
Automatic Job Generation for Compiler Testing
Testing of Generated Compiler

Ludek Dolihal

Department of Information Systems,
Faculty of Information Technology,

Brno University of Technology
Brno, Czech Republic

Email: idolihal@fit.vutbr.cz

Tomas Hruska

Department of Information Systems,
Faculty of Information Technology,

Centre of Excellence IT4Innovations,
Brno University of Technology

Brno, Czech Republic
Email: hruska@fit.vutbr.cz

Abstract—Hand in hand with the design of the new core goes
the need for thorough testing, which is highly automated. Tools
for hardware/software codesign allow very fast design of the new
core and generation of the complete tool-chain. The tool-chain
that is used for the programming of the newly developed core and
also descriptions of the core in various languages are generated
automatically and it is the role of automatic testing to ensure
that there is no regression. As the pace of the development is
high also the techniques for the testing must be able to cover
the testing in very short period of time. In this article, we will
introduce the generator of jobs for the continuous integration
server Jenkins. Through the job generation we reach the higher
level of automation of the whole process of the core development
and also speed up the process of testing.

Keywords–Compiler testing; Continuous integration; Hard-
ware/Software codesign; Test generation.

I. INTRODUCTION

Each software product must be tested. In the article, we will
address the testing of tools for hardware/software codesign [1].
Hardware/software codesign deals with the design of the new
Application Specific Instruction-set Processors (ASIPs). Such
kind of systems can be found in wide variety of devices such
as network routers or printers.

The production of ASIPs is growing as the need for the
small and low power cores that can be used for specific
purposes is still bigger. For example Texas Instruments re-
leased 4 new cores in the last 6 months [2]. Hence, this area
is extremely important. The development of today’s ASIPs
must be done in a very short period of time. To do so, it
is common to use the tools for hardware/software codesign.
Some Architecture Description Language (ADL) is usually
in the core of such systems [3]. The development is done
in a modern Integrated Development Environment (IDE) that
allows the designer to generate all the necessary tools, such
as compiler, assembler and simulator. In the same environment
the user is able to perform any step needed for the development
of the core, such as simulation or profiling.

Such kind of development environment shortens the de-
velopment time significantly [4]. However, each piece of soft-
ware contains errors, and environments for hardware/software
codesign are not an exception. Some of the tools are more
error prone than others. From our point of view, the Software
Development Kit (SDK), and especially the compiler, are

the most critical parts. Because in case we have error in
the compiler, the compiled program does not have to work
properly. If the compiler does not work correctly, it is crucial
to discover the error in the shortest possible time. For this
purpose we use a continuous integration server to run testing
jobs.

The continuous integration server will be used for exe-
cution of jobs that will be automatically generated. We will
introduce the generator of the jobs that will bring the higher
level of automation and also speed up the process of testing.

The paper is structured as follows: Section II, gives the
short overview of the Lissom project. In Section III, we explain
the continuous integration process. Section IV discuss the
related work. In Sections V and VI, we explain the generator
of the testing jobs and achieved results. Finally, in Section VII,
we present the conclusions.

II. LISSOM PROJECT

In this section, we will describe the Lissom research project
[5], which creates background for the testing methods that are
described in this article. The Lissom project started in 2004
and is located at the Brno University of Technology, Faculty
of Information Technology, Czech Republic.

The Lissom project has two main areas of interest. The
first one is the development of the Architecture Description
Language (ADL) called CodAL, which serves for the ASIP
description. The description of the language can be found in
detail here [6].

The second scope of the project is the generation of the
full tool-chain from the description in the ADL CodAL. The
generated tool-chain contains a C compiler, assembler, linker,
disassembler, two types of simulators (instruction and cycle
accurate), the debugger and few more tools. As the language
is designed for description of the ASIPs, the scale of processors
that can be described, without making any modifications to the
language, is large.

However, there are also other ways how to utilise such
language. One of them is to use the language for description of
architectures that already exist. Hence, it is possible to model
in the CodAL language architectures such as MIPS [7], ARM
[8], RISC-V [9] and many others. The generated tool-chain or
just separate tools can be used as a replacement of existing
tools in case they are not in good shape. This gives large

1Copyright (c) IARIA, 2016. ISBN: 978-1-61208-500-5

VALID 2016 : The Eighth International Conference on Advances in System Testing and Validation Lifecycle

possibilities in case the core is upgraded and new tool-chain
is needed. For certain cores also, some of the tools might be
missing and by designing the given architecture in ADL the
missing tool can be easily generated.

All the tools are generated from the description in the
CodAL language. In the beginning, the model in the CodAL
language is validated and compiled. The result of the compila-
tion is the XML representation of the model. The XML format
was chosen intentionally as there are other tools that use this
form and there is also large number of generators and parsers
working over XML.

Once the XML is created there are two tools working
over it. The first tool is the tool-chain generator, also called
toolsgen. The second one is the semantics extractor or semextr.

The tool-chain generator produces tools, such as simulator,
assembler, debugger and many others. The tools that are
generated by the tool-chain generator consist of two types of
files. Both types of files are compiled and linked together.

1) Files that are platform independent are the same for
all architectures. Into this category falls user inter-
faces with parsers of the command line arguments,
or in case of profiler the generation of the graphical
output.

2) Automatically generated files that contain the plat-
form dependent information. Into this category be-
long the instruction decoders in the simulators or
assembler printer in the C compiler.

The second tool is the semantics extractor. The execution
of the extractor is the prerequisite for the compiler generation.
Moreover, there are other tools that use the outputs of the
semantics extractor, such as Quick EMUlator (QEMU) or
documentation generator and also decompiler that is described
in the thesis [10].

The main role of the semantics extractor is to extract
the assembler syntax, binary encoding and semantics of each
instruction described in the model.

The development of the new core in the Electronic Design
Automation (EDA) tool [11] can be done very swiftly. The
experienced designer can create an instruction accurate model
of a core in a few hours. Modification of a core can be created
even faster. It is very simple to add some instructions and/or
create larger register field for example. This process can give
birth to the versions of the processors that can be optimized
for speed, size of the code or power consumption.

All such variants of the core should be tested, so there is a
need for simple generation of the testing infrastructure. Hence
we need a generator of the jobs, that will perform the testing.
We need to speed up the whole process and reduce the amount
of manual work.

III. CONTINUOUS INTEGRATION

In this section we will describe the Continuous Integration
(CI) and introduce the job format, which we will use in the
further sections.

The main idea of continuous integration [12] is to avoid
the integration problems in the later stages of the development.
The developers are encouraged to merge with the main devel-
opment line several times a day and execute the tests over the

merged line. By this approach they are encouraged to keep an
eye on the integration continually.

The technique was mentioned for the first time by Grady
Booch [13], and was called Booch method. Later it was
adopted by extreme programmers and resulted in performing
an integration in once or more times a day.

Today, the continuous integration servers are used in every
larger company. The most widespread CI server is called
Jenkins [14]. Jenkins is an open source automation server that
can provide not only continuous integration but also continuous
deployment. It uses the system of plugins to enhance the
basic functionality. Nowadays, there are plugins available all
the Version Control Systems (VCS) as well as plugins for
visualisation of pipelines etc.

The basic block of the Jenkins server is called a job. The
main action for every job is the execution. The job has the
data that are typically taken from the VCS and action that is
usually execution of some script.

The jobs are stored at the Master server. Master server is
the computer that keeps the installation of the Jenkins and all
the jobs are kept here. In case of the single master installation.
The job is represented by a file in the XML format that is
stored in the given folder on the Master server. The format in
the markup language is in our case a great advantage as there
is a lot of generators of the XML and also there are other tools
that can work with the description.

A. Jenkins job format
Jenkins supports several types of jobs. The basic ones are

the freestyle project and the multiconfiguration project. The
main difference between the two is the fact that multiconfigu-
ration project can be executed on multiple machines. There are
also special types of jobs that are tied to the various plugins.
There is a maven job, external job or various views.

Below we listed the basic description of the multiconfigu-
ration job, as it is the job, which we are the most interested
in. Though we need to work with the other job types as well,
the configuration of the basic kind of job will be suffictient
for demonstration purposes now.

<?xml vers ion= ’ 1.0 ’ encoding= ’UTF−8 ’?>
<matr ix−p r o j e c t p lug in = ” matr ix−project@1 .4

”>
<ac t ions />
<desc r i p t i on ></ desc r i p t i on>
<keepDependencies>f a l se </

keepDependencies>
<proper t i es>

<com. sonyer icsson . r e b u i l d .
Rebu i ldSet t ings

p lug in = ” rebuild@1 .22 ”>
<autoRebui ld>f a l se </ autoRebui ld>

</com. sonyer icsson . r e b u i l d .
Rebu i ldSet t ings>

<hudson . model .
Paramete rsDef in i t i onProper ty />

</ p roper t i es>
<scm class= ” hudson . scm . NullSCM ” />
<canRoam>t rue </canRoam>
<disabled>f a l se </ d isabled>
<blockBuildWhenDownstreamBuilding>f a l s e

2Copyright (c) IARIA, 2016. ISBN: 978-1-61208-500-5

VALID 2016 : The Eighth International Conference on Advances in System Testing and Validation Lifecycle

</blockBuildWhenDownstreamBuilding>
<blockBuildWhenUpstreamBuilding>f a l s e
</ blockBuildWhenUpstreamBuilding>
< t r i g g e r s />
<concur ren tBu i ld>f a l se </ concur ren tBu i ld>
<axes>

<hudson . mat r i x . LabelAxis>
<name>l abe l </name>
<values>

<s t r i n g >CentOS−6.5−32</ s t r i n g >
</ values>

</hudson . mat r i x . LabelAxis>
</axes>
<bu i l de rs>

<hudson . tasks . Shel l>
<command>echo \$ (pwd) </command>

</hudson . tasks . Shel l>
</ bu i l de rs>
<pub l i she rs />
<bui ldWrappers />
<execut ionSt ra tegy c lass= ” hudson . mat r i x .

De fau l tMa t r i xExecu t ionSt ra tegy Imp l ”>
<runSequent ia l l y>f a l se </

runSequent ia l l y>
</ execut ionSt ra tegy>

</ matr ix−pro jec t>

On the second line, we can see that it is the matrix project,
which means that it can deploy multiple axis, and one of them
is the configuration of the nodes. For simplicity the job does
not download any data from the VCS. Another important tag
is the one called axes. This tells us that this job is built only
on one node called CentOS-6.5-32. It is important to note that
this job does not have parameters. If it had, the parameters
would be visible in the top of the configuration.

There are also sections builders and publishers. Section
builders says that there is the shell script executed, and only
command it runs it the echo $(pwd). The job has no results,
hence, the part publishers is empty. The execution strategy is
default. It is important to know, how the configuration of the
job looks like as we will work with the representation in the
later sections.

IV. RELATED WORK

Let us have a look at the current development at the field of
the job generation. We can distinguish two types of solutions.
The are tools in Jenkins that were designed for this purpose and
then there are several works that try to deal with the problem
of job generation outside of the Jenkins environment.

First we will have a look at the solutions inside the
Jenkins. One of them is the template plugin [15]. Via the
template project plugin the user can set up an template project
containing the settings the user want to share. Is is possible
to set for example the VCS repositories that are common
for the jobs or the script that should be executed and so
on. Then it is possible to create inside the Jenkins another
project from the created template. So the generation has to
be performed manually by using the template several times.
Hence, the possibilities of the automation are limited.

Other possibility provided by Jenkins server itself is the job
generator plugin [16]. This plugin is based on template, which

is the job itself and the parameters, which can be global or
local. This plugin is very powerful in combination with other
plugins such as plugin for conditional resolution. However, it
has limitations in form of what types of jobs can be generated
and it can not use time triggers. Moreover, it is very difficult to
generate more complex jobs. The hierarchy and conditions can
become very complex and the whole process is error prone.
We also did not find a way how to set the desired nodes in
the multiconfiguration project.

Now we will mention several approaches that try to deal
with job generation outside the Jenkins environment. The
interesting ideas are proposed in the article at Jenkins User
Conference [17]. The article deals with the automation of
testing in the area of robotics. The author uses combination of
various Jenkins plugins for packaging and static analysis. Nev-
ertheless, the process of build and testing is very complicated
and hardly maintainable. The author proposes use of Domain
Specific Language (DSL) for specification of the informations
and then generation of the Jenkins jobs. It seems that the author
just uses Jenkins for the build. However, the system seems to
be slow and has problems with synchronisation of the jobs.
Also there are problems with the graphical side of the solution.

Some interesting ideas connected with the job generation
are in the Shaw article [18]. The article also introduces the
possibility of job generation from the templates and use of the
Jenkins command line interface. Nevertheless, the article does
not provide any examples of the templates or scheme how the
system works.

Above we have mentioned several possibilities in the area
of job generation. None of the approaches that were mentioned
suits our needs. In our project we need to generate all kinds
of jobs, as it is crucial to test the various aspects of the newly
developed core. This includes the tests of various features
that can be tied to very specific kinds of jobs. The approach
mentioned in [17] seems to be interesting. For our use it
appears to be too cumbersome. The lightweight solution with
the command line interface would suit our needs better.

V. JOB GENERATION

The main task that we need to address is the generation
of the various jobs, which will ensure the complex testing of
the core. As we plan to use the whole system also from the
command line, we wanted to avoid the graphical interface,
at least in the first version of the project. We may add the
graphical interface in the later versions, but we need to keep the
command line interface, as we would like to use the solution
from the command line. This is also one of the reasons, why
we can not use the plugins provided by Jenkins. They have
very poor documentation and are primary focused for usage
via the web interface.

The basic scheme of our system is illustrated in Figure
1. We can see that the whole system consists of just a few
steps. The first part of the system is the sniffer. It works over
the git repository in our case. Once the generation is triggered
the job generator uses the templates to generate corresponding
jobs. We will now give more detailed description of the
aforementioned parts.

A. Sniffer
We called this part of the generation process a sniffer as

it sniffs in the git repository for a new branches. The main

3Copyright (c) IARIA, 2016. ISBN: 978-1-61208-500-5

VALID 2016 : The Eighth International Conference on Advances in System Testing and Validation Lifecycle

Figure 1. Scheme of the system.

role of the sniffer is to detect the creation of the new branch
in given git repository and trigger the generation. The whole
system is designed in a way that the sniffer can be replaced
by a different component. In the future, we would like to add
the support for other VCS. It also does not have to be present
at all and can be completely removed. The generator can be
started by a different tool, if it is compatible with the defined
interface.

Though currently the role of the sniffer is to notify that the
new branch has been created and deliver this information to
the job generator. The sniffer has no further intelligence and
the whole system is designed in a way that all the decisions
should be made in the generator itself. In the latest version
the sniffer has the shape of the unix script that is executed
repeatedly by the operation system.

B. Templates
The second input into the job generator are the templates.

We have various kinds of templates as we need to test various
parts of the newly developed core. The main areas that has to
be covered by test job generation are:

• compiler testing,
• functional verification,
• assembler testing,
• tools generation.

Please note that these are just the areas that needs to be
covered, not the jobs. Under each domain there is a variety of
jobs that are generated and later on executed. There is usually
just one template per domain, just in case of the functional
verification we need to have several templates, as this area is
very vast and we were not able to stick to just one template.

As far as the templates itself are concerned, they are very
simple and do not keep any intelligence. The intelligence, for
example the name of the node, where the job will run is kept in
the generator. The templates are in the XML format and are
similar to the example in Section III. Consider for example
that we want to generate the name of the node, where our job
will be executed. The corresponding part in the template will
have the following form:

<s t r i n g >@NODE NAME@</ s t r i n g >

C. Job generator
Now, when we described the inputs of the generator we

will move to the generator itself. The job generator consists
of several parts that are pictured in Figure 2.

Figure 2. Scheme of the generator

We decided to implement the generator in Python language
because it allows very fast development and the code is very
easy to read and modifications are simple.

One of the first steps of the generation is the template se-
lection. This part of the generator works over the configuration
file that is present at the specific directory in the model branch
that should be tested. We have proposed a simple format
of the configuration file, which specifies the tested features.
The other possibility we have is to automatically detect what
features should be tested but we have chosen the configuration
file, because some of the features can not be automatically
detected. From the specification file we are able to determine
what templates should be used. The specification file has two
major tasks:

• define features that should be tested,
• specify parameters for the generators.

However, the automatic detection of the features that
should be tested was not completely abandoned. The detection
is present, but plays only the supplementary part.

Once the phase of the templates selection is finished
we need to generate the CMake files that will fill into the
templates the desired information. The generated CMake files
are template specific as each template has different fields.
Currently we generate one CMake file per template and we
do so in the separate directories.

From the two above mentioned inputs, we can generate the
job. The job generation is in fact just insertion of the data into
the templates. We decided to do this via CMake, because it
is one of the cleanest ways to do so. The most frequent facts
that are generated are the following:

• branch used for testing,
• node, where the job is executed,

4Copyright (c) IARIA, 2016. ISBN: 978-1-61208-500-5

VALID 2016 : The Eighth International Conference on Advances in System Testing and Validation Lifecycle

• bash script and the parameters,
• job name and view, where the job is placed.

The above mentioned information can be determined in the
following way. The branch is one of the input parameters. It
is delivered by the sniffer, but can be also delivered different
way, it can be for example specified by the user.

The script that is executed could be the part of the template,
however, this would increase the number of the templates
significantly. Hence, we try to determine the name of the
script. This could be done based on the information from the
configuration. Some of the scripts may have variable number of
parameters, but this we are able to determine from the directory
structure of the model. Here we can see the supplementary part
of the automatic detection.

The job name and view, where the job should be places,
are also determined from the configuration file and repository
name. We also plan in the future to use directory plugin in our
installation, however, this should not be a problematic step.

The most complicated task is the selection of the correct
node, where the job should be executed. There are certain jobs
that can be executed only on the specific set of nodes. Typically
this is true for the jobs that perform tests of the functional
verification or tests of the synthesis. We have a special groups
of nodes and special templates with the predefined sets of
nodes. Nevertheless, for the majority of jobs we do not have
to solve such issues. We keep a simple table of nodes, which
is divided into the sections, which define what nodes are used
for specific jobs. We choose the jobs with the smallest number
of assigned jobs and optionally we modify the assigned value
by hand.

There are also other information that can be filled into
the template. But the four above mentioned are the most
common ones. We have the predefined default values for all
the parameters that would suit the most cases.

Very often we generate the parameters into the templates.
They are stored in the parameters section and later this

parameters are used in the builders section. However, there
are also parameters that are node dependent, or are defined
globally in the Jenkins.

Very often the generated job needs to use the artifacts from
the other jobs. Nevertheless, we try to keep the generator as
lightweight as possible and do not want modify other jobs. The
compatibility in this case is assured by the wildcards, and the
name of the new job must fit into the wildcard. For example if
the job is named Test-compiler-xxx the wildcard can be Test-
compiler-*.

Once we have generated the jobs that are needed for the
testing of the newly developed branch, we have to upload these
jobs to the CI server. For this purpose we use the Jenkins
command line interface that performs the job upload and also
registers the job.

VI. RESULTS

With the current implementation of the simple job gen-
erator we have performed several tests. We have tried to
generate the set of tests that are typical for our project. The
tests are divided into two sets. The basic set consists of tests
that test compiler and assembler and full set adds also tests
for functional verification. The templates that are needed for

generation of such tests were added into the template set. The
basic set consists of three jobs and full set consists of 12 jobs.
We have set the polling time to 6 minutes, so every 6 minutes
is the VCS server polled for the new branches.

The times needed for the generation are summarised in the
following table. We have performed 10 different runs: five for
basic set of tests and five for the full set of tests. The last run
was triggered manually.

TABLE I. COMPARISON OF GENERATION TIMES.

Run Basic set Full set
1 124s 516s
2 248s 524s
3 194s 212s
4 150s 317s
5 91s 412s
Manual run 42s 178s

We can see in the Table I that the generation of the three
jobs takes 42 seconds, which gives exactly 14 seconds per job.
When we try to generate the full set of 12 jobs, it takes 178
seconds. That is approximately 15 seconds per job. All of the
jobs we generate are multiconfiguration jobs. The generation
times vary for the basic set from 91 to 248 seconds. That is
perfectly accurate, as the delay caused by the front end is up
to 360 seconds. The generation of the full set is also affected
by the front end and should be from 178 seconds up to 538
seconds. Our measurements confirm that.

We have also tried to create the jobs manually. The group
that created the jobs consisted of two persons. We tried to
create the basic set of testing jobs, and then the full set of jobs.
The basic set of tests include the generation of three jobs and
covers the compiler and assembler. The full set of jobs contains
also jobs for verification. Together this set contains 12 jobs.
Hence, the sets are the same as in the previous measurement.

TABLE II. COMPARISON OF CREATION TIMES.

Method Basic set Full set
Lissom Generator 182s 499s
Manual creation 486s 2197s

In the Table II we can see that the manual creation of
the jobs was very slow in comparison with the generator.
Especially in case we have to create the set of 12 jobs the
task was very time consuming.

The last comparison we made was with the Jenkins job
generator plugin. We used the Jenkins server in version 1.656
and the plugin was in the version 1.22. The Jenkins server was
running on the server with the 4 cores Intel i5 and has 8 GB
of the memory. The same set of jobs as above was generated.

TABLE III. COMPARISON OF CREATION TIMES.

Method Basic set Full set
Lissom Generator 103s 361s
Jenkins generator plugin 148s 839s

The results are gathered in the Table III. It is clear, that
Lissom generator was fastest in both tested cases. However,
in case of generation of just three jobs, the times were
comparable. And in case of maximal 360 seconds delay, the
Jenkins job generator can be even faster. Nevertheless, in case

5Copyright (c) IARIA, 2016. ISBN: 978-1-61208-500-5

VALID 2016 : The Eighth International Conference on Advances in System Testing and Validation Lifecycle

of generation of the big set the generator had clear advantage
even in case of maximal delay caused by the front end.
Moreover when compared to the times without delay, the speed
of Lissom job generator can not be matched.

Other advantage of the job generator is the fact that it is
very lightweight and can be used for any kind of jobs. This
largely depends on the templates that will be created.

VII. CONCLUSION

In this paper, we sketched the simple generator of the
Jenkins jobs that would suite our needs in the Lissom project.
We need the generator that can be started by various ways is
lightweight and can generate all kinds of jobs. This was one
of the basic requirements that was not met by any plugin that
is currently available for Jenkins. We also wanted the tool to
be at least partly independent of Jenkins as it is not rare that
the plugins do not cooperate well.

The current implementation of our generator is dependent
just on the internal representation of the job. This is not a
problem, as it is very simple to deploy new templates. At
the same time, the internal job representation is not likely to
change as it would imply the changes in all plugins currently
used by Jenkins.

We also put the generator under the tests and the gathered
results are very positive. As far as the speed of the generator is
concerned it can not be matched by any tool that is currently
available. In the future we would like to add to the generator
also other functionality such as work with the directory plugin
and also ability to register the jobs for artifact download.

We created a tool that helps us to generate new sets of test
every time the new core is developed. It gives us the higher
level of test automation.

ACKNOWLEDGMENT

This work was supported by The Ministry of Education,
Youth and Sports of the Czech Republic from the National
Programme of Sustainability (NPU II); project IT4Innovations
excellence in science - LQ1602.

REFERENCES

[1] G. De Micheli and W. Rolf, E.and Wolf, Readings in Hardware/Software
Co-design. Morgan Kaufmann, 2001, ISBN: 9781558607026.

[2] “Texas Instruments,” http://www.ti.com/general/docs/newproducts.tsp
(July 2016), 2016.

[3] F. Oquendo, “π-adl: an architecture description language based on
the higher-order typed π-calculus for specifying dynamic and mobile
software architectures,” ACM SIGSOFT Software Engineering Notes,
vol. 29, no. 3, 2004, pp. 1–14.

[4] J. Teich, “Hardware/software codesign: The past, the present, and
predicting the future,” Proceedings of the IEEE, 2012.

[5] Lissom, “Project Lissom Webpages,”
http://www.fit.vutbr.cz/research/groups/lissom/ (August 2014), 2014.

[6] K. Masarik, “System for hardware-software codesign,” Master’s thesis,
Faculty of Information Technology, Brno university of Technology,
2008.

[7] K. Suzuki, S. Mita, T. Fujita, F. Yamane, F. Sano, A. Chiba, Y. Watan-
abe, K. Matsuda, T. Maeda, and T. Kuroda, “A 300 mips/w risc core
processor with variable supply-voltage scheme in variable threshold-
voltage cmos,” in Custom Integrated Circuits Conference, 1997., Pro-
ceedings of the IEEE 1997. IEEE, 1997, pp. 587–590.

[8] B. Smith, “Arm and intel battle over the mobile chip’s future,” Com-
puter, vol. 41, no. 5, 2008, pp. 15–18.

[9] A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovic, “The risc-v in-
struction set manual, volume i: Base user-level isa,” EECS Department,
UC Berkeley, Tech. Rep. UCB/EECS-2011-62, 2011.

[10] J. Kroustek, “Retargetable analysis of machine code,” Master’s thesis,
Faculty of Information Technology, Brno university of Technology,
2014.

[11] L.-T. Wang, Y.-W. Chang, and K.-T. T. Cheng, Electronic design
automation: synthesis, verification, and test. Morgan Kaufmann, 2009.

[12] M. Fowler and M. Foemmel, “Continuous integration,” Thought-Works)
http://www. thoughtworks. com/Continuous Integration. pdf, 2006, p.
122.

[13] G. Booch, Object-oriented Analysis and Design with Applications (2Nd
Ed.). Redwood City, CA, USA: Benjamin-Cummings Publishing Co.,
Inc., 1994.

[14] Jenkins, “Jenkins website,” https://jenkins.io/ (July 2016), 2016.
[15] “Template Project Plugin,” https://wiki.jenkins-

ci.org/display/JENKINS/Template+Project+Plugin (July 2016), 2016.
[16] “Job Generator Plugin,” https://wiki.jenkins-

ci.org/display/JENKINS/Job+Generator+Plugin (July 2016), 2016.
[17] F. Lier, J. Wienke, and S. Wrede, “Jenkins for flobi–a use case: Jenkins

& robotics,” in Jenkins User Conference, 2013.
[18] K. Shaw, “Generating New Jenkins Jobs From Templates and Param-

eterised Builds,” http://www.blackpepper.co.uk/generating-new-jenkins-
jobs-from-templates-and-parameterised-builds/ (July 2016), 2012.

6Copyright (c) IARIA, 2016. ISBN: 978-1-61208-500-5

VALID 2016 : The Eighth International Conference on Advances in System Testing and Validation Lifecycle

