
An Experimental Comparative Study of Fault-Tolerant Architectures 

Imran Wali, Arnaud Virazel, Alberto Bosio, Patrick Girard 
LIRMM – University of Montpellier / CNRS 

Montpellier, France 
e-mail: {wali, virazel, bosio, girard}@lirmm.fr 

 
 

Abstract—This paper provides a comparative study based on 
experiments performed on four similar fault-tolerant 
architectures intended to reduce errors caused due to faults in 
combinational logic parts of microelectronic circuits and 
systems. The compared merits include area, power, 
performance and fault tolerance capability. The experimental 
results show that the improved Hybrid Fault-Tolerant 
Architecture can handle transient faults as effectively as 
Partial-TMR and exhibits permanent fault tolerance capability 
similar to that of Full-TMR. It offers 11.8% and 20.5% power 
saving compared to Partial and Full-TMR respectively. 
Furthermore, it can handle the fault accumulation effect better 
than TMR, hence an ideal candidate for low-power long 
duration mission-critical applications. 

Keywords-fault tolerant architecture; fault tolerance 
capability assessment. 

 

I.  INTRODUCTION 
Complementary metal-oxide semiconductor (CMOS) 

device scaling is posing reliability challenges to future 
microelectronic circuits and systems [1]. Other alternative 
and evolutionary technologies are also facing reliability 
issues in their early development life cycles. Design 
architects must address the concern of preventing reliability 
from becoming a bottleneck for the development of high-
performance, low-power systems, through the use of fault-
tolerant techniques. 

These techniques are commonly used to tolerate on-line 
faults, i.e., faults that appear during the normal functioning 
of the system, irrespective of their transient or permanent 
nature [2]. They use redundancy, i.e., the property of having 
spare resources that perform a given function and tolerate 
faults in the combinational [3]-[5] and/or sequential [6]-[9] 
part of the circuit. These techniques are generally classified 
by the type of redundancy used. Basically, three types of 
redundancy are considered: information, temporal and 
hardware [2]. 

Many studies in literature like [10]-[12] provide 
evaluation results within the scope of the architecture 
proposed therein. However, it is essential that these similar 
schemes be comprehensively compared using identical set of 
experiments and conditions in order to have a meaningful 
contrast. For any fault-tolerant architecture, the four merits 
that are essential to be analyzed are its area, power and 
performance overheads and most importantly its fault 
tolerance capability. Among these four merits area, power 
and performance can be evaluated using conventional circuit 

analysis tools. Unlike these attributes of a fault-tolerant 
architecture, fault tolerance capability cannot be evaluated 
using standard circuit analysis methodologies, but only by 
observing system behavior in the presence of faults [13]. 

In this paper, we present a comprehensive experimental 
comparative study of four fault-tolerant architectures with 
similar fault-tolerance capability in the context of spatial and 
temporal characteristics of faults and the architectural cost 
merits, which include area and power consumption. These 
architectures include Partial Triple Modular Redundancy 
(Partial-TMR) and Full Triple Modular Redundancy (Full-
TMR) [2], Hybrid Fault-Tolerant (HyFT) [14][15] and 
improved Hybrid Fault-Tolerant (iHyFT) [16] architectures. 
For assessing the merits of these fault-tolerant architectures, 
we implement them on some ITC’99 benchmarks and use a 
Gate-level simulation based fault-injection framework to 
quantitatively assess and compare the fault tolerance 
capability of these schemes. 

The remaining parts of this paper are organized as 
follows. Section 2 highlights the problematic of error 
occurrences in combinational logics and storage elements. 
Section 3 presents the fault-tolerant architectures under 
comparison. Section 4 details the experimental methodology 
while Section 5 gives results in terms of area, power, 
performance and fault-tolerance capability. Finally, Section 6 
concludes the paper and provides some perspectives. 

 

II. PROBLEM STATEMENT 
Lidén et al. in 1994 experimentally estimated that only 

2% of bit flips in memory elements also known as Single 
Event Upset (SEU) were caused by particle-induced 
transients or Single Event Transients (SET) generated in and 
propagated through Combinational Logic (CL). The rest 
were due to direct particle strike in latches. Their 
experiments involved using a 1µm CMOS process at 5MHz 
[17]. Since then physical gate-length has downscaled up to 
50 times, supply voltages have dropped to 0.9 V and 
operating frequency has shown a thousand fold increase [1]. 
This massive change in technology has resulted in greater 
sensitivity of memory elements to high-energy particle, but 
the effects are more pronounced on CL networks [18]. A 
more recent work uses a probability model to estimate that 
the susceptibility to CL circuits to SET nearly doubles as the 
technology scales from 45 nm to 16 nm [19]. As a result 
research attention drawn towards developing techniques to 
limit Soft Error Rate (SER) in CL is becoming comparable 
to effort made in protecting state elements. Figure 1 
symbolically illustrates the share and types of problems 

1Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle



arising from sequential logic and combinational logic parts 
of digital circuit. 

 
Figure 1.  Error occurrences in combinational logics and storage elements 

 

III. FAULT-TOLERANT ARCHITECTURES 
Several hardware fault-tolerant architectures have been 

proposed in the literature [20]. The classical hardware 
redundancy architecture is the N Modular Redundancy 
(NMR). A NMR structure is a fault-tolerant architecture 
based on N modules performing the same function. The 
outputs of these modules are compared by using a majority 
voter. The case of N = 3 is called TMR and has been widely 
studied and used in practical system applications [2][3]. 

 
(a) 

 

 
(b) 

Figure 2.  TMR Architectures (a) Partial-TMR and (b) Full-TMR 

There are different methods to implement TMR 
architecture for logic circuits, depending on which part of 
this circuit is triplicated. In Figures 2.a and 2.b, we present 
two TMR structures that will be compared with the hybrid 
fault-tolerant architecture. The first implementation (Partial-
TMR, Figure 2.a) consists of triplicating only Combinational 
Logic (CL) part of the logic circuit while the second one 

(Full-TMR, Figure 2.b) requires triplications of both 
combinational and sequential parts. 

While having smaller area overhead, the partial-TMR 
solution cannot tolerate SEUs or permanent faults in pipeline 
registers. This problem can be solved using full-TMR 
solutions by triplicating the registers. Note that in full-TMR 
input registers are also triplicated so that errors caused by 
each register can be tolerated.  

The second fault-tolerant architecture under comparison 
is the HyFT scheme presented in [14, 15]. This architecture 
employs information redundancy (duplication/comparison) 
for the error detection, timing redundancy (re-computation) 
for the transient error correction and hardware redundancy 
(re-configuration) for the permanent error correction. As 
presented in Figure 3.a, the hybrid architecture employs three 
copies of CL (CL1, CL2 and CL3) modules. The input 
demultiplexer and the output multiplexer are used to select 
two running CL copies and to put the third CL copy in 
standby mode. 

 
(a) 

 

 
(b) 

Figure 3.  HyFT Architectures (a) HyFT and (b) iHyFT 

The HyFT architecture is driven by a control logic 
module, which is divided in two parts. The first part consists 
of a state-machine that controls different configurations of 
the architecture, i.e., it decides which two CL copies to run 
in parallel. The second part controls the comparator, pipeline 
register, demultiplexer and multiplexer. For error detection it 
uses the pseudo-dynamic comparator presented in [21]. It 
combines a dynamic transition detector and a static 
comparator in order to detect hard, soft and timing errors 

1 P. Liden. et al, [FTC1994] 
2 J. Velamala . et al, [DAC2011] 

3/22 

20th IEEE European Test Symposium  

≈50% 

D       Q 

          Q’  

D       Q 

          Q’ 

≈50% 

SET 

Combinational Logic Storage 
Elements 

Soft Errors 

Delay 
Faults 

Permanent 
Fault 

��

��
��

���
�	

��
�

��

����
�

����
�

����
�

��

�
��
��

���
�	

��
�

�

��

��

��
��

���
�	

��
�

��

��

��
��

���
�	

��
�

��

��

��
��

���
�	

��
�

��

��

�
��
��

���
�	

��
�

��

��

�
��
��

���
�	

��
�

��

��

�
��
��

���
�	

��
�

��

����
�

����
�

����
�

��

��

���������������
��
�	�

��

��
��

���
�

���
��
��

��
���

���
�

��

���
�	
��
� ����

�

����
�

����
�

��	���
����

��

������	�� 
	�

�
��
��

���
�

���
��
�

��

���������������
��
�	�

��

��
��

���
�

���
��
��

��
���

���
�

��

���
�	
��
� ����

�

����
�

����
�

��	���
����

��

������	�� 
	�

�
��
��

���
�

���
��
�

2Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle



during a comparison-window as shown in the timing diagram 
of Figure 4.a. The comparison takes place only during these 
brief intervals of time represented as red shaded regions with 
doted outline in Figure 4. The timing of comparison-window 
is defined by the high phase of a delayed clock signal ‘dc’. 

 
(a) 

 
(b) 

Figure 4.  Comparison-window timing for (a) HyFT and (b) iHyFT 

Figure 3.b presents the improved version of the HyFT 
(iHyFT) architecture, which resulted as an attempt to 
improve the error detection capability and to reduce the 
performance overhead [16]. This improved scheme achieves 
aforementioned objectives by using a comparison-window 
across the setup-hold window as shown in Figure 4.b. With 
this comparison timing it can intrinsically detect erroneous 
signal transients that are more likely to be captured in the 
output register. The comparison-window timing was made 
possible by changing the placement of the comparator such 
that the comparator compares the output of two running CL 
copies directly from the multiplexer as shown in Figure 3.b. 
The ability to act against only the potentially fatal SETs not 
only reduces the number of fail-silent faults but also 
improves the performance. 

 

IV. EXPERIMENT METHODOLOGY 
Experiments are performed to compare the merits of the 

four fault-tolerant architectures presented in Section III. Each 
architecture is applied to a few of the ITC’99 benchmark 
circuits and are synthesized using NanGate 45nm Open Cell 
Library [22]. The area figures are obtained from the 
synthesized designs and power estimates are obtained by 
taking into account the switching activity generated by back-
annotated gate-level simulations. The workload for 
simulation is a set of patterns optimized for stuck-at fault 
detection. The reason for using such a workload is to obtain 
switching activity distributed in all parts of the circuit. 

The performance overhead is evaluated in two different 
aspects. Firstly, in terms of temporal performance 
degradation, which is basically the additional delay in the 
data-path due to the fault-tolerant architecture (e.g., voter 

delay in TMR), and secondly in terms of error recovery 
penalty under a certain fault rate.  

The fault-tolerance capability of the four schemes is 
estimated by performing fault injection in the combinational 
logic parts of the circuits, by using a gate-level simulation 
based fault-injection framework.  The framework uses the 
switching activity file to extract the list of all possible fault-
locations. From this list it randomly selects a subset of 
locations for fault-injection. To each fault location in this 
subset, it randomly assigns a fault-injection time within the 
limits of simulation time duration and a SET duration also 
randomly selected from the range of typically anticipated 
SET pulses, i.e. from 0.25ns to 1.25ns [23]. Once the fault 
list is prepared, fault injection campaigns that comprise a 
number of simulations are run. Either a single SETs or a 
permanent stuck-at fault is injected per simulation by 
forcing the signals at the specified location, at the 
corresponding time indicated by the fault list. 

During the fault injection campaign a fault-injection 
report is generated which contains the cycle-by-cycle 
outcome of each simulation. At the end of fault-injection 
campaign the fault-injection report is analyzed to classify 
the faults according to the fault effects into three categories: 

1. Silent faults: the faults that have no impact on the 
workload computation nor are detected by the fault-
tolerant architecture. 

2. Corrected faults: the faults that are detected and 
corrected by the fault- architecture in place. 

3. Fail-Silent fault: the faults, which result in a wrong 
computed result but are not detected by the fault-
tolerant architecture. 

The ratio of the number of fail-silent faults to the 
number of total injected faults gives us a figure to compare 
the fault tolerance capability of the four different schemes. 

 

V. COMPARATIVE ANALYSIS 

A. Area and Power Overhead 
Table I gives the average area and power for the 

BaseLine (BL) circuits and the fault-tolerant schemes based 
on the results of their implementation on six ITC’99 
benchmark circuits. It also gives their associated overheads 
of area and power with the BL circuits as reference.  

 

TABLE I.  AREA AND POWER ESTIMATION RESULTS 

 
Avg 
Area 
(µm2) 

Avg Area 
overhead  

(%) 

Avg Power 
(µW) 

Avg Power 
overhead  

(%) 
BL 1231.00 0 351.50 0 

Partial-TMR 3141.59 155.02 971.66 173.32 
Full-TMR 3781.32 206.93 1077.74 206.09 

HyFT 3739.43 213.24 859.67 157.36 
iHyFT 3739.43 213.24 856.49 156.83 
 
The most obvious area and power overhead figures are 

those of Full-TMR. As it is based on triplicating the CL 

�  �

��

�������
�������

dc�
�  �

clk�
�
�
�

����
���	��
�������

��

�������
�������

�  �

dc�

clk�
�
�
�

����
���	��
�������

3Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle



blocks and also the registers, it occupies a little more than 
three times the area and consumes a few microwatts over 
BL. This extra area and power is due to the voter in the Full-
TMR scheme. 

The average percentage of area overhead values in Table 
I show that the partial-TMR implementation consumes less 
in terms of area that is about 155%. The two most expensive 
architectures in terms of area are HyFT and iHyFT with an 
average overhead of around 213% on average for the 
considered set of benchmark circuits. 

 As far as the power consumption is concerned HyFT and 
iHyFT architectures are most efficient based on the average 
power overhead figure of about 157% in Table I. Partial-
TMR stands at 173%, making Full-TMR the least power 
efficient scheme. This high power consumption is accounted 
to the triplication of sequential elements. On the other hand 
HyFT and iHyFT save power by having one CL copy in 
stand-by all the time. 

The graphs in Figure 5 show the percentage increase in 
area (Figure 5.a) and power (Figure 5.b) of the BL circuits to 
implement the four fault-tolerant architectures discussed in 
Section III. Note that the benchmark circuits are arranged in 
ascending order of their size from left to right on X-axis to 
illustrate the impact of the size of CL block on the area and 
power overheads. The dotted lines in Figure 5 represent the 
average percentage figures of area and power overheads for 
the corresponding fault-tolerant architecture implementation. 

 
(a) 

 
(b) 

Figure 5.  Impact of CL block size on (a) Area and (b) Power Overhead 

An important observation that can be made in the graphs 
of Figure 5 is that, the area and power overheads of both 
partial and full-TMR are relatively independent of the size of 
CL block to which they are applied. However, these 
overheads for HyFT and iHyFT change with different sizes 
of benchmarks such that the area and power overheads of 
HyFT and iHyFT decrease with the larger benchmarks. This 
observation also gives an idea of the anticipated impact on 
the area and power overheads for CL blocks larger than the 
benchmarks considered in this study. Although the average 
area overhead of HyFT and iHyFT is higher than other 
considered fault-tolerant architectures but with large CL 
blocks we can expect it to decrease. Where as the power 
overhead of HyFT and iHyFT, which is already the 
minimum, tends to further reduce with larger CL blocks. 

 

B. Performance 
The first evaluated measure of performance is the 

temporal performance degradation. In partial-TMR and full-
TMR, it is defined by the delay of voter circuit in the data-
path. In case of HyFT and iHyFT it is due to the delay of 
shadow latch multiplexers in input register responsible for 
rollback and the reconfiguration multiplexer and 
demultiplexer. The comparator being outside the critical path 
does not contribute to the temporal performance degradation. 
Using static timing analysis the temporal performance 
degradation for partial-TMR and full-TMR was estimated to 
be 0.73% for a 100MHz operation. The same for HyFT and 
iHyFT was found to be 9.7% without any design 
optimization. 

The figures that can give us a measure of the second 
considered performance aspect, i.e. the error recovery 
penalty, can be interpreted from the transient fault injection 
results presented in Table II. These results are obtained by 
injecting transient faults at an average rate of 250K 
faults/second.  

TABLE II.  TRANSIENT FAULT INJECTION EXPRIMENT RESULTS 
SUMMARY 

 Avg % of 
Silent faults 

Avg % of 
Corrected faults 

Avg % of  
Fail-silent faults 

BL 92.51% 0.00% 7.49% 
Partial-TMR 99.97% 0.00% 0.03% 
Full-TMR 100% 0.00% 0.00% 

HyFT 92.46% 7.26% 0.28% 
iHyFT 94.10% 5.86% 0.04% 

 
It can be observed in Table II that for partial-TMR and 

full-TMR the percentage of corrected faults is zero. This is 
because; TMR is an error masking technique rather than an 
error detection and correction one and does not indicate the 
presence of error. With no provision of identifying the 
corrected faults, they are kept within the category of silent 
faults in our analysis. It also indicates that the error recovery 
penalty for TMR is zero as it corrects errors by masking 
them instead of undergoing a reconfiguration and re-
computation cycle. It can also be seen in Table II that HyFT 
corrected on average 7.26% of injected faults. For each 
detected and corrected SET the HyFT undergoes a recovery 

����!�&� ����#�&�

��#�!�&�

��#���&�
������&� �� �#"&�

�� �!�&� �� �!�&� ��!���&�
�� ��#&� �� �"�&�

��!�#�&�

��"���&�

��"���&�

������&�

������&� ����#!&�
�#��"�&�

������!!�� &�

�������"�# &�
������� ��!&�

������&�

������&�

�!����&�

�#����&�

������&�

������&�

������&�


��� 
��� 
� � 
�"� 
��� 
���

��
��
��
��
��
��
��
�&

��

������������
����������
��������
����������	����
�������	������
������
����

�	��	������

���������

�����


�����

����	���

� !��!&�
� ����&�

�!!���&�

�!���#&�

�!#��#&�
�!"� �&�

�� ��"&�

����!�&�

�� �� &�

���� �&�

����"�&�

�� ���&������ &�

� #��#&�

������&�

����"�&�

��!���&�
�� �� &�

�����#&�

� ��! &�

���� �&�

��"���&� ����"�&�

������&�

����� %"�""*�

�����!�$��'*�

����� #%�"$*�

����� #$�&"*�

������&�

������&�

������&�

������&�

� ����&�

�!����&�

�"����&�

�#����&�

������&�

������&�

������&�


��� 
��� 
� � 
�"� 
��� 
���

��
�
	�
��
�	
�

	�
��
�*

��

�	��
������
�������	��������	���������	���
��
	�����	��
�����	��������
���

�	��	������

���������

�����


�����

����	���

4Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle



phase that takes 2 additional cycles [14]. According to these 
figures, HyFT spends around 14.52% of total computation 
time on recovering from potentially erroneous states. On the 
other side, iHyFT spends 11.72% of time in recovery phase 
under the same fault rate. 

 

C. Fault-tolerance capability 
1) Quantitative analysis 

To compare the fault-tolerance capability of different 
architectures we analyze them in terms of the percentage of 
faults that resulted in a fail-silent outcome among the total 
number of injected faults. Table III gives the transient fault-
injection experiment results.  

TABLE III.  TRANSIENT FAULT INJECTION RESULTS 

 
Percentage of fail-silent faults (%) 

BL Partial-
TMR Full-TMR HyFT iHyFT 

b01 7.49 0.00 0.00 0.37 0.12 
b02 8.11 0.11 0.00 0.28 0.11 
b03 8.18 0.03 0.00 0.26 0.03 
b05 7.11 0.02 0.00 0.21 0.00 
b06 7.07 0.04 0.00 0.33 0.09 
b08 7.45 0.05 0.00 0.33 0.08 

Average 7.56% 0.03% 0.00% 0.28% 0.04% 
 
Table III shows that the incorporation of each fault-

tolerant architecture into the BL circuit reduces the 
percentage of fail-silent faults to a different extent. The 
percentage of fail-silent faults that was originally 7.56% in 
BL is brought down to 0.03% by partial-TMR. A through 
analysis of the fault-injection report revealed that these 
0.03% faults were among those which were injected at the 
inputs of CL blocks and effected all the three TMR copies in 
the same way, thus resulted in a common-mode failure. Full-
TMR on the other hand did not encounter this problem 
because of it construction and turned out to be the most 
effective by tolerating the effects of all the injected transient 
faults. 

In case of HyFT 0.28% of injected faults escaped 
detection and effected the results. With further investigation 
we found out that these fail-silent outcomes were not linked 
to a specific location as in case of partial-TMR, but escaped 
detection due to their specific timing characteristics. Static 
timing analysis showed that these 0.28% fail-silent faults 
were among those that were injected at a time such that their 
effects appeared at the inputs of register during the clock 
setup-hold window. Since in HyFT the comparison-window 
does not overlap the setup-hold window as discussed in 
Section III and shown in Figure 4.a, these transient faults 
managed to affect the data during captured but escaped 
detection by missing the comparison-window. This problem 
of non-overlapping setup-hold window and comparison-
window was solved by iHyFT and therefore significant 
reduction in the percentage of fail-silent faults is observed in 
iHyFT of about 0.04%. 

Similar observations can be made form the permanent 
fault injection results shown in Table IV. An average 1.36% 
of faults injected in partial-TMR result in fail-silent outcome, 

mainly due to the common-mode effect. Full-TMR and 
iHyFT show nearly complete tolerance against permanent 
faults and in HyFT 0.08% faults escaped detection mainly 
due to the setup-hold window and comparison-window 
separation. 

 

TABLE IV.  PERMANENT FAULT INJECTION RESULTS 

 Percentage of fail-silent faults (%) 
BL Partial-TMR Full-TMR HyFT iHyFT 

b01 98.37 2.37 0.00 0.15 0.02 
b02 96.28 2.03 0.00 0.06 0.00 
b03 98.15 1.38 0.00 0.06 0.00 
b05 97.84 0.50 0.00 0.08 0.00 
b06 97.23 0.66 0.00 0.13 0.00 
b08 98.03 2.34 0.00 0.07 0.00 

Average 98.03% 1.36% 0.00% 0.08% 0.00% 
 

2) Qualitative analysis 
Some aspects of fault-tolerance capability that have an 

implication on the lifetime reliability of the circuit cannot be 
inferred from the fault injection experiment result discussed 
in the previous section. Therefore, we analyze them 
qualitatively in this section.  

When a circuit enters into the wear-out phase of it’s 
lifetime, most of the wear-out mechanisms show early 
symptoms as increasing signal propagation latency prior to 
inducing permanent device failures [24]. The ability of the 
HyFT and iHyFT architectures to detect these early 
symptoms and act upon by causing reconfigurations reduces 
the aging effects on the system by distributing the stress on 
two of the three CL copies. The capability of selective 
sparing helps reduce the rate of failures and increase the life 
span of circuit parts that embed such fault-tolerant 
architecture.  

Another qualitative aspect of fault-tolerance capability is 
fault accumulation effect that distinguishes both considered 
versions of TMR from HyFT and iHyFT. TMR is an error 
masking architecture that does not indicate the presence of 
error, instead just corrects them until only one computational 
copy exhibits an error. When faults accumulate due to wear-
out and multiple copies start getting affected, TMR fails to 
correct them and the lack of any provision of indicating error 
ends up in fail-silent outcomes.  Whereas HyFT and iHyFT 
are able to correct errors until two faulty copies manifest the 
effect of fault at the output in a same way at the same time, 
which is very less likely. In all other possible scenarios 
HyFT and iHyFT, if cannot correct can at least indicate the 
presence of error and continue fail-safe operation. 

 

VI. CONCLUSION 
In order to produce a meaningful comparison of the state-

of-art fault-tolerant architectures, we present herein an 
experimental analysis based on standard circuit analysis tools 
and a simulation based fault-injection framework to obtain 
results in terms area, power and performance overheads and 
fault tolerance capability. The results show that the improved 
Hybrid fault-tolerant architecture saves notable amount of 
power, while offering similar robustness improvements as 

5Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle



TMR. In addition it’s lifetime reliability improvement and 
ability to deal with fault accumulation effect makes it 
feasible for low-power mission critical applications.  

We intend to continue the analysis with larger benchmark 
circuits to validate the projected effectiveness of HyFT and 
iHyFT when used with larger combinational logic blocks. 
We also aim to perform multiple fault injection campaigns to 
quantitatively access the lifetime reliability improvement and 
the fault accumulation effects in different fault-tolerant 
architectures. 

 

ACKNOWLEDGMENT 
This work has been partially funded by “National Centre 

for Scientific Research” (CNRS) under the framework of 
“International Associated Laboratory - French-Italian 
research Laboratory on hardware-software Integrated 
Systems” (LIA - LAFISI). 

 

REFERENCES 
[1] Semiconductor Industry Association, “International 

Technology Roadmap for Semiconductors (ITRS) 2013”, 
Retrieved Aug, 2015 from 
http://www.itrs.net/reports.html2013. 

[2] I. Koren, and C. Krishna, “Fault Tolerant Systems”, Morgan 
Kauffman Publisher, 2007. 

[3] R. E. Lyons and W. Vanderkulk, “The Use of Triple-Modular 
Redundancy to Improve Computer Reliability,” IBM Journal 
of Research and Development, Vol. 6, Issue 2, April 1962, pp. 
200-209. 

[4] J. Vial, A. Bosio, P. Girard, C. Landrault, S. 
Pravossoudovitch, and A.Virazel, “Using TMR Architectures 
for Yield Improvement,” Int. Symp. on Defect and Fault-
tolerance in VLSI Systems, Oct 2008, pp. 7-15. 

[5] J. Vial, A. Virazel, A. Bosio, P. Girard, C. Landrault, and 
S.Pravossoudovitch, “Is TMR Suitable for Yield 
Improvement?,” IET Computers and Digital Techniques, vol. 
3, No 6, Nov 2009, pp. 581-592. 

[6] M. Zhang et al., “Sequential element design with built-in soft 
error resilience,” IEEE Transactions on Very Large Scale 
Integration Systems, Vol. 14, No. 12, Dec 2006, pp. 1368–
1378. 

[7] D. Ernst et al., “Razor: A Low-Power Pipeline Based on 
Circuit-Level Timing Speculation,” Proc. of the 36th Annual 
IEEE/ACM Int. Sym. on Microarchitecture, Dec 2003, pp. 7-
18. 

[8] S. Das et al., “Razor II: In Situ Error Detection and Correction 
for PVT and SER Tolerance,” IEEE J. of Solid-State Circuits, 
Vol. 44, Issue 1, Jan 2009, pp. 32-48. 

[9] M. E. Imhof, and H.-J. Wunderlich, “Soft Error Correction in 
Embedded Storage Elements,” Int. On-Line Testing Symp., 
July 2011, pp. 169-174. 

[10] J. Yao et al., "DARA: A Low-Cost Reliable Architecture 
Based on Unhardened Devices and Its Case Study of 
Radiation Stress Test," IEEE Transactions on Nuclear 
Science, Dec 2012, vol. 59, no. 6, pp. 2852-2858. 

[11] V. Subramanian, and A.K. Somani, "Conjoined Pipeline: 
Enhancing Hardware Reliability and Performance through 
Organized Pipeline Redundancy," 14th IEEE Pacific Rim 
International Symposium on Dependable Computing, Dec 
2008, pp. 9-16. 

[12] M. Mehrara, M. Attariyan, S. Shyam, K. Constantinides, V. 
Bertacco, and T. Austin, “Low-Cost Protection for SER 
Upsets and Silicon Defects,” Design, Automation & Test in 
Europe Conference, April 2007, pp. 1-6. 

[13] A. Benso, Alfredo, and P. Prinetto, “Fault Injection 
Techniques and Tools for Embedded Systems Reliability 
Evaluation,” Springer US, 2003. 

[14] D. A. Tran, A. Virazel, A. Bosio, L. Dilillo, P. Girard, S. 
Pravossoudovitch, and H.-J. Wunderlich, “A Hybrid Fault 
Tolerant Architecture for Robustness Improvement of Digital 
Circuits,” Asian Test Symposium, Nov 2011, pp. 136-141. 

[15] I. Wali, A. Virazel, A. Bosio, L. Dilillo, and P. Girard, “An 
Effective Hybrid Fault-Tolerant Architecture for Pipeline 
Cores,” IEEE European Test Symposium, May 2015, pp. 1-6. 

[16] I. Wali, A. Virazel, A. Bosio, P. Girard, and M. Sonza 
Reorda, “Design Space Exploration and Optimization of a 
Hybrid Fault-Tolerant Architecture,” to appear in Proc. of 
IEEE Int. On-Line Test Symp., 2015. 

[17] P. Liden, P. Dahlgren, R. Johansson, and J. Karlsson “On 
Latching Probability of Particle Induced Transients in 
Combinational Networks,” Symp. on Fault-Tolerant 
Computing, June 1994, pp. 340–349. 

[18] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger and L. 
Alvisi, “Modeling the effect of technology trends on the soft 
error rate of combinational logic,” Int. Conf. on Dependable 
Systems and Networks, June 2002, pp. 389-398. 

[19] J. Velamala, R. LiVolsi, M. Torres, and C. Yu, “Design 
sensitivity of Single Event Transients in scaled logic circuits,” 
48th Design Automation Conference, June 2011, pp. 694-699. 

[20] P. K. Lala, “Self-Checking and Fault-Tolerant Digital 
Design”, Morgan Kauffman Publisher, 2000. 

[21] D. A. Tran, A. Virazel, A. Bosio, L. Dilillo, P. Girard, A. 
Todri, M.E. Imhof, and H.-J. Wunderlich, “A Pseudo-
Dynamic Comparator for Error Detection in Fault Tolerant 
Architectures,” VLSI Test Symposium, April 2012, pp. 50-55. 

[22] NanGate FreePDK45 Open Cell Library, Retrieved Aug, 
2015, from:  http://www.nangate.com/?page_id=2325. 

[23] G. Wirth, Kastensmidt, L. Fernanda, and I. Ribeiro, “Single 
Event Transients in Logic Circuits_Load and Propagation 
Induced Pulse Broadening,” IEEE Transactions on Nuclear 
Science, Dec 2008, vol. 55, no. 6, pp. 2928-2935. 

[24] J. A. Blome, S. Feng, S. Gupta, and S. Mahlke, “Online 
timing analysis for wearout detection,” In Proc. of the 2nd 
Workshop on Ar- chitectural Reliability, Dec 2006, pp. 51-60. 

 

 

6Copyright (c) IARIA, 2015.     ISBN:  978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle


