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Abstract—The strong demand for customizable products is lead-
ing to increase variability in cyber-physical systems. The need of
dealing with variability issues increases complexity not only in
the product, but also in the verification and validation activities.
Due to the high amount of configurations that the system can
be set to, verification and validation activities might become
time consuming and non-systematic. In order to deal with these
problems, this paper presents an automatically configurable test
architecture together with a model-based process for the sys-
tematic validation of highly configurable cyber-physical systems,
with the main objective of reducing verification and validation
costs. The main contributions of this paper are the analysis of the
variability of the test system and its components together with
the traceability among the features of the cyber-physical system
and the test system and a definition of a model-based process to
achieve the test objectives.

Keywords–Model Based Testing; Test Architecture; Variability;
Configurable Systems.

I. INTRODUCTION

Modern society is depending on Cyber-Physical Systems
(CPSs) in charge of controlling many individual systems and
complicated coordination of those systems [1]. CPSs combine
digital cyber technologies with physical processes, where real-
time embedded and networked systems monitor and control
physical processes with sensors and actuators [2]. Industrial
CPSs are highly complex systems [1], and variability increases
in order to deal with the changes that the physical environment
requires.

Variability is defined as the ability to change or customize
a system [3], which can be understood as configurability
(variability in the product space) or modifiability (variation or
evolution over the time) [4]. Variability in CPSs can appear as
configurability when different components or functionalities
can be chosen or are optional depending on the customer’s
needs or budget, e.g., different temperature sensors with dif-
ferent precision. In addition, modifiability appears when a new
feature or functionality is added to the CPS, e.g., apart from
measuring temperature, humidity is wanted to be measured.
Run-time variability is also common in CPSs, which permits
the adaptation to changes in the environment.

Testing configurable CPSs can become a very time and
resource consuming activity. This is, to a large extent, caused
by the high number of possible variants, which give to the
system the chance of being set into thousands of configura-
tions, making the testing of all the existing combinations really

infeasible. The high number of variants and their complex-
ity make manual configuration of variability-intensive CPSs
error-prone and inefficient, which warrants the need for an
automated solution for CPS configuration [1], as well as for
its test system.

Traditional software testing activities can reach even the 50
% of the development costs [5], which can be incremented if
the System Under Test (SUT) is highly configurable. Model-
Based Design (MBD) tools help in the development of em-
bedded software, a task which is becoming more and more
complex, especially when variability issues have to be taken
into account. Model-, Software-, Processor- and Hardware-in-
the-Loop (MiL, SiL, PiL and HiL) tests, provide four testing
phases [6], which are typically used to test CPSs in different
stages and testing objectives.

According to Berger et al. [7], the automotive domain is
the industry where variability modelling is most used, and
MATLAB/Simulink is a modelling language widely used for
modelling embedded software in this domain [8], as well
as for simulating CPSs. This has been the main reason that
has motivated us to choose MATLAB/Simulink as simulation
framework to achieve our objective.

Test architectures are the organization of the group of
components in charge of testing a system. A test architecture is
a necessary artefact for a testing process [9], so that verification
and validation activities can be systematic, allowing among
other advantages reusability of test cases along the different
test phases. According to Nishi [10], test architectures can
be differentiated into test system architecture and test suite
architecture. The test system architecture focuses on issues
such as test system, SUT, platform where the SUT is executed
or test case generation, whereas the test suite architecture relies
on groups of test cases, test levels, etc. [10]. The viewpoint of
this paper will focus on the test system architecture.

Two main challenges have been identified to efficiently
test highly configurable CPSs. On the one hand, the definition
of a test architecture that automatically gets configured for
the selected configuration of the CPS. Each configuration of
the CPS is different, with different ports, parameters, func-
tionalities and requirements; therefore, the test architecture
must be adapted to the selected configuration. On the other
hand, the selection of the test cases that each configuration
must execute. Each configuration requires a set of test cases
to be executed depending on the selected components and
the product requirements. In addition, it might be possible
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that some test cases had already been executed in a similar
configuration and that can be avoided to save time.

This paper focuses on the first issue, how to automatise
the configuration of a test architecture for configurable CPSs,
which serves as a basis to develop a configurable test architec-
ture in Simulink. Moreover, this test architecture is able of get-
ting configured automatically taking into account the selected
configuration for the configurable CPS. In addition, we propose
a systematic process that enables reducing the validation time
of configurable cyber-physical systems considerably.

The rest of this paper is structured as follows. Section
II introduces the related work. Section III presents the con-
figurable test architecture and the components composing
it. In Section IV, the necessary steps to systematically test
variability-intensive CPSs are introduced. Preliminary as well
as expected results are described in Section V. Finally, Section
VI provides the conclusions of this paper.

II. RELATED WORK

Model-in-the-Loop for Embedded System Test (MiLEST)
is a toolbox for MATLAB/Simulink developed by Zander-
Nowicka [11]. The test architecture, depicted in Figure 1,
is based on MiLEST, specially the test oracle and the test
data generator. The hierarchy of MiLEST is divided into four
abstraction levels: Test Harness level, Test Requirement level,
Test Case level and Feature level. The main difference between
the test architecture proposed in [11] and our test architecture
is that the test architecture presented in this paper supports
variability issues and we add an additional block named “Test
Historic Database” with the main objective of reducing testing
time.

From the testing perspective, our previous work [9]
presents an approach based on model-based testing and vari-
ability management integrated in Simulink, where a concrete
configuration of the software is chosen by the test engineer,
and the testing infrastructure is instantiated for the chosen
configuration; the main shortcomings of this approach are
that the plant model is not simulated and that important
components such as test oracles do not handle variability.
In another previous work [12], a testing architecture with
variability management in the test oracles is proposed to test
distributed robotic systems in Simulink; in this case, the main
limitations of this approach is that it was only oriented for
same purpose distributed systems, and the variability points
were only modelled in a test oracle.

A product line of validation environments with variability
to test different applications in different domains and technolo-
gies is proposed by Magro et al. [13]. The main limitations of
this approach are that the components handling variability are
too high level components, it does not support test automation
and variability is not managed with any tool.

Combinatorial testing is also widely used when testing
configurable systems, where configurations are often selected
using pairwise or t-wise techniques. Combinatorial testing
techniques are commonly combined with model-based testing
as proposed by Oster et al. [14], where a tool chain is
introduced named MoSo-PoLiTe. This tool selects pairwise
configuration selection component on the basis of a feature

model covering 100% pairwise interaction, and test cases are
generated for each configuration.

Nevertheless, this combinatorial technique selects product
configurations statically. In [15], a novel approach is presented
named SPLat, where product configurations are determined
dynamically during test execution by monitoring accesses to
configuration variables. The technique consists on executing
the test for one configuration, while observing the values of
configuration variables used to prune other configurations.

Another approach to reduce validation costs of highly
configurable systems is minimizing the test suite for testing
a product, reducing redundant test cases. A set of test cases
can be automatically obtained by selecting features of a
feature model to test a new product, but there still can exist
redundant test cases [16]. A fitness function based on three
key factors (Test Minimization, Feature Pairwise Coverage
and Fault Detection Capability) for three different weight-
based genetic algorithms is defined by Wang et al. [16]. This
approach allows reducing the test suite covering all testing
functionalities achieving a high fault detection capability.

III. THE CONFIGURABLE TEST ARCHITECTURE

A. Variability in the Test Architecture

As depicted in Figure 1, our test architecture is composed
by five sources: System Under Test (SUT), Test Data Gen-
erator, Test Oracle, Test Control and Test historic Database.
The experiments performed by Weißleder and Lackner [17]
show that the most efficient way to test configurable systems
is including variability down to the test case level. The test
architecture must deal with variability so as to be configurable.
The following list describes the different components and
defines where variability can be found:

• System Under Test (SUT): it is the CPS to be tested.
The components can be divided into hardware and
software, where the software can be configured as
model or software. In this approach, the SUT is kept
as black-box, what means that the test engineer does
not need to be familiar with its internal behaviour [18].
Variability in a CPS can be found in the cyber as well
as in the physical side. Variability in the physical side
(commonly known as context variability) is related
to the variability of the environment. In a previous
work [19], we proposed a methodology to manage and
model variability in plant models for CPSs.

• Test Data Generator: it is the source in charge of stim-
ulating the SUT with test signals. Variability in the test
data generator can be found in signals (number and
characteristic of each signal), requirements (number
and parameters of requirements) and test cases (test
case duration and test case characteristics).

• Test Oracle: it is the source where the SUT behaviour
is examined and the test result is determined by a
verdict [11]. Variability in the Test Oracle might be
found in signals (number of inputs to the oracle)
and requirements (number of requirements, number of
validation functions, validation function characteristics
and requirement parameters).
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• Test Control: it is the specification that executes test
cases [11]. In the case of systems with many variants,
it is important to reduce the testing time as much
as possible because there are many configurations
that must be tested. This source will execute test
suite minimization algorithms to reduce the overall
validation time, as well as test case prioritization
algorithms to reduce the time needed to detect faults.
Once the tests are finished, the test controller will send
information of the results to the test historic database.

• Test Historic Database: the results of the generated test
cases are stored in a database in order to firstly, have
information of the quality of the system and secondly,
to avoid testing the same features many times. The test
historic database would store the tested configurations,
verdicts of test cases, achieved coverage, versions of
the tested SUT, etc.

Test Data 
Generator 

Test Oracle SUT 

Test 
Control 

Test Historic 
Database 

Figure 1. Configurable Test Architecture (based on [11]).

B. Managing and Modelling Variability

The previous section has analysed where the variability
can appear in a test architecture. However, this variability
must be managed and modelled. Feature Modelling is the
most used technique in industry to manage and represent
variability of systems [7]. A feature model can be defined as a
notation that represents features and relations among them of
all possible product configurations [20]. Basic feature models
represent features as “mandatory”, “optional”, “alternative”
and “or”. Constraints among features also can appear in form
of “Require” and “Exclude”. Figure 2 depicts an example of
a feature model.

MATLAB/Simulink can be used to model variability, as
explained in several approaches in the literature. In [21],
uniform variability is modelled using different mechanisms
and blocks offered by MATLAB/Simulink, and variability is
managed using the tool pure::variants [22]. In [8], different
blocks are classified depending on their granularity, mapping
of feature types, binding times and quality aspects. Another
approach is presented Botterweck et al. [23], where variants are
managed using a tool named S2T2 and variability is modelled
in a similar way as explained in [21], but when the product is
configured, the unselected features are erased from the model.
Another interesting and different approach is presented in [24],
named “Delta Simulink”, where “Delta Modelling” is used in
Simulink models to model variability. In our previous work
[25], we compared the main characteristics of the variability
modelling and management approaches documented in the
current state of the art.

C. Traceability among Features, Feature Models and the Test
Architecture Components

We believe that using feature models to manage variability
of the testing infrastructure, as shown in Figure 2, may help to
automatically generate the components that comprise the test
architecture. The selected feature modelling tool is FeatureIDE
[26], which is an open source plug-in for Eclipse that can be
modified to adapt it to our needs.

FeatureIDE allows obtaining the .xml file of the developed
feature model. Using a .xml parser in MATLAB it is possible
to extract the data needed to automatically generate the test
architecture.

FeatureIDE also permits an automatic configuration (all
possible configurations, t-wise configuration, etc.) or a manual
configuration of products, which returns a file with an ex-
tension “.config”. This extension can be read from a model
configurator developed in MATLAB that automatically con-
figures the Simulink model (including the SUT and the test
architecture) before running the test.

 

Requires 

Requires 

Requires 

Figure 2. Example of how the Test Feature Model looks like.

We propose a motivating example involving the control of
the liquid level of an industrial tank to better understand the
proposed approach. The liquid can be water or a chemical
product. When the liquid is a chemical product, it will be
mandatory to measure its acidity with a pH sensor. Other
variability points in the example are included: an optional
temperature sensor, two different sensors to measure the liquid
level and two types of gates to drain the liquid.

The test feature model would have several branches, which
can be divided into branches for the test system (Requirements,
TDGen, TOracle) and the branches for the CPSUT, and
both are related. To achieve this, constraints (“requires” or
“excludes”) of the test feature model play an important role, as
they define the relations among components of the product line
and test cases. As shown in the example depicted in Figure 2,
Temperature Sensor requires its corresponding test case, named
“Test Case Temp”. When chemical liquid is selected, the pH
Sensor is also selected, and two test cases needs to be executed:
“Test Case Level Chemical” and “Test Case pH”. The same
happens when the liquid is water.

IV. SYSTEMATIC MODEL-BASED PROCESS FOR THE
VALIDATION OF HIGHLY CONFIGURABLE

CYBER-PHYSICAL SYSTEMS

We consider that it is essential to follow a systematic
process to test variability-intensive CPSs. There are many
possible configurations, which makes impracticable to test all
of them and there is uncertainty of the achieved test coverage.
Figure 3 depicts the overview of the model-based process that
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enables the systematic validation of highly-configurable CPSs.
The components of the process shown in Figure 3 are classified
into two phases following the theory of product lines: Domain
Engineering and Application Engineering. The main difference
between these two phases is that the components in the domain
engineering are for the whole product line, and therefore
variability is implemented. On the contrary, the components
corresponding to the application engineering are for a concrete
product configuration, where variability is already bound. In
addition, seven steps are needed to carry out the whole process:

• Step 1: The test feature model has to be developed.
This step is one of the most important ones as it will
allow to manage and handle the variability of the test
system, and later this will be used to automatically
generate the test architecture.

• Step 2: The .xml file of the developed test feature
model is generated and saved to be manipulated by
the test architecture generator. This .xml file is auto-
matically generated by the tool FeatureIDE [26].

• Step 3: The test architecture generator, which is
implemented in MATLAB, parses the .xml file of the
feature model and saves the needed information of the
test architecture and its variability in MATLAB cell ar-
rays. With the saved information, the test architecture
will automatically generate the Simulink model of the
test system integrated with the Simulink model of the
CPSUT using MATLAB scripts.

• Step 4: Configurations are generated either manually
or automatically and stored in .config files in a library.
These configurations are the ones that will later be
tested. The tool FeatureIDE [26] allows either the
manual or automatic generation of configurations. In
the case of automatic configuration generation, com-
binatorial techniques, such as pairwise or t-wise, are
used.

• Step 5: The test configurator, which is implemented in
MATLAB, parses the configuration files and the com-
ponents of the simulation framework are configured.
The different possible test cases (handling variability),
and the models of the hardware and software compo-
nents will be stored in their corresponding libraries.
The test configurator will allocate the needed compo-
nents in the correct place of the simulation framework
and integrate them, removing the components that are
not needed for the configuration with the objective of
saving simulation time.

• Step 6: When the simulation starts running, as men-
tioned before, the test controller will obtain infor-
mation about previously executed test cases in order
to prioritize and remove redundant test cases. Once
processed the information about previously executed
test cases, the simulation framework will test the
selected configuration.

• Step 7: The executed test results are saved in the
database, and ready to test another configuration. For
the second test run, it will be enough to start from the
fifth step.

Test Feature 
Model 

.xml 

Test Architecture 
Generator 

Simulation 
Framework 

Test Configurator 

Test Case 
Library 

HW Model 
Library 

Test Historic 
Database 

1 
2 

3 

5 

7 

6 
Configurations 

Library .config 
4 

SW Model 
Library 

Domain Engineering 

Application Engineering 

Figure 3. Overview of the Systematic Model-Based Process
for the Validation of Highly Configurable Cyber-Physical

Systems.

V. RESULTS

Preliminary results include the semi-automatic generation
and configuration of the SUT. In this process, we extract data
from a feature model and generate automatically the compo-
nents of the SUT’s model in Simulink. The most challenging
part is the automatic integration among the components, where
the configurator needs information about the input and output
ports of each component, i.e., their datatype, how are related
with the other components, etc. The following step would
be the automatic generation of the test architecture and its
integration with the SUT.

The proposed test architecture in combination with the
presented model-based process allows testing systematically
real-time CPSs that have to deal with many variants. In
addition, the use of a test controller, which is communicated
with the test historic database, and that contains algorithms
for different test objectives, as well as to prioritize test cases
and to remove redundant test cases will considerably reduce
verification and validation time achieving high test quality.

Another important issue for saving simulation time is the
allocation of the components for the selected product, remov-
ing the features that are not specified in the configuration.
We propose storing the different components in libraries and
allocating them automatically in the Simulink model with the
test configurator, as proposed by Arrieta et al. [19] for plant
models.

A test feature model has been proposed, but it has to be
specified which is the data needed by the test architecture
generator, as well as the optimal way of tracing components
of the SUT with test cases. In addition, different modifications
in the source code of the FeatureIDE tool might be needed to
adapt the plug-in to our needs.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented an automatically configurable test
architecture that includes different sources to efficiently and
systematically test variability-intensive CPSs. The test archi-
tecture is able of self-adapting to product configurations and
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automatically tests and obtains verdicts that represent results
of the executed test cases.

We have focused our approach for the validation of
variability-intensive or highly configurable CPSs. As the SUT
must deal with variability, the test architecture also has to
handle variability. The first step taken has been the detection
of the different variation points that the components of the
proposed test architecture must deal with. Systems with many
variants must use a tool to manage the variability. We have
proposed to use Feature Models to manage variability as well
as for the traceability among components of the SUT and test
cases.

A process with seven steps that enables testing variability-
intensive CPSs in a systematic manner has been proposed,
starting from variability management with feature modelling
and ending with an upload of test results in the test historic
database.

This paper has focused on the test architecture and its
configurability. Although the test architecture plays an im-
portant role when testing highly configurable CPSs, it is also
important to study the selection of the appropriate test cases.
After developing the framework, it is expected to validate the
whole process with different case-studies, desirably from the
automotive domain. Additionally, we would like to compare
and combine our variability modelling approach with other
potential approaches, such as Delta Simulink [24] in test
architectures.
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