
Identifying Error-Prone Transactions in Enterprise
Applications

Pavan Kumar Chittimalli, Sachin Patel, Vipul Shah
TCS Innovation Labs,

Tata Consultancy Services Limited,
Pune, India.

Email: {pavan.chittimalli, sachin.patel, v.shah}@tcs.com

Abstract—Independent testing teams use requirements as the
basis to develop test cases and automated test scripts. The projects
are executed under severe schedule constraints, due to which,
the testers have to focus their testing efforts on error-prone and
important features. Numerous source code based techniques for
identifying error-prone features/components have been developed.
However, they are based on source code analysis. Independent
testing teams rarely have access to source code and they find it
difficult to use code based techniques. In many cases, the domain
experts use Business Process Model and Notation (BPMN) to
represent the business requirements. In this paper, we propose
an approach to identify error-prone transactions in enterprise
applications using a BPMN. It helps in distinguishing between
source code errors and test script errors. We have adapted this
approach from an existing source code based technique. Our
experiments with the approach show that it can identify the
location of actual as well as seeded errors in both source code
and test scripts.

Keywords–Enterprise Application testing; BPMN; Stastical Bug
Isolation; Bug Localization

I. INTRODUCTION

Business systems evolve due to various reasons such as
correction of errors, adding new features, migrating to new
environments, and improving performance. These changes may
introduce infections [1], which propagate as the failure of the
test-case. Testers face severe schedule constraints and they
would like to spend their time on testing error-prone and
important features. This necessitates the use of prioritization
and fault localization techniques. There have been several fault
localization techniques [1][2][3][4], proposed based on cover-
age information of the program entities and test executions
logs. But teams which provide testing services do not have
access to the source code. The testing team gets requirements
in natural language or sometimes in formal notations like
BPMN [5]. They use these as the basis to develop test cases
and automated scripts [6]. In such scenarios, code based fault
localization techniques cannot be used. The automated test
scripts developed by testers are another source of error. It
is difficult to differentiate between a test script failure and a
source code failure. The manual trace analysis to identify test
script errors, takes considerable amount of time and requires
domain as well as technical expertise. This motivates us to
develop techniques [7] for identifying error-prone features and
test scripts of an application.

A. Motivating example

Listed below are two requirements of a billing application.
The business transaction assumes to create an order and
generate an invoice for it.

R1: If there Exists Promotions then apply the discount and
generate invoice. If there Exists No Promotion then
generate invoice without discount.

R2: In case of Full Payment, pay the generated invoice
amount. In case of Partial Payment, pay amount less
than generated invoice amount.

TABLE I. THE SAMPLE TEST-SCRIPTS FOR THE BILLING APPLICATION

Test Sequence

T1

1) Login
2) Create an order
3) If (promotions == 1) { apply discount generate invoice }
4) If (Payment Option==1) pay the amount
5) Logout

T2

1) Login
2) Create an order
3) If (promotions == 1) { apply discount generate invoice }
4) If (Payment Option==2) pay the partial amount
5) Logout

T3

1) Login
2) Create an order
3) If (promotions == 3) { generate invoice }
4) If (Payment Option==1) pay the amount
5) Logout

T4

1) Login
2) Create an order
3) If (promotions == 3) { generate invoice }
4) If (Payment Option==2) pay the partial amount
5) Logout

The tester has identified four test cases from these require-
ments. See test case T1 in Table 1. The first step is a Login with
customer details like name and password. In the second step,
Create an Order, displays the list of items to choose. The user
selects items from the specified list and creates an order. In the
third step, he checks for the option of any existing promotions
(i.e., promotions == 1). The corresponding discounts are
applied to the items ordered. Payment is done in the fourth
step. If the payment option is full payment (i.e., payment
option == 1) then pay the full amount and generate the
invoice accordingly. The last step is a Logout event, which
terminates the user session. Similarly, the other test-cases T2,
T3, and T4 are written as shown in Table 1 and executed with
corresponding test-data. The execution results in successful
execution (pass) for test-cases T1 and failed execution (fail)
for test-cases T2, T3, T4. The reason for the failure of test-
cases T3 and T4 is a script error at step 3. The script was

31Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

checking for promotions == 3 instead of promotions == 2,
which resulted in a failure of the test-case. The test-case T2

is failed because of source-code error in processing partial
payment task.

Analyzing such errors requires lot of effort and domain and
technical expertise. In this paper, we describe our technique
of adopting the existing source code based fault localization
techniques to a model based representation of the system
- BPMN. In Section 2, we describe the approach for fault
localization, followed by a description of two experimental
studies in Section 3. We conclude the paper with a discussion
of future work in Section 4.

II. OUR APPROACH

We choose BPMN as a representation for functional re-
quirements of the application. In this section, we first describe
the BPMN using our sample example and the later part of
the section will give the details of our approach based on
this representation. Our approach tries to address the following
research questions: 1) Can we adopt source code based fault
localization techniques to BPMN model entities? 2) Can we
distinguish between a script error and source code error?

The following subsections gives details about our approach.

A. Business Process Model

In BPMN terminology, a business process P is defined as:
P =< PE,F, s, E >. The process element (PE) in BPMN
representation can be a task, gateway, or a subprocess. A task
is used for defining a particular activity. The gateway is used
for decision making where each flow edge out of gateway
has a condition associated with it. There are or, nor, and, xor
variants of gateway exists as a representation. A subprocess is
a place-holder or callee point for another business process. A
flow element (an item of F) is an edge between two process
elements. s is the start element. An end can be normal end
of the process in which the return edge to callee exists. But
in the terminate end the called process never returns to callee
and ends the flow at that point.

For example, Figure 1 is a BPMN representation of the test
cases shown in Table 1.

B. Test case, Test script generation using BPMN

A scenario (si) in the process diagram is defined as a
path pai from start node s to end node e where e ∈ E.
A path is a sequence of process elements (pei) with flow
elements fi in between each of those process elements defines
a scenario si. Kholkar et al. [8] have proposed automating
functional testing using a BPMN representation of the business
application. We augment the standard BPMN representation
with pre and post test conditions to specify test conditions
and assertions. This results in a set of valid scenarios C for a
process representation. For each such valid scenario, a test-case
Ti is generated along with the scenario. For example, consider
BPMN shown in Figure 1 for the illustration. The model has
four feasible scenarios {s1, s2, s3, s4} resulting in four unique
test-cases {T1, T2, T3, T4}. The generated scenarios are shown
in the following Table 2.

Figure 1. Annotate the billing application using functional requirements.

TABLE II. THE SCENARIOS FOR THE EXAMPLE IN FIGURE 1.

Id Test Scenario
case

s1 T1 S → L → C → NPE → GI → FP → PrP1 → BZ → E
s2 T2 S → L → C → NPE → GI → PP → PrP2 → BU → E
s3 T3 S → L → C → PE → GI → FP → PrP1 → BZ → E
s4 T4 S → L → C → PE → GI → PP → PrP2 → BU → E

The test-case T1 is generated for the scenario s1 depicting
a scenario - “A registered user can create an order where
there no promotions exists, and generate an invoice with full
payment mode”. The same approach is described in our test
automation tool [9]. This end-to-end script generation using
BPMN representation of process diagrams are used in our
approach for test-script generation.

C. Test execution and Traceability matrix building

The test automation tool in [9] is capable of capturing
architectural, user interface, behavioral, and data models. This
test automation tool records execution sequences at entity level
for our process diagrams. The executions of these entities
are then mapped to the corresponding test-cases using the
execution traceability matrix. The empty cell in the traceability
matrix indicates that the test-case does not execute the entity
during the execution. The entry with a dark circle in the
traceability matrix indicates that the entity has been executed
during the test-case execution. The captured traceability matrix
can be used in various regression testing and debugging
activities [1][10][11]. The execution summary will result in
either success or failure of the test-case. This execution status
report (pass / fail information) and traceability matrix for the
example in Figure 1 is shown in Table 3.

D. Identifying error-prone transactions

During the execution of test-cases on the system results in
some failure and some successful executions. The cause of the
failure can not be located by looking only into the failure test-
cases [12]. In this subsection, we describe the adaptation of two
source-code based fault localization techniques for use with
BPMN. We first used Tarantula, a fault localization technique,
invented by Jim Jones et al. [1][11][12]. Tarantula utilizes the
pass / fail status of the test-case and the entities executed by
each of the test-case. The other fault localization technique we

32Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

used was Statistical Bug Isolation (SBI), a Liblit et al. [2]. In
our approach, we adapted Tarantula, SBI and extended them
to apply its metrics to entities in a BPMN model. Tarantula
has two metrics suspiciousness and confidence to locate the
error-prone entities in source code and hue and brightness to
visually locate them. SBI has a metric called Failure to locate
the error-prone entities in the source code. The suspiciousness
of an entity e is defined as the level of being faulty that caused
the failed test cases to fail. The value of suspiciousness metric
ranges from ‘0’ to ‘1’, where ‘0’, being least suspicious and ‘1’
being high suspicious. Given a test-suite T , the suspiciousness
metric for an entity e in Tarantula is defined as:

suspiciousness(e) =

failed(e)
#failed

passed(e)
#passed + failed(e)

#failed

=
%failed(e)

%passed(e) + %failed(e)
(1)

In (1), failed(e) represents the number of failed test-cases
in T that have been executed by the entity e and passed(e)
represents the number of passed test-cases in T that have
been executed by the entity e. #failed represents the total
number failed test-cases and #passed represents the total
number of passed test-cases in the test-suite T .The confidence
metric is defined to state the confidence of the suspiciousness
of the coverage entity that is being computed. The value of
confidence ranges from ‘0’ to ‘1’ where ‘0’ represents the
least confidence and ‘1’ represents the highest confidence, to
the suspiciousness value. The confidence metric of entity e is
defined as:

confidence(e) = max

(
passed(e)

#passed
,
failed(e)

#failed

)
= max

(
%passed(e)

100
,
%failed(e)

100

)
(2)

In (2), the variables are same as in (1). The max takes
the maximum value of fail/pass information available at that
entity.

The Failure of predicate P is defined as the probability
of an atomic predicate (P) is true for failing runs and false for
successful runs (i.e., Pr(Crash|P observed to be true)).

Failure(P) =
F (P)

S(P) + F (P)
(3)

The Failure(P) is expressed in the above equation where
S(P) denotes the number of successful runs in which P is
observed true, and F (P) denotes the failing runs in which P
is observed to be true.

For example, consider in the process model defined in
Figure 1. The test scenarios and test data are generated
from annotated business process models [8]. The test script
generation tool [13] is capable of capture and reply of the
application. It records the coverage information of the entities
in process model, which is used to build the traceability

TABLE III. TRACEABILITY MATRIX FOR THE TARANTULA
TECHNIQUE

Entity Name T1 T2 T3 T4 su
sp

ic
io

us
ne

ss

co
nfi

de
nc

e

Fa
ilu

re

Start (S) t t t t .5 1 –
Login (L) t t t t .5 1 –
CreateOrder (C) t t t t .5 1 –
gateway (G1) t t t t .5 1 –
NoPromotionsExist(NPE) t t 1 .6 .7
PromotionsExist (PE) t t .25 1 .3
GenerateInvoice (GI) t t t t .5 1 –
gateway (G2) t t t t .5 1 –
FullPayment (FP) t t .25 1 .3
PartialPayment(PP) t t 1 .6 .7
ProcessPayment (PrP1) t t .25 1 –
ProcessPayment (PrP2) t t 1 .6 –
BalanceZero (BZ) t t .25 1 –
BalanceUpdate (BU) t t 1 .6 –
End (E) t t t t .5 1 –

Execution Status P F F F√
× × ×

matrix. The matrix is used to calculate the suspiciousness and
confidence metrics. See the Table 3. In this case, test-case
{T1} has passed whereas {T2, T3, T4} have failed. Using the
coverage information and pass / fail information, the metrics
suspiciousness and confidence have been computed. The entity
Start (S) is executed by T1 (pass) , T2 (fail), T3 (fail), T4 (fail).
Using the Tarantula approach, we calculated the corresponding
suspiciousness for the Start entity as 0.5 and confidence as 1.
Similarly, Using SBI approach, we computed the metrics for all
other entities in the sample billing application. The rows 5, 10,
12, 14 in the Table 3 have the highest suspicious value ‘1’. For
entity NoPromotionsExist (NPE) (shown as suspicious in
row 5) has been written wrongly in the test-cases T3 and
T4 and categorized as test-script fault. The test-conditions
PartialPayments (in row 10) and BalanceUpdate (in row
14) are with highest suspiciousness value (1) with a confidence
value of 1. But the conditions do not have any faults so they are
not classified as errors and task processPayment (PrP2) (in
row 12) is categorized as source code error in implementation
of processing the payments. Similarly the rows 5 and 10 show
the highest Failure (SBI metric) as ‘.7’ in failing predicates.
The first predicate is failed due to test-script error and second
failed due to source-code error in processing payments.

While the metrics help in identifying the error-prone
BPMN entities, a visual representation would make it much
easier to locate [12]. To achieve this feature, we used the
color computing metric used in Tarantula. This technique uses
Hue, Saturation, and Brightness (HSB) from red to green color
range. We use hue metric to compute the color range specified
in equations shown below. The colorrange is defined as 0.33.

hue(e) = 1− suspiciousness(e)

=
%passed(e)

%passed(e) + %failed(e)
(4)

color(e) = color(red) + hue(e) ∗ colorrange (5)

33Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

For example, see the Figure 2. The entity colored in red
(NoPromotionsExist) is a highest suspicious entity. Analysis of
the BPMN and test scripts reveal that it is a test script error.
Instead of writing a test condition as promotions == 2, the
condition has been mentioned as promotions == 3. The test-
script and source code faults are shown in clouded area in
Figure 2.

Figure 2. Using Tarantula visualization technique on billing application given
in Figure 1.

The other suspicious entities shown in Figure 2 are Par-
tialPayments(PP), InvoiceBalanceUpdated(IBU), ProcessPay-
ments(PrP2). On the careful observation of entities PP and
IBU, we found that there is no script error exists. Hence the
suspicious task PrP2 is considered as source code error.

III. EXPERIMENTAL STUDIES

We evaluated the Tarantula [1] and Bin Liblit’s approach
[2] of SBI technique (Now, Co-operative Bug Isolation) along
with our test generation toolset [8][13][9]. The systems under
test were two open source enterprise applications, Jbilling and
Mercury. Jbilling is an open-source billing system. We have
configured it for a hardware construction material business.
The process model for this application has 10 processes and
108 entities. 30 test-cases have been identified for Jbilling.
The Mercury application is a online flight reservation system.
The process model for this application has 3 processes and 29
entities. 13 test-cases have been identified for Mercury. The
objective of our study is to 1) to locate parts of the business
process that are error-prone 2) to distinguish between a source-
code error and test-script error.

A. Study-1

We executed the identified test cases on the two applica-
tions. The results of the execution are shown in Table 4. In
Table 4, the first column represents the subject. The second
column shows the number of failures detected by Tarantula
and SBI techniques. The third column shows the number of
code failures detected by Tarantula and SBI. The fourth column
shows the test-script failures detected by Tarantula and SBI
respectively. The color coding provided by the tool helps locate
the errors in source code, as well as test scripts. A red colored
edge represents a test script error as this transition is caused
by the test script and not the source code. If a fault is not

test-script error then, we conclude it as a source-code error
and point to the corresponding task in the process model. We
located one such fault in the Jbilling application. Consider the
first row in Table 4 for Jbilling subject. Tarantula has detected
6 faults, of which, 5 failures are source code failures and 1
failure is a test-script failure. Similarly, SBI has detected the
same for Jbilling application.

TABLE IV. THE DETAILS OF THE STUDY-1 IN EXPERIMENTATION.

Subject Total Code Test-script
Failures Failures Failures

Tarantula SBI Tarantula SBI Tarantula SBI
Jbilling 6 6 1 1 5 5
Mercury 3 3 0 0 3 3

B. Study-2

In this study, we used seeded faults by generating more
test scenarios. These additional seeded faults are created by
mutating the operators in the process flow conditions of the
process diagrams. The edges (Flow Elements) in BPMN are
associated with the flow conditions. We have selectively taken
these conditions for seeding. We applied operator mutation on
relational operators (>,<,≥,≤), equality operators (=, 6=).
We modified the test scenario generation described in section
2-B to address this. The objective of this study is to see if the
mutants are killed or caught by the test scripts. We observed
that all mutants have been caught as shown in the Table 5.

IV. RELATED WORK

Most fault localization techniques in the literature have
been based on code coverage. The common method has been
to compare the coverage of failure runs and passing runs to de-
termine the location of the faults. Jim Jones et al. [1][11][12]
have done extensive research in the field of fault localization
based on coverage of failure and passing runs. Their tool
Tarantula uses the coverage information of entities at statement
level to compute suspiciousness, confidence, hue, and color
metrics. This tool is capable of showing the faults using
visualization. But this tool was developed to locate source code
faults. Liblit et al. [2] have proposed fault localization based
on the coverage of predicates in failing and passing runs by
sampling failure predicates. This is a lightweight technique
as it uses very little program instrumentation compared to
the Tarantula technique. Tarantula technique is more useful
in in-house debugging whereas the SBI technique can be
used in field debugging. Zeller et al. [4] have proposed a
light weight instrumentation technique to capture the method
call sequence coverage for locating the faults in java pro-
grams. Comparing the object-specific sequences predicts the
defects better than just simply comparing the coverage. Naoya
Maruyama and Satoshi Matsuoka [3] have proposed a fault
localization technique in large computing systems using traces
which capture function calls. They derive a model from the
traces and compare them with failure traces to find the defect
and computes suspect score to that failure.

In practice, the functional test teams carry out system and
regression tests as independent test teams, treating the systems
as a black box. Test teams prepare test plans and test scenarios
from functional requirements that are available informally in
natural language or sometimes semi-formally in notations like

34Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

TABLE V. THE DETAILS OF THE STUDY-2 IN EXPERIMENTATION.

Sub. No.of Total Code Test-script Mutants
Test Failures Failures Failures Caught
cases Tar SBI Tar SBI Tar SBI Tar SBI

1 50 26 26 1 1 25 25 20 20
2 21 3 3 0 0 11 11 8 8

BPMN. Test scripts are manually or automatically generated
from such models. The above fault localization techniques
[1][11][12] that take into account coverage information of the
program entities and test executions logs have been proposed.
Independent test teams however do not have access to code
nor the knowledge of the code to understand and interpret the
results provided by current techniques. One of the additional
challenges faced by the test teams, especially during the first
test run in each release, is that the new test scripts may be
faulty, or older test scripts may become out of sync with the
requirements. A significant amount of time and effort is spent
to determine if the faults are in the test scripts or source code.
Further, with the advances happening in model-based testing,
it is necessary to investigate if the code-based techniques
developed so far have an utility in the model-based world.
The work done in this paper is one such exploration.

V. CONCLUSIONS AND FUTURE WORK

The techniques applied in this paper have been extensively
used with source code entities. We have applied them for a
non-executable, model based representation. In this paper, we
proposed BPMN as a system representation and extended the
existing Tarantula, SBI techniques to identify error-prone trans-
actions in an enterprise application. We also used Tarantula’s
visualization metric to locate faults in BPMN representation
of the system.

Our preliminary experiments on in-house examples and
openly available subjects showed encouraging results and
caught all script and source code errors. These results have
been manually verified. However, we have not applied this
approach on a real-time project. A dependence fault, which
appears only after fixing root faults, is not handled in current
approach. Our assumption for locating source code fault has
not verified in presence of dependence faults. We would like
to apply this technique on bigger and more complex systems.
Another possibility is to use test execution history to guide the
test selection. Further studies will be required to understand
the relationship between code-based and model-based metrics.

REFERENCES

[1] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula
automatic fault-localization technique,” in Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineer-
ing, ser. ASE ’05. New York, NY, USA: ACM, 2005, pp. 273–282.

[2] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and M. I. Jordan, “Scalable
statistical bug isolation,” in Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI ’05. New York, NY, USA: ACM, 2005, pp. 15–26.

[3] N. Maruyama and S. Matsuoka, “Model-based fault localization in
large-scale computing systems,” in Parallel and Distributed Processing,
2008. IPDPS 2008. IEEE International Symposium on, April 2008, pp.
1–12.

[4] V. Dallmeier, C. Lindig, and A. Zeller, “Lightweight defect localization
for java,” in Proceedings of the 19th European Conference on Object-
Oriented Programming, ser. ECOOP’05. Berlin, Heidelberg: Springer-
Verlag, 2005, pp. 528–550.

[5] “Business Process Model And Notation (BPMN),”
http://www.omg.org/spec/BPMN/, [Online; accessed 04-July-2015].

[6] Q. Yuan, J. Wu, C. Liu, and L. Zhang, “A model driven approach toward
business process test case generation,” in Web Site Evolution, 2008.
WSE 2008. 10th International Symposium on, Oct 2008, pp. 41–44.

[7] P. K. Chittimalli and V. Shah, “Fault localization during system testing,”
in Proceedings of International Conference on Program Comprehension
(ICPC), May 2015.

[8] D. Kholkar, N. Goenka, and P. Gupta, “Automating functional testing
using business process flows,” in Proceedings of Workshop on Advances
in Model-Based Software Engineering, ser. ISEC (2011), 2011, pp. 102–
110.

[9] S. Patel, P. Gupta, and P. Surve, “Testdrive - A cost effective way to
create and maintain test scripts for web applications,” in Proceedings
of the 22nd International Conference on Software Engineering &
Knowledge Engineering (SEKE’2010), Redwood City, San Francisco
Bay, CA, USA, July 1 - July 3, 2010, 2010, pp. 474–476.

[10] P. K. Chittimalli and M. J. Harrold, “Regression test selection on system
requirements,” in Proceedings of the 1st India Software Engineering
Conference, ser. ISEC ’08. New York, NY, USA: ACM, 2008, pp.
87–96.

[11] J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of test
information to assist fault localization,” in Proceedings of the 24th
International Conference on Software Engineering, ser. ICSE ’02. New
York, NY, USA: ACM, 2002, pp. 467–477.

[12] J. A. Jones, “Semi-automatic fault localization,” Ph.D. dissertation,
Georgia Institute of Technology, Atlanta, Georgia, USA, April 2008.

[13] P. Gupta and P. Surve, “Model based approach to assist test case
creation, execution, and maintenance for test automation,” in Proceed-
ings of the First International Workshop on End-to-End Test Script
Engineering, ser. ETSE ’11. New York, NY, USA: ACM, 2011, pp.
1–7.

35Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

