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Abstract—Nowadays, the society is dependent on Cyber-Physical
Systems (CPSs), which are complex systems that combine digital
technologies and physical processes. The need for dealing with
constant changes in products is leading these systems to handle
variability in several aspects, which entails to a considerable
increase in the complexity of the systems. Many of the research
efforts are focused on the efficient development of these systems.
Nevertheless, the infeasibility of testing all the possible configura-
tions, the unclear notion of the achieved test coverage and the high
amount of time required make testing processes non-systematic
and challenging. This paper introduces the main problems for
testing highly configurable CPSs and proposes a novel approach
for testing systematically and efficiently while achieving high test
coverage.
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I. INTRODUCTION

CPSs integrate digital cyber computations with, often com-
plex physical processes, where embedded systems monitor
and control physical processes with sensors and actuators [1].
The dependency of the society on CPSs that control many
individual systems and complicated coordination of those
systems is considerably increasing [2]. CPSs working in indus-
tries are highly complex systems [2], which make embedded
systems to come with a set of configuration parameters [3].
As a consequence, the variability of CPSs increases, and the
embedded systems have to deal with the changes that the
physical environment requires.

Variability is the ability to change or customize a sys-
tem [4], also understood as configurability (variability in the
product space) or modifiability (variability in time) [5]. CPSs
handling variability are commonly known as highly config-
urable CPSs, which are described as heterogeneous systems
where hardware and software are integrated with the aim of
controlling a physical process. These systems share the same
embedded software code base, which has the ability of getting
configured to work in systems with different features [6]. This
configurability might be realized by parameters, where changes
in the configuration of the product might lead to a complete
different system’s behaviour [7].

Testing highly configurable CPSs is a challenging task.
These kind of systems can get configured into thousands or
even millions of configurations, which makes it infeasible to
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test every single configuration and as a consequence the notion
of the achieved test coverage is uncertain for quality engineers.
Thus, ensuring that the CPS will meet all requirements in every
possible configuration is not realistic.

Two main challenges are addressed when testing highly
configurable CPSs. Each test can be executed many times, once
for each possible configuration, and as a result, “the cost of
running a test suite is proportional to the number of tests times
configurations” [8]. Selecting concrete configurations as well
as the right test cases for the selected configurations is one
of the principal challenges when testing highly configurable
CPSs.

On the other hand, the use of Model-Based Design (MBD)
tools such as MATLAB/Simulink is increasingly growing
when designing and testing CPSs. The high number of variants
and the complexity of the CPSs make manual configuration
error-prone and inefficient, which warrants the need for an
automated solution for the configuration of CPSs [2], as well
as for the test system, where a configurable test architecture
handling variability becomes essential.

Section II of this paper introduces the related work. The
proposed approach for the systematic validation of highly
configurable CPSs using a model-based testing methodology
is presented in Section III. Some discussions of the proposed
approach and expected contributions are discussed in Section
IV. Section V describes preliminary and expected results.
Finally, Section VI presents conclusions and future work.

II. RELATED WORK

The work presented by Bauer et al. [3] proposes a sys-
tematic model-based test approach named REDUCE for the
validation of highly configurable safety-critical systems. This
approach uses combinatorial and model-based technologies
with the main objective of reducing configurations and test
cases until reliability estimations based on testing become
feasible. The approach presented in [3] is focused on the
reduction of configurations and possible test cases for the
validation of highly configurable safety-critical systems using
model-based statistical testing, while our approach will be
more focused on the management and test architecture for
the validation of CPSs. In addition, in the approach presented
in [3], the test model is created for each system config-
uration, reusing similarities between different configuration-
specific test models. In our approach, a test model handling
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Figure 1. Overview of the proposed model-based methodology for the systematic validation of highly configurable CPSs.

variability in the test architecture as well as in the test cases is
proposed, as the study presented by Weillleder and Lackner [9]
demonstrates that it is more efficient binding variability after
test case design.

A similar approach for highly configurable embedded sys-
tems in the automation domain is proposed by Streitferdt et
al. [7]. In this case, a testing process is developed, where test
cases are automatically generated with a parameter model in
combination with a test model.

Combinatorial Interaction Testing (CIT) techniques are also
widely used when testing configurable systems, where config-
urations are often selected using pairwise or t-wise techniques.
According to Kuhn et al. [10], testing efficiency using pairwise
testing method is 2.4 times higher and quality a 13 % better
than manual testing method. CIT techniques are commonly
combined with model-based testing as proposed by Oster et al.
[11], where a tool chain is introduced named MoSo-PoLiTe.
This tool selects pairwise configuration selection component
on the basis of a feature model covering 100% pairwise
interaction, and test cases are generated for each configuration.

Nevertheless, these combinatorial techniques select product
configurations statically. In [8], a novel approach is presented
named SPLat, where product configurations are determined
dynamically during test execution by monitoring accesses to
configuration variables. The technique consists in executing
the test for one configuration, while observing the values of
configuration variables used to prune other configurations.

Another approach to reduce validation costs of highly
configurable systems is minimizing the test suite for testing
a product, reducing redundant test cases. A set of test cases
can be automatically obtained by selecting features of a feature
model to test a new product, but there still can exist redundant
test cases [12]. A fitness function based on three key fac-
tors (Test Minimization, Feature Pairwise Coverage and Fault
Detection Capability) for three different weight-based genetic
algorithms is defined in [12]. This approach allows reducing
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the test suite covering all testing functionalities achieving a
high fault detection capability.

From the testing perspective, our previous work [13]
presents an approach based on model-based testing and vari-
ability management integrated in Simulink, where a concrete
configuration of the software is chosen by the test engineer,
and the testing infrastructure is instantiated for the chosen
configuration. In another previous work [14], a testing ar-
chitecture with variability management in the test oracles is
proposed to test distributed robotic systems in Simulink. A
product line of validation environments with variability to test
different applications in different domains and technologies
is proposed by Magro et al. [15]. However, these works do
not consider the automatic generation and configuration of the
test architectures, there are not oriented for highly configurable
CPSs, thus, they do not consider test case selection and test
suite minimization.

Model-in-the-Loop for Embedded System Test (MiLEST)
is a toolbox for MATLAB/Simulink developed by Zander-
Nowicka in [16]. This test architecture is oriented for the val-
idation of automotive real-time embedded systems in Model-
in-the-Loop (MiL) phase. The main advantages of MiLEST
is that it is oriented for the automotive domain. This industry
is the one that most uses variability modelling according to
[17]. Another advantage of MiLEST is the compatibility with
Simulink, which is a simulation tool widely used to model
embedded software and simulate CPSs. The test architecture
used in this methodology will be based on MiLEST but it will
address some changes: The developed architecture will handle
variability issues and will be able of automatically getting
configured. In addition, it will contain algorithms for the
efficient validation of highly configurable CPSs. In addition,
the test architecture will be communicated with a database
with test historic data in order to prioritize test cases to be
executed. Finally, the test architecture is expected to be used
not only in MiL phase, but also in software, processor and
hardware-in-the-loop phases.
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III. APPROACH

The methodology begins from a manual implementation
of a Feature Model that manages the variability of both,
the Cyber-Physical System Under Test (CPSUT) and the test
architecture. The feature model is developed using the tool
FeatureIDE [18], which automatically generates a .xml file.
This .xml file will be used for the automatic generation of the
test architecture and CPSUT Simulink model.

Once the model is automatically generated, the first con-
figurations will be generated by the configuration generator.
These configurations will be used by the test configurator
to configure the simulation framework. Once configured the
simulation framework, the test will be run and the results
uploaded to the test historic database. Taking these results
into account, the configuration generator will generate other
configurations.

Figure 1 depicts the proposed methodology. Its components
are classified following the theory of product lines: Domain
Engineering and Application Engineering. The components in
the domain engineering are for the whole product line, what
means that variability is implemented. On the contrary, the
components of the application engineering side correspond to
a concrete product configuration, thus, variability is already
bound.

A. Feature Model

According to Berger et al. [17], Feature Models are the
most used notation in order to model variability of systems in
industrial practice. As mentioned before, we propose using the
tool FeatureIDE [18]. The main reason for using FeatureIDE
is its simplicity, its completeness and the availability of its
source code, which enables adapting the tool to our needs.
In addition, this tool is constantly under construction, with
new updates becoming available. It also uses CIT algorithms
to generate correct configurations using pair-wise or t-wise
techniques, which can be reused when implementing our
dynamic configuration generator.

Figure 2 depicts a basic feature model from the mobile in-
dustry, where the basic functions of a feature model are shown.
The features allow the following relationships: “mandatory”,
“optional”, “alternative” and “or”. In addition, constraints be-
tween features can be specified by the relationships “requires”
and “excludes”.

Mobile Phone

l
'--—| Basic || Colour ||H|gh resolution| | Cameral | MP3 |
T
_________ |
4 Mandatory A\ Alernative  -—-= Requires
& Optional A o <—— Excludes

Figure 2. Example of a Feature Model from the Mobile Industry [19].
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As shown in Figure 3, the feature model is composed
of the CPS Feature Model, the Test Feature Model and the
Integrator. The CPS Feature Model is the feature model related
to the highly configurable CPS, which manages the variability
that the CPS has. The Test Feature Model is related to
the test architecture, and manages the variability of the test
architecture. Lastly, the integrator is a file that enables the
integration of all the components of the model among them,
which is used to automatically generate the Simulink model
of the CPSUT and the test architecture.

Feature Model

'

Test Feature Model

CPS Feature Model Integratar

Figure 3. Meta-model of the Feature Model proposed for the systematic
validation of highly configurable CPSs.

Figure 4 shows an example of how a feature model could
be. The motivating example illustrates the control of the
liquid of an industrial tank. The liquid can be a chemical
product or water. In the case the liquid is a chemical product,
the pH must be measured by a pH sensor. In addition, an
optional temperature sensor can be used to measure the liquid’s
temperature. The components of the CPSUT have been placed
on the right branch of the feature model. On the left side,
the variability of the test architecture is modelled. Traceability
between both sides is modelled with constraints, as shown in
Figure 4 (“requires”).

B. Test Architecture Generator

Once the feature model is built, FeatureIDE generates a
.xml file which is read, together with the integrator file by the
test architecture generator, which is implemented in MATLAB
to automatically generate the Simulink model with the CPSUT
and the test architecture. The main work of the integrator is
to handle information about connection among the ports of
the components’ models. The Simulink model is automatically
generated using MATLAB scripts. In addition, the comonents’
models (sensors, actuators, etc.) will be designed by system
and test engineers and saved into a Simulink library. Later, this
library is going to be used when automatically configuring the
Simulink model (as shown in Figure 5).

C. Configuration generator

One of the key points when testing highly configurable sys-
tems is to efficiently generate configurations. Current studies
describe different static CIT techniques to generate configura-
tions, e.g., [3][10][11]. FeatureIDE [18] also allows generating
product configurations both automatically and manually, and
these configurations are saved into a .config file.

When testing highly configurable systems, product config-
urations can be generated statically or dynamically. Statically
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Figure 4. Example of how the Test Feature Model looks like.

generating configurations means generating a set of configu-
rations and later testing those configurations. On the contrary,
configurations are generated dynamically when the configu-
ration generator algorithm generates a product configuration,
the configuration is tested and depending on the test results
and objectives the configuration generator generates another
product configuration, e.g., [8].

Our hypothesis is that generating configurations dynami-
cally is more efficient than generating them statically, as test
results might have an influence when generating configura-
tions. For instance, taking the before explained tank liquid
controller example, the temperature sensor might be giving
errors in the system. When generating configurations, the
configuration generator should take into account this issue
and generate configurations including the temperature sensor.
Our configuration generator will be developed in C++, and it
will communicate with both, the feature model (in order to
obtain correct configurations) and the test historics database
(to obtain information of the executed tests, test quality, etc.).
The generated configurations are saved in a file with a .config
extension and stored in the configurations library.

In order to generate configurations dynamically, it is neces-
sary to study test quality metrics related to highly configurable
CPSs. These metrics will be related to requirements coverage,
features coverage, components coverage, etc.

D. Test Configurator

The configuration file is read by the test configurator, which
will be implemented in MATLAB and whose main task is to
automatically configure the CPSUT and the test system in a
Simulink model.

To achieve this goal, the components corresponding to
the CPS are allocated into a Simulink library. The previously
explained test architecture generator automatically generates a
first model, which consists of the principal components (Taking
Figure 5 as example, Sensorl, Sensor2, Actuatorl, Actuator2,
REQ1 and REQ2). When the configuration is parsed by
the test configurator, the principal features are replaced by
the components corresponding to the CPS configuration, i.e.,
sensors, actuators, etc.

When modelling variability in Simulink, two kind of mod-
els can be used: 100 % models and 150 % models. The 100
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% models are the models that allocate just the components
corresponding to a concrete configuration. For example, first
class variability modelling technique can be used to model
variability this way, as proposed by Haber et al. [20]. On the
contrary, the 150 % models allocate all the components in the
models, the components related to a concrete configuration are
selected with Simulink blocks such as switch or merged, e.g.,
[21] [22]. The main drawback of 150 % models is that as there
are components not selected for a configuration allocated in
the Simulink model, the simulation time is not optimal, which
increases the overall validation time. Due to this reason, we
do not rely on 150 % models, and our approach is designed
to use 100 % models and optimize the simulation time.

E. Test Architecture

The test architecture is essential in order to carry out a
systematic validation of any system and reuse the test cases
along the whole verification and validation process. As men-
tioned before, the test architecture is going to be an adaptation
of MIiLEST [16], a test architecture developed to test real-time
embedded systems of the automotive domain. The hierarchy of
MILEST is divided into four abstraction levels: Test Harness
level, Test Requirement level, Test Case level and Feature level.
The main components of the test architecture are shown in the
meta-model depicted in Figure 6.

MiLEST will be adapted to be configurable and be able of
testing any configuration of the CPSUT. To achieve this goal,
its components will handle variability. Variability in the test
data generator will be found in signals (number and charac-
teristics of each signal), requirements (number and parameters
of the requirements), test cases (test case duration and test
case characteristics), etc. In the test oracle, variability might
be found in signals (number of input signal to the oracle),
requirements (number of requirements, number of validation
function characteristics, parameters), etc.

In addition, a communication with a test historic database
will be implemented to execute test cases according to the
previous results. The test controller will encapsulate genetic
algorithms with the objective of minimizing the test suite and
prioritizing test cases.

Figure 6 shows the composition of the test architecture and
the communication among its components. The test architec-
ture is composed of the test data generator, the test controller
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Figure 5. Overview of the relations among the features in Feature Model and Simulink Model.

and the test oracle. The test data generator is the source in
charge of stimulating the CPSUT executing test cases. Test
cases are implemented manually by test engineers, and each
test case will test a single requirement of the system.

With regard to the test controller, it will select one test case
or another depending on the test purpose; before executing
any test, the test controller will obtain information about the
previously executed test cases by communicating with the test
historics database.

Finally, the test oracle will evaluate whether the expected
behaviour of the CPSUT is correct or not. The test oracle will
have one sub-oracle for each requirement, and each sub-oracle
will be composed of one or more precondition and assertion,
which are manually implemented by the test engineer, taking
into account variability.

FE. Cyber-Physical System Under Test

Figure 7 shows the system to be tested, where the com-
ponents are differentiated into Cyber and Physical. In our
approach, the CPSUT is kept as black-box, where the test en-
gineer does not need to be familiar with its internal behaviour
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Figure 6. Meta-model of the test architecture.

[23]. Variability in a CPS can be found in the cyber as well as
in the physical side. Variability in the physical side, commonly
known as context variability, is related to the variability of the
environment, i.e., the number and characteristics of sensors
and actuators, variability of the mechanics, etc. The embedded
system also has to handle variability in order to deal with the
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variability of the physical side. Variability of the cyber side
can be related to the software, where different configurations
are achieved depending on the configuration of the physical
side, or to the hardware (types of microprocessors to be used,
etc.).

Cyber-Physical System Under Test

Physical Layer

Physical
Model

Cyber Layer

Outside
Environment

Figure 7. High level overview of the main components of a CPS.

Model-Based Design (MBD) tools are used for the devel-
opment as well as for the testing of CPSs. Model-, Software-,
Processor- and Hardware-in-the-Loop (MiL, SiL, PiL. and HiL)
tests, provide four testing phases [24], which are typically used
to test CPSs in different stages and testing objectives. Our
approach will study the possibility of testing the CPSUT in
these four stages automatically.

Figure 7 also depicts a block named outside environment.
This block refers to the environment in which the CPS resides,
which often has a strong influence into the behaviour of
the CPS. Considering the example of a mobile robot, the
outside environment would include the obstacles to which it is
exposed, e.g., the slopes, the surface or even the temperature
or humidity which can lead to an inadequate performance of
the on-board electronics.

IV. DISCUSSION

The goal of the proposed methodology is to systematically
validate highly configurable CPSs. To achieve that goal it is
necessary to obtain the needed configurations and test cases
to ensure the correctness of highly configurable CPSs in any
possible product configuration. The main contributions of the
study are foreseen to be the following:

e A methodology to systematically manage the valida-
tion of highly configurable CPSs. This methodology
begins with the implementation of a feature model. A
feature model is a notation that represents the features
and relations among them of all possible products of a
Product Line represented as a hierarchically arranged
set of features [19]. This feature model handles the
variability of both, the CPS and the test system. From
this feature model, the optimal configurations are set
in order to satisfy the maximum coverage. In addition,
a Simulink model is generated automatically integrat-
ing the configured CPS and the test architecture.

e A configurable test architecture in Simulink that han-
dles variability issues for the validation of configurable
CPSs. This test architecture, based on [16], will in-
clude test data generators and test oracles handling
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variability as well as other components. The variability
of the hardware and the software architecture requires
variability in the test model at the verification and
validation stages [7]. The test architecture together
with the simulated CPS will get configured according
to the chosen configuration.

e  Algorithms for the efficient validation of configurable
CPSs achieving high test coverage will be studied. The
algorithms will combine dynamic CIT techniques, test
suite minimization approaches and test case prioritiza-
tion strategies. These algorithms will choose the most
optimal configurations and will select and prioritize
test cases to be executed for the chosen configuration.

e  Test quality metrics for highly configurable CPSs. As
mentioned before, it is infeasible to test all the possible
configurations in highly configurable systems, and as a
consequence, the notion of the achieved test coverage
is uncertain. Different kinds of test quality metrics will
be analysed to ensure the correctness and quality of
the highly configurable CPS for any configuration.

V. RESULTS

In our previous work [25], some experiments have been
performed for the automatic generation of the CPSUT, where
a novel variability modelling methodology is proposed for the
plant models of highly configurable CPSs. In these experi-
ments, we use FeatureIDE [18], a feature modelling tool for
managing variability. With this tool we manage the variability
of the physical side of the CPSUT and the .xml file is gen-
erated. With the .xml file, a first Simulink model is generated
semi-automatically. Human intervention is needed to integrate
the different components (sensors, actuators, mechanical com-
ponents, embedded systems) of the model. Once generated
this model, configurations are achieved either manually or
automatically from Feature IDE, and each configuration returns
a “.config” file. With this file, the configurator configures the
model of the CPSUT.

The expected results include a reduction on the time needed
for the validation of highly configurable system, at the same
time as incrementing the obtained test coverage (requirements
coverage, feature coverage, components coverage, etc.). This
goal can be achieved by reducing simulation time through the
analysis of the most effective variability modelling method-
ology. In addition, it is essential to select the optimal CPS
configurations to be tested and to automate the simulation
framework. In regard to test cases, it will be important to select
the appropriate ones, prioritizing them and minimizing the test
suite as much as possible.

VI. CONCLUSION AND FUTURE WORK

This paper identified the main challenges to face when
validating highly configurable systems. The main problems
can be summarized into (1) the automatic configuration of the
CPS and the test infrastructure, (2) the unclear notion of the
achieved coverage and (3) the need for reducing test execution
time. As a possible solution, we propose a model-based testing
methodology to efficiently and systematically validate highly
configurable CPSs.
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A highly configurable CPS can achieve different configu-
rations, in the software as well as in the hardware, which leads
to the need of automating the configuration of the model of
the CPSUT as well as the configuration of the test system at
verification and validation stages. The described methodology
proposes the automatic generation and configuration of the
test system and the CPSUT for Simulink models from Feature
Models.

A highly configurable CPS can be configured into thou-
sands or even millions of configurations. Testing each possi-
ble configuration is impracticable. Hence, the notion of the
achieved test coverage is uncertain. Optimizing the execution
time of test cases as well as configurations to be set up
is essential. We propose dynamic multi-objective algorithms
with the aim of achieving the highest possible test coverage
(requirements, feature and component coverage), using the
minimum CPS configurations and the minimal test execution
time.
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