
RDTA – Repository Driven Test Automation

A new look into reuse of test automation artifacts

Dani Almog, Hadas Schwartz Chassidim, and Shlomo Mark

Dept. of Software Engineering

Sami Shamoon College

Beer Sheva, Israel

e-mail: Almog.dani@gmail.com, hadasch@sce.ac.il, marks@sce.ac.il

Yaron Tsubery

R&D Operations

Enghouse Interactive

9th Nehar Prat St., Giva'at-Ze'ev, Israel

 yaron.tsubery@gmail.com

Abstract— Repository Driven Test Automation (RDTA) is an

approach to the buildup process of test automation

infrastructure which proposes reuse of testing artifacts as a

fundamental principle for the creation of test automation. Our

research was motivated by a two-fold inquiry: Can testing

automation artifacts be reused? If so, how? These inquiries led

us to a new concept for the formulation of test automation.

The term software repository here refers to a storage location

from which software packages or artifacts may be retrieved for

reuse in other systems or software products, preferably - as is.

This conceptual paper explores different aspects of the reuse of

software test automation artifacts and elaborates on several

practical implications and changes that arise from the

implementation of this new paradigm in a software

development organization.

Keywords-testing; test automation; software reuse; repository

driven automation.

I. INTRODUCTION

Testing is perhaps the most expensive task in a software

project. Large portions of testing costs are derived from the

need to assure that none of the newly introduced changes in

the code have damaged previous quality – testing for

regression is a repetitive activity. Regression testing is an

expensive activity that can account for a large proportion of

the software maintenance budget [1]. Software engineers

add tests into test suites as software evolves, and by this

increase the test suite size, the revalidation of the software

but, also the testing costs. Special techniques to reduce the

regression tests costs by selecting, prioritizing and reducing

the number of regression tests and costs, have been

proposed [1,2]. However, it can be expensive to employ

these techniques and therefore it might not reduce the

overall regression testing costs. A survey of practitioners

[2] shows that the main benefits of test automation are:

reusability, repeatability and effort saved in test executions.

Automation can be applied to parts of the testing processes

by entrusting repetitive tasks to a test automation system.

The main motivation of RDTA is to reduce the overall

expenses and efforts in the implementation of test

automation by addressing test automation artifacts and the

creation process itself [3]. Today, many commercial and

open source tools are used for test automation. Large

portions of these tools are highly specialized solutions for

specific aspects of testing, are focused on different

technologies, or are based on particular test paradigms.

There is a large variety of specialized test tools for test case

generation, test management, test execution, and so forth.

There is limited support for combining the numerous

specialized tools in an integrated solution except for the

provision of technical interfaces between single tools.

The objective of our work is the development of test

automation infrastructure rooted in the concept of reusing

testing artifacts. In Section II, we briefly revisit the general

reuse concepts, including some heuristics [4], and

elaborating on some needed architectures, and testing

artifacts and other dimensions of test automation. RDTA is

introduced in Section III, discussing what, where and how

to store the different artifacts. We conclude with conceptual

insights into the implications of RDTA in today's modern

software development arena (e.g., Unit test, agile,

integration, Service-Oriented Architecture (SOA)).

II. BACKGROUND: REUSE OF ARTIFACTS

Analyzing our day-to-day testing activities, we may ask:

how much of every action, operation, thinking, doing – is

actually uniquely new? When attempting to explain the

nature of the reusability concept, we may be challenged by

the argument that this has all been done before and,

therefore, that there is nothing new to contribute in this field.

These notions are almost right: most new contribution stems

from context and interpretation. For example, when

designing a new test case for a certain application, memory

and past experience are utilized to rearrange old knowledge

into a new pattern to create a new test case that ought to

answer the new aspects we are testing. So from a conceptual

standpoint, we are reusing. In this paper we will examine

how much reuse is done with regard to testing artifacts. In

addition, we review the extent to which we are aware of the

42Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

mailto:Almog.dani@gmail.com
mailto:hadasch@sce.ac.il
mailto:marks@sce.ac.il
mailto:yaron.tsubery@gmail.com

reusable nature of our work when designing a testing artifact.

Our day-to-day manual testing work flow is built out of

|context| –> |concept| –> |build| –> |use|. We will also review

how much of a software engineer’s attention/awareness is

focused on the issue of reuse [5].

The reuse of artifacts is usually derived from the desire to

take advantage of previously developed components and

capabilities. In previous scholarship [6], a distinction was

made between Development with Reuse (DWR), which

focuses on benefits gained from the utilization of reusable

resources, and Development for Reuse (DFR), which aims at

the creation of reusable products for the benefit of future

usage. A generalized reuse model for system development

was formulated, suggesting a future quantitative evaluation

of reuse in a comprehensive manner [6].

A. Reuse Heuristics

Fortue and Valerdi [4] Addressing the topic of reuse from

a systems engineering perspective, a generalized framework

for the reuse of systems engineering products has been

proposed. This approach is based on reuse heuristics (the

following is a partial list selected from the original study)

[7]:

 Heuristic a: Reuse is not free, upfront investment is

required.

 Heuristic b: Reuse should be planed from the

conceptualization phase of programs.

 Heuristic c: Most project related products can be

reused.

 Heuristic d: Reuse, in large part, is also an

organizational issue.

 Heuristic e: Higher reuse opportunities exist when

there is a match between the diversity and volatility

of a product line and its associated supply chain.

 Heuristic f: Bottom-up (individual elements where

make or buy decisions are made) and top-down

(where product line reuse is made) reuse require

fundamentally different strategies.

 Heuristic g: Reuse applicability is often time

dependent.

 Heuristic h: The economic benefits of reuse can be

described in terms of either improvement (in

quality, risk identification) or reduction (of defects,

cost/effort, and time to market).

The ability to recompose reusable parts is an important

requirement for reuse [8]. Anticipating future reuse scenarios

make reusable parts easier to compose. Khusidman and

Bridgeland [9] presented a framework of reuse and cloning

techniques in software development. This work analyzed

different aspects of reuse and cloning by utilizing a

classification framework to define a matrix of reuse

scenarios aimed at efficient reuse. A distinction may be

made between “formal” reuse of object code that does not

require any customization, and the “opportunistic” “cut-and-

paste” reuse achieved by using and modifying fragments of

existing solutions [9]. In the following sections, we will

attempt to generalize a reuse framework and apply its

principles to test automation.

B. Systems Reuse Framework

It has been said that "reuse can increase your productivity

by nearly half if you avoid the common pitfalls that derail

many reuse programs" [10]. This idea was made clear from

the analysis of the outcome of trends in Source Lines of

Code (SLOC) of Department of Defense (DoD) software and

DoD cost in dollars per SLOC between 1950 and 2000 [10].

However, reuse in software development and testing

may present some abuse dangers, such as the propagation of

errors in subsequent versions of the software [11]. Lengthy

research on reuse of a test case in a safety critical system

(for a heart pacemaker) [12] concluded that, conceptually,

this approach to reuse is simple, but to implement it in a real

project with hundreds of thousands of lines of code,

recognizing the commonalities among the test cases, and
implementing a mechanism for systematic reuse, is a huge

task. Applying reuse techniques at the testing stage of a real

project that involved the development of a cardiac rhythm

management system led to significantly reduced efforts

required to test systems. More recent studies relates

reusability to Software Product Line Testing (SPLT) [13]

[14] [15]. The strategy of reuse of core assets in SPLT can

reduce software testing efforts during development, improve

software quality, and potentially decrease the time-to-

market of products and services.

C. Reuse of Testing Artifacts

Tiwari and Goel [16], the authors of a wide survey of the

literature about the reduction of testing effort through reuse

have argued that although there are many systematic studies

that deal with quality assurance techniques, virtually no

literature or survey exists on reuse-oriented testing

approaches. RDTA deals with the reuse of testing

automation artifacts using a comprehensive multi-level

reuse approach.

III. RDTA: A NOVEL APPROACH

In this section, we present our contribution to the reuse

classification framework by laying out the organizational

structure for the different levels, types and candidates of

storage repositories. The classification system presented

here is preliminary and may be further expanded and

adapted to different technologies and software development

infrastructures.

Even before we consider test automation, we are

obligated to store and maintain the testing artifacts. In

addition to the Gupta test repository classifications [17],

previous research and papers provide a useful resource for

testing item classifications, for example, verification items

[18]. Complimentary to the Gupta classifications, and in

accordance to the research of most of experts in the test

43Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

automation industry, we propose this preliminary list of

subjects be stored:

• Requirements Repository (a)

• Business Story Repository (b)

• Test Cases Storage (c)

• Basic Operational Element Repository (d)

• Unit Test Repository (e)

• Testing Business Element Repository (f)

Other repositories may be introduced as the result of this

research project. All these repositories support reuse when

transmitted to, and prorogated among, organizations and

teams.

A. Business and Testing Requirements

The RDTA approach suggests the requirement for a

source link for most testing artifacts. It RDTA samples a

subset of configurations to be tested based on environment

modeling, requirement analysis and systematic traceability.

RDTA distinguishes between higher Business

requirements and their breakdown into functional

requirements and nonfunctional requirements.

Therefore, it is imperative that there be a depository

where the entirety of the testing requirements are stored,

maintained and controlled. Additionally, today many test

management tools contain their own storage of test

requirements and are linked and traceable to the software

requirements as well as to the rest of the testing artifacts.

B. Business Story Repository

Derived directly from the store of software testing

requirements is a depository of testing business stories.

These should be as tightly aggregated as possible. Different

aggregation levels may be represented in a repository for

these testing stories or business story fragments. For

example, "The customer should be able to access the

application from most popular interfaces (mobile, pc,

remote interface etc.) using a login procedure".

C. Test Cases Storage

The test cases repository should derive from the test

business stories depository. Please note that test cases are

very much application/functionality oriented and therefore

require storage in different hierarchies that allow for

different affiliations or relationships to be exposed and

identified. Figure 1 presents a possible traceability matrix

that demonstrates the need for documentation as well as

management and control at all items during the

testing/fixing operation. Each column presents repository

categories containing other testing artifacts. The arrows hint

to a possible dependency between the elements.

These types of coverage matrices enable tractability [15],

and may help may reveal the importance of keeping track

of, and documenting, all business and testing artifacts.

D. Basic Operational Element Repository

In order to facilitate test automation needs, we must be able

to execute and operate all developed applications under

conditions of control and isolation. This can be performed

during the development phase or in an integration

workplace until installation. RDTA divides these

repositories into two categories:

1) Operational infrastructure, architectural foundation

related storage, and application.

2) Business related storage.

The reusable quality of the items stems from the

similarity in the basic application of the actual business

behavior in the software.

Each of these artifacts may be used, operated, stored,

maintained and manipulated during the testing project. More

items may be added and specifically modified. The use of

these artifacts is limited by resource constraints and time

horizons.

E. Unit Test Repository

In order to maintain productive reuse of unit test

artifacts, isolated and single purpose (used mostly by

developers) unit tests need to be transformed into integrated

parts of reusable testing artifacts that are used by all levels

of development and quality assurance teams [19].

F. Testing Business Element Repository

The need for the reuse of the same generic test case as

part of a project scenario that has a different categorical

affiliation can be satisfied in most of the existing testing

Figure 1. suggested test coverage metrix. Figure 2. Principal RDTA testing repositories build up

44Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

tools by duplicating the same formation and storing it

separately. The RDTA approach will store another level of

artifacts that relate to the test case business context (see

Figure 2).

 To facilitate easy access and usage of reusable testing

artifacts, the RDTA approach mandates adding another

merged level: one that stores, uses and maintains another

practical set of testing items. Business artifacts may be

related to each element (or object) of the testing artifacts

that can be treated as a business portion (as opposed to

technical, architectural or other such element).

RDTA will recommend storing and maintaining the

actual full context testing scripts so that during subsequent

use, the user will have full control of all operational and

functional aspects to be tested.

G. Maintaining the Integrity of the Specifications

The RTDA approach suggests a framework where each
of the elements is categorized as a service – so it can be
recalled and operated independently during the progression
of the testing levels. Such a complex, interconnected, and
affiliated storage system must be formulated in a very
practical manner. Therefore, how and where to store objects
are critical issues.

H. How to Store Repositories

Reflecting on the operational practical needs for the
storage requirements, the following list of storage
requirements has yet to be fully researched and evaluated:

 Easy & efficient storage & retrieval (Ease of use)

 Support for all types of items (from single data

items to complex executable modules)

 Support for version control

 Ability to follow complex associations between the

items

 Support for dynamic hierarchy relationships

 Discoverable and presentable on multiple layers and

dimensions

 Easy to maintain

 Ability to follow security requirements

 Unlimited size.

I. RDTA and the Test Automation Creation Work Process

Adapting the RDTA approach mandates a new four step
work process.

1. Analysis of project artifacts and the creation of a

project repository.

2. Mapping the affiliations of project artifacts to

existing reusable artifacts.

3. Acquiring test artifacts from the common repository

for insertion into the project repository.

4. Designing missing test artifacts at the project

repository and operation of automatic upload of the new test

artifacts to the common repository.

J. Implementing RDTA

Implementing RDTA may prove to be a hard and
complicated task in light of the variability and complexity of
infrastructure, organizational cultures, standards and new
quality measurements. One can foresee two different
approaches for implementation:

 Top to bottom – where management dictates,

supervises and imposes changes in production.

 Bottom up –where change develops from the bottom

through limited experimental trials of one of the test

automation teams and subsequently percolates up

and spreads gradually through the organization.

IV. CONCLUSION

This paper presents a new conceptual approach to test
automation – RDTA. This approach focuses on the reuse
principle for test automation artifacts. In order to transition
from concept to practice, each subject and proposition
presented here should be addressed and developed into an
organizational strategy and framework to reduce costs. More
broadly, we envision the creation of international sharing
schemes for the purpose of resource and performance
amplification. Further development of the criteria for the
selection of services and the evaluation of RDTA benefits
are required.

REFERENCES

 [1] , A. G. Malishevsky, G. Rothermel and S. Elbaum, “Modeling

the cost-benefits tradeoffs for regression testing techniques”.

Software Maintenance. Proc. International Conference on,

IEEE, pp 204-213, 2002.

[2] D. M. Rafi,. K. R. K. Moses, K. Petersen, and M.V.

Mäntylä,.“Benefits and limitations of automated software

testing: Systematic literature review and practitioner survey”.

Proc. of the 7th International Workshop on Automation of

Software Test, IEEE Press, pp. 36-42, June 2012.

[3] D. Almog and Y. Tsubery, “How the Repository Driven Test

Automation (RDTA) will make test automation more efficient,

easier & maintainable”. Proceedings of the 8th India Software

Engineering Conference. Bangalore, India, ACM: 196-197,

Feb 2015.

[4] J. Fortue and R. Valerdi,, “A Framework for Reusing Systems

Engineering Products,” Syst. Eng. vol. 16, no. 3, pp 304-312,

2013.

[5] J. Parsons and C. Saunders, “Cognitive Heuristics in Software

Engineering Applying and Extending Anchoring and

Adjustment to Artifact Reuse,” IEEE Trans. Softw. Eng., vol.

30, no. 12, pp. 873-888, Dec 2012.

[6] G. Wang and J. Rice, “Considerations for a Generalized Reuse

Framework for System Development.” Proc. 21st INCOSE Int.

Symp., June 2011.

[7] C. E. Cagdas, K. Bhattacharya, J. Su, “Static Analysis of

Business Artifact-centric Operational Models,” 2007 IEEE Int.

Conf. on Serv. Oriented Comput. and Appl., June 2007, pp.

133-140.

45Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

 [8] A. H. Bagge, M. Bravenboer, K. T. Kalleberg, K. Muilwijk, E.

Visser, “Adaptive Code Reuse by Aspects, Cloning and

Renaming,” Tech. Rep. UU-CS, issue: 2005-031 (2005).

[9] V. Khusidman and D. M. Bridgeland: “A Classification

Framework for Software Reuse”, J. of Object Technol., vol. 5,

no. 6, pp. 43-61, July - August 2006.

[10] B. Boehm,. “Managing Software Productivity and

Reuse,” Computer, vol. 32, no. 9, pp. 111-113 1999.

[11] E. J. Weyuker, “Testing Component-Based Software: A

Cautionary Tale”. IEEE Softw., Vol. 15, No. 5: pp. 54-59,

1998.

[12] M. Poonawala, S. Subramanian, W. T. Tsai, R. Vishnuvajjala,

R. Mojdehbakhsh, L. Elliott, “Testing Safety-Critical Systems-

A Reuse-Oriented Approach” Proc. 9th Int. Conf. on SEKE,

June, 1997, pp. 271-278.

[13] J. McGregor, “Testing a Software Product Line,” Testing

Techn. in Softw. Eng. Springer Berlin Heidelberg, 2010.

 [14] J. Bosch, Design and Use of Software Architecture: Adopting

and Evolving a Product-Line Approach, Addison-Wesley,

2000.

[15] Condron. “A Domain Approach to Test Automation of

Product Lines,” Int. Workshop on Softw. Product Line Testing.

p 27, (2004).

[16] R. Tiwari. and N. Goel, “Reuse: Reducing Test Effort ACM,”

SIGSOFT Softw. Eng. Notes, pp 1-11, March 2013

[17] M. Gupta and M. Prakash, “Possibility of Reuse in Software

Testing,” 6th Annu. Int. Softw. Testing Conf. in India., 2006.

[18] D. Almog and T. Heart, "Developing the Basic Verification

Action (BVA) Structure Towards Test Oracle

Automation," IEEE 2010 Conf. on Computational Intell. and

Soft. Eng. (CiSE), 2010, pp. 1-4.

 [19] D. Almog and Y. Tesubery, “Reuse of Unit Test Artifacts –

Allow Us to Dream,” Agile Rec. Issue 16 pp. 49 – 52, Nov.

2013.

46Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

