 

Automata for the online Model-based test generation. The 

objective of these tests is testing of integration of automotive 

comfort systems. The proposed concept, the system modeling, 

and the new software tool is evaluated on testing of a Keyless 

Access System. Purpose of the paper is to present an approach 

for automatic test generation intended for automotive 

integration testing. 
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I. INTRODUCTION 

This paper presents an application (new tool 
implementation) of Model-Based Testing (MBT) approach 
to the integration testing of automotive electronics systems - 
i.e. a cluster of Electronic Control Units (ECU). In current 
practice, the original test suite is developed by test engineers 
as a sequence diagrams. The test suite development is labor 
intensive, and amount of work should not grow in future. On 
the other hand complexity of automotive systems still grows. 
Test suite complement in the form of automatically 
generated test cases is offered, to keep the amount of test 
development works reasonably. 

The key idea is to supplement a test suite developed 
traditionally by a test suite generated using the MBT 
principles. These additional test cases are generated by a 
software tool called Taster. MBT process is driven by a 
Timed Automata model. One of the limitations of traditional 
test suites is that test cases are designed using driver-oriented 
point of view. One of the goals of presented work is to 
overlook from this narrow use case and, using the MBT 
techniques, to produce traces, which examine system by 
more diverse, but still reasonable stimuli. In other words, we 
presume that usefully complement test suite created by 
engineers with machine-generated ones can significantly 
increase the number of revealed faults.  The proposed 
solution is evaluated on a short case study with the objective 
to judge the suitability of the developed test generation tool 
Taster for future research. The proposed solution is depicted 
in Fig. 1. A short overview of related work follows. 

Many model checkers or formal verification tools are 
based on the Theory of Timed Automata. Also, there are at 
least hundreds of Timed Automata variants [1]. Usage of this 

theory for testing is less common than for model verification. 
TRON [2] and CoVer [3] from the UPPAAL connected tools 
family are probably the most relevant research for presented 
approach. Both tools use the UPPAAL model checking 
engine for the test generation. Presented tool Taster uses a 
different technique. It uses own algorithms based on graph 
search theory. Taster tool evolves on a basis of our 
conceptual work [4]. This paragraph is focused on Timed 
Automata linked works. Besides introduced tools, RT -Tester 
[5] can be mentioned as it is targeted to similar SUT class. 
RT-Tester uses a subset of UML or SysML as modeling 
format. 

Paper is organized in following structure. Section II 
describes the problems of the current practice of integration 
testing in more details. Section III shows overall testing 
concept and system modeling - Timed Automata model with 
an extension. In Section IV are presented algorithms 
developed for the test generation and our test generation tool 
Taster. Section V contains the Keyless Access System 
(KESSY) case study, which is subdivided into four 
subsections. Last two sections are Conclusion (VI) and 
Future work (VII). 

II. PROBLEM STATEMENT 

Consider an automotive integration testing scenario. For 
a System under Test (SUT), a test suite based on the test plan 
is developed.  This test plan covers demands from 
compulsory road regulation, internal standards, and a system 
specification. The specification is usually created and 
maintained by requirement management software (e.g., 
Rational DOORS). An SUT is tested using black box 
approach – no internal structure or similar information is 
employed to test suite design. All test cases are developed 
from a driver point of view (a typical driver use case). The 
testing process itself is driven by EXAM [6], which covers 
tasks from individual test case implementation to 
management, execution, and assessment of complex test 
suites. Despite careful and hard testing work, it is not 
possible to cover all possibilities by a manually developed 
test suite. The reason is in the system complexity and 
associated well-known State space explosion problem [7] 
together with limited time and cost resources.  

In this process, various improvement possibilities can be 
identified. First of all, manual development of the integration 
tests manually is very labor intensive. Therefore, decreasing 
of a size of original test suite in behalf of automatically 
generated one should be significantly beneficial. Also, 
complementing the suite by test cases developed differently 
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could help achieve better test diversity. This work addresses 
these challenges by the development of an MBT test tool 
able to operate with an SUT controlled by EXAM. 

III. CONCEPT AND SYSTEM MODELING 

Overview of proposed concept is depicted in Fig. 1. The 
textual specification is presumed as the basis for the model 
development. SUT is modeled as a network of Timed 
Automata. UPPAAL [8] is used in the role of model editor. 
Complete testing is driven by this model – no other models 
or configuration files are used.  

 
Taster tool explores the models using graph theory 

algorithms. Test inputs are produced online, and the SUT 
outputs are checked against expected ones. The model 
simulation is directly used for test generation. The 
algorithms are described in detail in Section VI. Interaction 
with an SUT is done by NI VeriStand or EXAM test adapter. 

The proposed solution employs UPPAAL tool [8] as a 
modeling environment. The system is modeled as a network 
of Timed Automata. The underlying theoretical concept is 
denoted Timed Safely Automata. Beyond theoretically 
described [1] time and transition properties, the UPPAAL 
implementation offers usage of variables, conditions, 
synchronization channels and another language construct to 
provide a certain level of expressivity (in theory summarized 
by term action). The used modeling language is a subset of 
UPPAAL modeling language summarized in Tab 1.  

TABLE I.  SUPPORTED SUBSET OF UPPAAL MODELLING LANGUAGE 

  Action  

Data type Guard Update Sync 

clock  reset  

chan    

bool    

int    
 
The subset is chosen concerning tested system class. 

Supported data types are bool, int, clock and synchronization 
type chan. Edges can contain guard, sync, and update 
expressions. 

Besides Timed Automata modeling language 
implemented by UPPAAL tool, Taster additionally utilizes 
labeling of Timed Automata states by relevance. Relevance 

is a natural number assigned to an automaton state. The 
parameter expresses the importance of a model state 
summarized by one number. The higher value implies the 
higher testing priority. Relevancies are assigned according to 
the SUT expert knowledge. It is determined in a manual or 
automatic way and originates in for example safety impact, 
the impact on rest of the system operability, and previously 
revealed issues (bugs). KESSY testing example presented 
later in this paper shows usage of Relevancies on 
environment models of start and door buttons.  

The success of proposed solution strongly depends on the 

reasonability of used model. In this work, two types of 
models are used. The first category is environment Models, 
which produces inputs for an SUT during simulation. The 
second category is observer models which have the Oracle 
function – they check expected SUT outputs. Correct output 
is expressed as an invariant condition. SUT behavior is 
considered valid if invariant in an active state is satisfied. 
The division of the model into environment and observer 
parts is only imaginary, and it is possible to combine input 
and output actions to single Timed Automaton. Nevertheless, 
partitioning of entire model to these two model types is 
recommended to keep clarity. 

IV. ALGORITHMS AND TOOL 

The test generation is based on the model exploration 
using graph search techniques. Timed automata model is 
simulated in a Real-time. The SUT input and outputs are 
linked to the model variables. Consequently, variable 
assignment on model edges produces test stimuli. The SUT 
outputs are observed using variables utilized in location 
invariant conditions. The progress of the time is discrete, and 
it is equal to the time of simulation step. Developed 
algorithms are described in pseudo code. The first 
algorithm (Fig. 2) describes the overall testing process. 

 
 

 
Figure 2.  Algorithm 1 

Specification

Taster

Timed Automata Model NI VeriStand or EXAM

System under Test

Figure 1. Concept of implemented solution
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Three different strategies are used to choose next step 
(i.e. edge to be taken). First step common for all strategies is 
the creation of a list of allowed edges in that time. Allowed 
edge is an edge with satisfied guard condition. If the edge 
triggers synchronization, corresponding edge waiting for 
synchronization has to be allowed. In case the list of allowed 
edges is empty, no edge is taken, clocks are incremented and 
the loop continues to next iteration. The loop is stopped if the 
invariant is violated, coverage criterion is satisfied, or test is 
stopped by the test operator. Algorithms 2 and 3 take next 
edge randomly from the list of allowed edges. Algorithm 2 
(Fig. 3) works with discrete uniform distribution – 
probability of pickup is the same for all edges in the list. 

 

 

Figure 3.  Algorithm 2 

Algorithm 3 (Fig. 4) modifies discrete uniform 
distribution using Relevance numbers defined in the previous 
section.  Probability of taking for an edge i from the list of 
allowed edges is: 

 

E
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Implicit Relevance is equal to one. Relevance is assigned 

to an edge from its target node. It may be confusing, but 
reason is to preserve compatibility with UPPAAL model 
format. Relevance is stored as a node comment, which is not 
possible with an edge. 

 

 

Figure 4.  Algorithm 3 

 
Figure 5.  Algorithm 4 

Algorithm 4 (Fig. 5) refers edge with the lowest takes 
count from a list of allowed edges. Model exploration is 
more deterministic than in the case of the random strategy. 
This behavior may speed up structural model coverage if it is 
desired. Concerning black box testing approach only, the 
model coverage criteria are feasible. Condition 
coverageCriterionNotSatisfied unify coverage of all 
Timed Automata model nodes or edges. 

The proposed concept with the MBT theory and 
algorithms results in the implementation of a testing tool 
named Taster. The first version of this tool was implemented 
in [9]. Taster works with models stored in UPPAAL 4 
format. After a model is loaded, it is possible to performed 
testing as proposed. The SUT is connected by a test adapter. 
In following sections, the Taster is described in the order 
same as testing workflow. First is the model parser and last is 
the result viewer. The code is written in C# using .NET 
Framework 4.5. 

The software architecture is divided into the model parser 
and the test execution part. First part is responsible for 
syntactical check and data structures preparation. Second 
part implements testing engine itself. The execution part also 
contains trace logger with replay function. 

Syntactical analyzer code is generated by language 
recognition software ANTLR [10]. Expression evaluation is 
solved by Shunting-yard algorithm [11]. Syntactical analyzer 
code is generated by language recognition software ANTLR 
[10]. Expression evaluation is solved by Shunting-yard 
algorithm [11].  Traces are stored in an XML file for further 
analysis.  

 
 

 
Figure 6.  Taster – Test Execution and Control 

 
The usage of the testing tool is displayed in Fig. 6. First 

is screen (not depicted) is the model viewer where a model is 
loaded. Second screen is the run screen. On the run screen 
the test adapter is initialized and a test run is executed 
according to selected algorithm. A test run is terminated by 
one of the following actions:  invariant is violated, coverage 
criterion is satisfied, and the test time has passed or by 
termination by a user request.  
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V. KESSY SYSTEM TESTING 

The following example shows the application of 
presented concept on testing of a keyless access system. As 
the name suggest, the purpose of keyless access system is to 
allow vehicle entry and engine start without using a key 
(only the key’s RFID tag have to be detected). 

A. Specification 

 The example system function (i.e. textual specification) 
is captured by this description. The door locking system is 
controlled by the lock button built in the driver side door 
handle. The Start/stop button works as the ignition switch. 
The short press is designated to turn the ignition on and 
button long press is the command for engine start operation. 
Button press longer than one second is considered long. 
Ability to lock and unlock the door, as well as start or stop 
the engine, is determined by detected key position. The 
system contains two equal keys RFID tags marked Key 1 
and Key 2. The system recognizes following states of each 
key: detected outside the car, detected inside the car and not 
detected. The door unlocking is not possible if no key is 
detected outside the car. The door locking is not allowed if a 
key is detected inside the car. The engine start requires a key 
to be detected inside a car. 

In modern Vehicles, the KESSY system is implemented 
as distributed system. Let’s consider a system composed 
from three ECUs. First ECU is the KESSY system itself 
which cooperates with a Body Control Module (BCM) and 
Engine Control Unit. All ECUs are interconnected by a 
Controller Area Network (CAN) bus. The KESSY ECU is 
responsible for keys and button status monitoring. Based on 
its commands, the BCM controls power supply system and 
individual door locks. Engine start and stop procedure are 
driven by the ECU. The system inputs are described in the 
previous paragraph. The system is observable by four digital 
outputs. Door locking system has locked and unlocked 
states. Start button controls ignition system which controls 
three power supply branches. German language prefix 
Klemme (KL) for individual clamps is preserved as, it is 
standardized by DIN 72552 standard and ISO equivalent 
does not exist. The system controls KL 15, 50 and S. KL 15 
is active if the ignition is on. KL 50 is active during engine 
startup only and in this work it is used for engine start 
monitoring. KL S is turned on by switching the ignition on, 
and it is active until the car is locked. Its common usage is 
for audio system powering.  

B. Models 

The example system is modeled by the network of nine 
Timed Automata. Every system input is modeled by a single 
automaton. The KESSY system provides two functions – 
ignition switch controlled by Start/stop button and door 
locking system control. Correct behavior of each is observed 
by separate automaton. The relation between keys position 
and corresponding system behavior is modeled by another 
three automata. Overall characteristic of the model is stated 
in Tab. 2. 

TABLE II.  KESSY MODEL SUMMARY 

Entity Count 

Templates 8 

Instances 9 

Nodes 30 

Edges 39 

Clocks 7 

Variables 15 

In/Out variables 6 

 
Due to limited paper range, only Start/stop button model 

and one of two observer models are described. The first 
model, the start/stop button, is depicted in Fig. 7. In the case 
of the Start/stop button, the long and short press are 
distinguished, in opposite to the door lock button, which has 
two states only (press and release). Models also contain 
auxiliary wait states which are used for simulation of user 
inactivity. Labeling the automaton states by Relevance 
parameter is used for preferring inactivity (wait state) against 
button pressed. Similarly, it is favored short press before the 
long press.  

The most important parts for distinguishing between 
expected and incorrect SUT reactions are observer models. 
Our example uses two observers. Locking System Observer 
and Ignition System Observer, which is shown in Fig. 8. The 
system behavior is checked by location invariants. Variables 
in invariant conditions are mapped to the system outputs. 
Observers are synchronized with button handling models by 
synchronization channels. 

 

  
Figure 7.  Start button model  

A set of simple models capture relation between keys 
position and allowed system behavior. A key location 
determines whether it is possible to unlock, lock and start the 
car. The models produce corresponding signals to handle this 
situation. 

C. Implementation 

The experimental SUT was developed using NI 
VeriStand Real-Time Testing Software. This platform was 
chosen on the basis of previous experience during 
development of an HIL test place with our industrial partner. 
Real KESSY ECU was replaced by an own implementation, 
as fault injection is much less complicated in its case.  
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Figure 8.  Ignition System Observer

KESSY system, described by specification in Section 
VIII.A, is implemented as three simulation models executed 
by NI VeriStand Real-Time engine. Partitioning of the SUT 
into multiple models better reflects distributed nature of a 
real automotive system. Communication between models is 
realized by VeriStand channels. The connection of Taster 
tool to the SUT is done by test adapter which uses VeriStand 
.NET API [12].  

D. Results 

Example KESSY system specification was implemented 
in LabView as VeriStand simulation models and modeled in 
UPPAAL using Taster supported language constructs. The 
implementation was afterwards tested by the Taster. Test 
step period was 100 ms and frequency of the Primary 
Control Loop of VeriStand was 50 Hz. The objective of the 
first set of tests was an error detection capability and it was 
evaluated by injection of three independent faults into SUT. 

Fault 1: KL S goes off after 2s from turning the ignition on. 
Fault 2: Short start button press is not recognized while the 
ignition is on – it is not possible to shut down the ignition. 
Fault 3: Car is not able to be locked if both keys are detected 
outside the car. 

Faults were injected by modification of implementation 
models. All inserted faults were successfully detected. 
Detailed results are summarized in Tab. 3.  

TABLE III.  KESSY - FAULT INJECTION RESULTS 

Fault Detected 
Time to 

detect 

Trace 

steps 

State of 

detection 

F1  39s 392 ign_on 

F2  28s 276 power_off 

F3  99s 992 check_locked 

 
Detection time is lengthened by key position templates; 

they wait for arbitrary time quanta between key position 
changes. Fault 1 and 2 needs at least one key inside the car to 
allow switching ignition on. Otherwise, the fault is not 
detectable. Fault 3 is exposed if Key 1 and 2 detected outside 

the car. Optimization for time or step count is possible in 
future work and was not objective of presented work. 
Algorithm 2 – Random strategy was used for fault detection 
experiment. 

Correct implementation was evaluated by performing 
nine test runs summarized in Tab. 4. No fault was revealed. 
Node coverage of complete model was selected as stop 
condition. The SUT model was not optimized for the fastest 
possible node coverage. 

TABLE IV.  KESSY – OVERVIEW OF PERFORMED TEST RUNS 

Trace Strategy 

Test 

Time 

[s] 

Steps 

Lock 

state 

change 

Engine 

Start-

Stop 

TR 1 Random 45 446 2 2 

TR 2 Random 46 458 10 1 

TR 3 Random 195 1950 57 2 

TR 4 
Relevance 
Random 

152 1525 43 1 

TR 5 
Relevance 

Random 
36 363 1 1 

TR 6 
Relevance 
Random 

84 841 25 2 

TR 7 Systematic 300* 3005 78 9 

TR 8 Systematic 300* 3002 78 9 

TR 9 Systematic 300* 3004 79 9 

          *test run was terminated after 300s because it is not possible 

to reach node coverage 
 

The testing ability for the specific SUT is expressed by a 
number of locking state changes and engine start and stop 
cycles included in a test trace. If these two features are 
examined, the major part of SUT functionality is tested, 
because they are conditioned by the correct reaction to key 
position and door and start buttons. Test runs that use 
Algorithm 4 (systematic) discovered impossibility to achieve 
node coverage. The reason is in demand of generation of two 
short start button presses in a row, which is not possible with 
systematic exploration. Without two consequent short 
presses, it is not possible to test switching ignition on and off 
without engine start. 
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VI. CONCLUSION 

New practical approach to the Online MBT test 
generation based on the simulation of Timed Automata 
based model is proposed. The suggested method utilizes 
well-known Timed Automata formalism as system 
description language. Test traces are generated directly 
during the model simulation. Model is simulated by 
randomized exploration. Testing stimuli are produced by 
variables included in the model and connected to an SUT by 
a test adaptor. Correct tested system behavior is checked by 
invariant conditions. Three variants of exploration algorithm 
are presented. The proposed concept is implemented as a 
part of MBT tool Taster. The implementation utilizes 
UPPAAL tool as model editor and uses a subset of UPPAAL 
modeling language in UPPAAL 4 file format. On the other 
hand, Relevance parameter coupled with nodes was defined 
to allow prioritization of certain part of the state space. The 
target application is the testing of comfort part of vehicle 
electronics systems, such as door locking, exterior/interior 
lighting, and air condition. Test adapters for NI VeriStand 
and EXAM were implemented for connection to a testbed. A 
case study on a KESSY system was done to validate 
expected Taster capabilities. Results are promising and 
indicate the suitability of presented approach for automotive 
testing application. Last but not least, utilization of UPPAAL 
models allows performing formal verification besides the 
testing for the specific part of the SUT. 

VII. FUTURE WORK 

Presented work can be viewed as a basic step or creation 
of background for future research in the area of automotive 
integration testing. Implementation of proposed concept had 
to address many challenges. The range of performed works 
was too broad to addressed individual problems thoroughly.  
Further work is planned to be much specific. In the following 
paragraphs, two of these specific objectives are outlined. 

Described solution is presented as a complement to the 
original test suite. Let's presume it is developed in EXAM. 
Both suites should not contain similar test cases. The 
question is how to algorithmically analyze Taster test runs 
and EXAM test cases in a comparable way.  Comparison of 
the content of Timed Automata traces with sequence 
diagrams, or underlying Python code will be useful for 
assurance of required diversity between Taster and EXAM 
test cases. Solving of this problem is necessary for the truly 
synergic effect of the deployment of presented Taster tool 
beside human developed test cases.  

The concept of labeling of Timed Automaton states by 
Relevancies numbers was proposed in System modeling 
section. In this work are these number assigned manually by 
an expert knowledge. This concept could become powerful 
with a machine extraction of the Relevancies. Source of 
information could be some test hypothesis or test results 
database. 
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