
Towards a Holistic Architecture for a SIP Test Framework

Teemu Kanstrén, Pekka Aho

VTT, Oulu, Finland

teemu.kanstren@vtt.fi

Abstract— Testing traditionally focuses on specific aspects of a

system separately, such as functional conformance, robustness

and performance. In this paper, we present a protocol test

automation framework that considers these different

viewpoints as a whole. It starts with a common architecture for

protocol testing at different scales. A set of test models on top

of this architecture are presented for addressing the different

types of testing. Each of these models builds on top of another,

starting with conformance testing, followed by robustness

testing and finally overall performance testing. We apply the

framework to session initiation protocol (SIP).

Keywords- Test automation, framework, sip, protocol testing

I. INTRODUCTION

Testing is a multifaceted discipline. It needs to verify
various aspects of system behavior, including performance,
robustness, and functional conformance. Different types of
testing further have various coverage criteria, many specific
to the type of testing and to the domain of the system under
test (SUT). Covering these different types of testing and their
different coverage criteria extensively can be very expensive.
Commonly each system is also different, and creating largely
re-usable test automation frameworks and test suites is
difficult. In such cases, we commonly choose the most
critical pieces of the SUT and target most of our coverage on
those parts.

When systems are based on a set of standardized
protocols, the test frameworks and test suites for those parts
can be more extensively re-used and potential for extensive
test automation frameworks is higher. A test framework for a
standardized protocol can be applied on many different
systems. In fact, protocol testing is an active field of research
and various tools for testing different aspects of different
protocols exist. A large scale example of this is the protocol
conformance testing effort by Microsoft for testing more
than 250 protocols [1]. For robustness testing, another
example is protocol fuzzers which are a popular type of tool
used to test robustness protocol implementations [2] and a
popular research topic (e.g., [3, 4]). Fuzzers manipulate the
protocol messages and the contained data to evaluate how
the implementation can handle malformed inputs.

However, while there exist a wide range of protocol
testing research and tools, these traditionally target a narrow
part of the overall quality assurance for a protocol and the
system built using that protocol. In this paper, we present a
holistic test automation framework for protocol testing. It is
aimed at supporting testing the protocol implementation at
the basic protocol stack level, testing the protocol application
to communication between two nodes, and to testing the

application of the protocol to the overall communication in a
large distributed system. It is also aimed at supporting
conformance testing, robustness testing, and performance
testing using model-based techniques with each testing type
building on top of the previous one.

While some adaptation of the framework architecture is
required in going from testing a protocol stack in isolation to
testing the protocol use at larger scale, defining the overall
common concepts enables us to build reusable components
for the overall framework and to systematically build better
quality into the different layers. With the different model-
based test approaches we gain a diverse coverage for
different types of testing, while reducing the costs in building
the different models as layers on top of each other.

As our work on this has been practically performed in the
context of the session initiation protocol (SIP), we present
the application of the framework and its specialization for
SIP as a running example throughout the paper.

The rest of the paper is structured as follows. Section II
introduces the important background concepts and related
works. Section III presents the components of our framework
architecture. Section IV presents the set of test models for
different types of testing and their composition. Section V
discusses the concepts more broadly, and finally conclusions
end the paper.

II. BACKGROUND AND RELATED WORKS

In this section, we give a brief introduction to relevant
concepts for this paper, and present related works in protocol
testing.

A. Session Initiation Protocol (SIP)

Throughout the rest of this paper, we will use session
initiation protocol (SIP) as a running example to demonstrate
the relevant concepts. SIP is a protocol used for signaling in
setting up communication sessions. Typical usage scenario is
Voice over IP (VoIP), where different endpoints use SIP
based communications to signal call control flow. Various
other protocols can then be used for the actual call (such as
voice and video transport). We focus here only on control
flow signaling which is what the SIP protocol is for. Figure 1
illustrates the basic call flow in such scenario.

Beyond this basic call setup shown in Figure 1, there can
be various configurations such as the call going through one
or more proxies, changing call details in mid-call (e.g., re-
negotiating quality parameters), or several parties together
negotiating a conference call. Figure 2 illustrates these
different configurations from the testing perspective in four
different cases (A-D).

46Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

Phone 1 Phone 2Server

Invite

Invite

100 Trying
180 Trying

180 Trying

200 OK

200 OK

ACK

BYE

OK

...call... ...call...

Figure 1. Basic SIP call flow.

Phone 1

Server

Phone 2

Phone 1 Phone 2

Server 1Phone 1 Phone 3 Phone 4

Phone 5Server 2

Phone 2

B: Direct call

Phone 1

A:Stack

C: Proxied call

D: Multi-client call

Figure 2. SIP system configurations.

In the rest of the paper, we will refer to these different
scenarios in Figure 2 as scenarios A, B, C and D, or more
generally scenarios A-D. In scenario A, we test the protocol
stack in isolation as a single unit (or module). In scenario B,
we test two devices communicating directly with each other.
In scenario C, we test two devices communicating with a
server connecting them. In scenario D, we have multiple
devices all communicating together in a single call session,
potentially across several servers as well. Sometimes these
clients can also move during the call between servers
(mobile clients). We will look at testing these in more detail
in Section III with our test framework architecture and in
Section IV with our test models.

B. Model-Based Testing

Model-based testing (MBT) is a concept we use widely
in this paper. We follow the definition of MBT given in [5]
as “generation of test cases with oracles from a behavioral
model”. That is, the system is described using a behavioral
model, in our case as a set of rules and actions, and test cases

to exercise the behavior of interest are generated from these
models by a test generator tool. SIP conformance testing is a
case study quite often used in the MBT literature [5].
However, as we discuss in Section II.C, the existing work is
mainly limited to conformance testing and in this paper, we
discuss this more broadly with also applications to non-
functional testing of robustness and performance.

As mentioned, our use of MBT is based on test models
defining a set of rules and actions. In this case, the actions
define some functions to be executed on the SUT. In the case
of SIP these actions are typically sending SIP request
messages. The rules in the test model define when each of
these actions are allowed. Following these rules, a test
generator can then produce a set of test cases following the
test specification (the test model). As the generator follows
the rules, it produces valid test cases. These are valid from
the test model perspective, and thus we can also define, for
example, a robustness test model for producing invalid data
and invalid sequences. In such a case, the test model will
describe the types of invalid data we are interested in.

In addition to the SIP requests in the test model, SIP
responses are handled by the overall test framework as we
will discuss in Section III. All these elements are linked to
form the overall test framework, including test oracles at
chosen detail level.

Figure 3 shows some example rules and actions for
testing a single device SIP scenario. The solid boxes are the
actions and the attached dashed boxes are the rules for those
actions.

[Reg., No call]
INVITE

[Call on]
BYE

[Unregistered]
REGISTER

[Registered]
UNREGISTER

Figure 3. Example rules and actions.

In this case, the names in the action boxes in Figure 3 are
different SIP request messages. For example, invite is a
message used in SIP to establish a call between two parties.
However, if a SIP proxy server is used, the parties (SIP user
agents) have to register with the SIP server to allow the call
(the “registered” rule in Figure 3). This is only allowed if not
yet registered, and the registration action updates the model
state to registered. Once registered, invite is then allowed.
After a call is established, it can be terminated using the bye
message.

The model in our case is a form of a model program,
implemented to send the SIP messages for these actions and
to maintain the state of the test client. This state is then used
in the rules to define when actions are allowed. This is a
common approach to MBT as described in e.g. [5, 1].

In addition to sending request messages, the tester needs
to be able to handle other protocol messages as well. For
example, the Trying, OK and ACK messages shown in
Figure 1 cannot be expressed as actions as they are not
actions initiated by the test client (or the test model). Instead,

47Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

the test framework must be able to process such received
messages from the test target(s), update its state (e.g., call
established) and to check that required responses are
received correctly (such as Trying message when expected).
That is, the basic functionality of the protocol should be a
part of the test framework and the test model is built on top
of this. Verification of this test framework then comes from
its application to several test targets, each providing a
verification of the applied test framework itself.

C. SIP Protocol Testing

One the largest efforts in protocol testing is the Microsoft
protocol documentation assurance effort described in [1] for
testing more than 250 different protocols to ensure
documentation quality and regulatory conformance. The
process and tools to perform this validation have been
described in detail in [1]. Conformance testing for a protocol
includes describing the expected normative behavior of the
protocol, meaning the allowed and required messages, their
sequences and the data values. In the Microsoft case, both
model-based and manual test creation methods were used,
which in our experience reflects the general good test
automation practices. In such a case, a test model reflects the
protocol behavior, and test cases can be generated with a
MBT tool from this model. Test execution is built on top of a
component based adapter layer, which also forms a basis for
creating manual test cases as required. Our general test
automation architecture adapts elements from this and
includes addressing also larger scale distributed systems and
different robustness and performance testing. It thus also
enables more complex and realistic test scenarios.

An example test automation framework for SIP
conformance testing is presented in [6]. In this case, the
framework provides a simulated SIP service environment
that can be configured to provide different responses and
services for SIP user agents. For example, an emulated user
agent can be configured to perform call forwarding for a
specific user, allowing the tester to focus on scenarios that
make use of such SIP services. The work in [6] is aimed at
conformance testing of different services built on top of SIP,
and non-functional testing (performance) is left out of scope.

A test automation framework for performance testing is
presented in [7]. This framework uses existing SIP platforms
and tools such as SailFin [8] and SIPp [9] to generate
different types of traffic to test performance of SIP agents.
This includes traffic bursts, linearly increasing traffic and
other such usage profiles. Mentioned problems include
difficulty to implement complex interactions between agents
as well as control of generated traffic due to limitations of
the third party tools used for generating traffic. That is, the
external tools used do not have support for the required level
of control in fine grained performance testing. We use
similar traffic profiles as part of our performance models,
and integrate these with conformance and robustness test
models.

A test automation approach based on passive monitoring
of operational SIP based systems is presented in [10]. In this
case, the idea is to describe the system expected behavior as
a set of formalized properties, and use operational

monitoring to assess whether the observed system behavior
matches this expected specification. A similar approach
taken in [11] provides a general specification of a protocol,
creating a model of system behavior in different phases
starting from observing network traffic to grouping it as
transactions and dialogs. Finally, these are compared to the
set of rules given in the specification. We do not explicitly
do this type of passive monitoring as we also perform active
generation of request messages. However, the part of our test
framework related to listening for response messages and
asserting the overall system behaviour based on those
responses and their relation to test model state uses similar
concepts.

During performance testing, we have to collect various
metrics on system performance to evaluate how the different
actions and parameters applied affect the performance. These
measurements are collected by deployed probes, which can
be located on the different nodes in a distributed system, or
measuring the connecting network. For example, [12]
describes using numerous measures collected such as CPU
load, network load, interrupts and context switches on SUT
nodes as a basis for a performance model. These are
combined to form a detailed view of how the different
components in the system affect the system performance. A
high-level, specific, metric for performance testing of
networked services is suggested in [13] as throughput.
Throughput here means the number of requests (or
transactions) performed on the system over a given time unit
(such as a minute). In summary, we need both a high-level
definition of what system overall performance means for us,
as well as means to find the bottlenecks when relevant. In
our case, we use the number of SIP messages processed as a
basic metric, and focus using more detailed probes where
necessary.

For robustness testing, a stateful fuzzer for SIP is
presented in [3]. This is based on two components: syntax
fuzzer and state evaluator. Besides the traditional data
fuzzing and checking of aliveness of SUT, this approach also
checks that the correct responses (state transitions) are
observed on the SUT and that the data provided in these
responses is valid. Checks on the SUT are performed using
basic protocol messages to verify the SUT is alive and in
correct state. To describe the SUT behavior in [3], a state-
machine is learned from observing the protocol
implementation. Messages are associated to different
simulated clients and separate state-machines are upheld for
each, to check responses and transactions against. Different
combinations and mutations of messages are used to provide
fuzzed messages where different field values are modified
using protocol knowledge for invalid messages and where
some field can be repeated or otherwise the overall structure
fuzzed.

A method coverage analysis for protocol fuzzing is
presented in [4]. Constraints for message formats and
processing are defined based on protocol specification
analysis. The constraints are formally specified and a test
generator is used to generate fuzz tests to cover them.
Sometimes effectively fuzzing different parts of the protocol
and interactions may require accessing deeper parts of the

48Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

protocol state-machine, requiring techniques similar to [3] in
initiating the protocol to initial phases before fuzzing.

A fuzzing tool for SIP softphones is presented in [14].
This is based on defining templates that identify specific data
values to fuzz for different SIP messages. The SUT is then
driven to specific states using scripts and these fuzzed
messages are injected at these locations in the protocol flow.
Additional generic SIP specific fuzzing algorithms are also
used, such as re-ordering of SIP headers and defining
patterns of specific SIP data vulnerabilities. Finally, the SUT
is monitored to evaluate whether it crashes or produces
invalid responses.

In [15], performance and robustness testing are combined
to evaluate robustness of the system under heavy load.
Different types of attacks against SIP based systems are
defined, a specific valid load is generated on the system,
after which different attack types are launched. System
performance is measured before, during, and after the attack.
The results indicate system performance in face of attacks
under different loads both temporarily and long term.

III. SIP TESTER ARCHITECTURE

To address both the need to test the different
configurations (A-D) described in Figure 2, and the different
types of testing we are interested in (conformance,
performance, robustness) we have to consider both a test
framework architecture for executing tests and a set of
different test models for generating tests. The architecture
needs to support both manual test creation and execution, as
well as test generation (and execution) from test models.
This means considering the different aspects similar to
discussed in [1] but also considering a broader context of
testing interacting systems and not just the protocol stack.
The following subsections describe our test framework
architecture, which is illustrated in Figure 4 (S illustrates the
shared state). The test models will be described in Section
IV.

Test Client

Protocol Stack

Output
Modifier

SUT

Verification
Engine

Test
Controller

S

Figure 4. Component Architecture.

A. Protocol Stack

To be able to use the tested protocol and evaluate the
SUT against it, the test framework also has to implement the
basic protocol stack. This consists of parsing and creating
messages, and delivering these across the network.
Optimally, existing code or an available stack such as an
open-source implementation can be re-used. However,
sometimes this is not possible due to issues related to the test
framework requiring high degree of control and observability

over the protocol, which may not have been factors in
building some of the available tools and libraries.

In our case, we have implemented our test environment
in Java and used the Jain-SIP protocol stack implementation
[16]. In this case, our experience has been that using this
type of an open-source stack can save some time initially in
getting started, but the control and visibility over protocol
details is limited. Also, some of the functionality is limited
such as lack for proper SIP authentication support. Lack of
control and visibility is due to regular user not requiring
detailed access to protocol manipulation, and attempting to
abstract some parts of the protocol from the user where
possible, such as SIP dialog control. However, in order to
build a protocol tester, we need to understand the protocol
and be able to verify its specifications in sufficient detail. For
this reason, as we need to know and understand the details
anyway, we find it better to actually implement the stack, at
least for the most parts on our own.

As such, we conclude that to have a robust and powerful
base for a protocol tester we need our own highly reliable,
configurable and observable stack. In an optimal case, we
can write one. In practice, resources for this may not be
available especially for more complex protocols. In such
cases, we need to look at our options with available stacks or
with directly using an existing protocol client (such as a SIP
softphone or SIP tester such as SIPp [9]).

B. Test Adapter

On top of the protocol stack, a test adapter capable of
performing stateful transactions against a test target has to be
implemented. The test adapter should support higher level
functions such as initiating and terminating calls, managing
responses from the SUT, and maintaining the protocol state
for itself according to these actions and responses. In this
sense, it is similar to a SIP softphone but does not have to
implement a user interface as it is controlled by the test tool.

There are many existing SIP softphones available (such
as Twinkle and Linphone), and these can be used if
programmatic control over them is available. Their
usefulness depends largely on the extent of remote control
supported, and the ability to observe details about the results
and responses from the SUT. In our experience, most of the
actual SIP clients have limited support or no support at all
for such control. However, SIPp is a SIP performance test
tool that does provide many such features. While it is limited
in its support for detailed control and visibility for
conformance or robustness testing, it can be a useful starting
point for fast test automation prototyping for suitable parts.

Optimally, the test adapter provides a simple and fast
network interface to control it, create protocol messages, and
receive notifications about SUT responses. Separating the
adapter from the rest of the test framework as a separate
networked service allows for using any tools available to
implement it and to reuse the controllers and output
modifier(s), as well as any existing tools and libraries for
different platforms to build adapters. For example, SIPp
provides a UDP communication and control interface, and
similar interfaces are also used by other successful test
frameworks, such as Selenium Webdriver for web

49Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

applications (which creates and sends JSON requests over
the network). This also allows building different controllers
on different platforms, using the same adapters, when
required.

To summarize, optimally the test adapter provides a
stateless control and observation interface to the underlying
protocol. This allows the test controller to create various
types of protocol messages and observe the results at a
selected level of detail.

C. Test Controller

To produce actual, executable test cases, a test controller
is required. In the case of manually scripted test cases, this
executes the given scripts using the test adapter. In the case
of using a test generator, this generates the scripts based on a
test model and executes them using the test adapter. In a
distributed multi-client scenario similar to scenario D in
Figure 2, the controller manages several adapters in parallel.

The controller upholds the test state. When testing
scenarios B and C, this means keeping track of the current
state of the test client. When testing scenario D, this means
tracking all the different test adapters and their connections.
It shares this state with the verification engine, which makes
assertions about the correct responses received from the SUT
based on the controller actions. The adapters can be
distributed across the network or on a single machine.

D. Verification Engine

A central part of testing is the test oracle, which is a
component used to verify that the expected properties hold at
the selected points of time in the testing process. For
different types of tests, different types of verification engines
are required. In conformance testing, the received responses
are typically checked after specific actions (such as initiating
a call) have been performed. In performance testing, we are
interested in measuring the response times to the messages
and collecting various metrics on the SUT to assess the
impact of test load. In robustness testing, we are interested in
observing the state of the target system and using this
information to make assertions about how invalid inputs
impact the SUT state and responses.

The verification engine performs these various checks to
evaluate test results during system operation. The checks
performed can be split into passive and active checks. Active
checks are performed as specific checks at specific points in
the test execution, e.g., to establish that response messages
such as TRYING, ACK, and OK are received when required
and contain the correct data related to their associated
requests. Examples of passive checks would be to track that
messages that require a dialog should not be received outside
dialogs, or to continuously ping the SUT to ensure it is alive.

For active verification, the verification engine has to
share state with the test controller to be able to make the
required assertions. For some forms of passive verification
such as pinging the SUT this is not required but the
verification engine still has to communicate back to the test
controller to notify of any failed checks. This then fails the
executed test and reports the results back to the user.

E. Output Modifier

The output modifier is used by the test controller during
robustness testing to invoke specific modifications on the
input messages produced by the test client. Test data is
passed through the output modifier and forwarded to the
SUT. During robustness testing, the test controller can enable
different types of fuzzing patterns to be applied to the data,
while during other types of testing the output can be
forwarded as is.

IV. TEST MODELS

This section discusses different types of test models we
use for testing conformance, performance and robustness and
how these relate to the architecture. The basis is the
conformance test model, and the other models specialize and
extend it in different ways. These models are also different
depending on the type of scenario addressed. For scenario A,
the models target the protocol stack functionality,
performance and robustness. For scenarios B and C, the
models target the interactions of a single client with other
nodes in the network. For scenario D, the models target the
overall system behaviour. In our testing, we have focused at
the level of scenarios B-D, and assume that the stack will be
tested sufficiently as part of these test cases and separately at
unit and component testing level by the developers.

While describing these as test models implies our
preference towards model-based test generation, it is equally
possible to use the information in the models to create test
cases manually. The test model is used by the test controller
as a part of the overall test framework.

A. Conformance Test Models

The conformance model describes the expected
functional behavior of the SUT as described by its
specification. In the case of scenarios B and C, this is the SIP
RFC 3261 [17]. In scenario D, the specification describes the
expected behaviour of the overall system and its interactions.
Table I lists the basic rules and actions for the scenario B and
C model. Table II lists the basic rules and actions for the
scenario D model.

TABLE I. SCENARIO B AND C MODEL ELEMENTS.

ID Rules Action

S_R Unregistered Register

S_U Registered Unregister

S_I Registered, No Call Invite

S_C Registered, Calling Cancel

S_O Registered Options

S_B Registered, Call On Bye

S_M Registered Message

The actions in Table I are basically the SIP request
messages as described in [17]. For scenario B and C, the test
model is focused on generating requests to interact with the
SUT. In addition to this, the test framework must handle the
responses from the SUT, such as failures, errors, and
successes. It must also provide its own responses to such
messages when required, such as the ACK message to the
OK for INVITE. In our test framework architecture, the test

50Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

controller executes the tests and maintains the relevant state
information to manage the responses. The state information
describes the protocol interaction state including registration
status, call invite status, and ongoing call status.

Additionally, the model has to define the valid data
values in order to properly evaluate the conformance of the
system and to expect the correct responses.

TABLE II. SCENARIO D MODEL ELEMENTS.

ID Rules Action

SD_R Phones < MAX_P Register Phone

SD_U Phones > 0 Unregister Phone

SD_I Free Phones >= 2 Initiate Call

SD_T Busy Phones > 0 Terminate Call

SD_S Servers < MAX_S Start Server

SD_X Servers > 0 Stop Server

For scenario D, our model is focused on testing high-
level interactions of different communicating entities in the
overall system. As illustrated in Figure 2-D, there may be
several servers and phones or other SIP user agents in the
system, connected in various ways. The actions shown in
Table II allow dynamic creation of such configurations and
to establish and terminate connections between the nodes.
Test framework/model state in this case consists of the nodes
and their status. The state for SIP clients is the same as for
scenario B and C, including the connected nodes in a call.
The SUT in this case is the overall system interactions. The
model of a SIP phone described in Table I can be used to
represent a phone, which is controlled by an overall system
test model.

The test oracles for the verification engine in the
conformance model are checks of the test model state against
the SUT state. This means we will check that when the SUT
should accept a call, the invite message passes and the call is
established. Similarly, when registration should succeed, the
response is expected to be a success. After an invite has been
performed but before the call is started, a cancel message
should stop the call from starting. Once a call is started, a bye
message should stop the call and allow re-starting a new call
with another invite. Similar checks are performed at every
point during the execution of a generated test case with
regards to every request message performed, and every
response message received. As the test controller maintains
the system state according to performed actions, it can
automatically verify all these properties with minimal effort.

B. Robustness Test Models

We define robustness according to the IEEE glossary as
“The degree to which a system or component can function
correctly in the presence of invalid inputs or stressful
environmental conditions.” [18]. In our robustness models,
we consider both invalid interaction sequences as well as
invalid input data. We represent the interaction sequences
with similar models to the conformance model, and the input
data using the output modifier configured with message
modification patterns.

Defining invalid inputs and their expected responses
explicitly can be challenging as many protocol definitions

have required parts (must) and optional parts (may). In many
cases, also ambiguities exist and different implementations
have taken different interpretations of these. Due to this, we
classify any issues observed either as warnings or errors.
Warnings are issues related to potential issues, while errors
indicate clear problems in the implementation.

Our robustness models specialize the conformance
models by changing specific parts of the models to produce
invalid interaction sequences and data. We call these
specializations robustness model patterns. To do this, several
mechanisms of our MBT tool [19] are used. These are model
composition, startup-sequences, and model slicing.

Model composition refers to combining several separate
model objects together. The normative model elements are
expressed using the conformance models as shown in Table I
and Table II. The invalid sequences are in a separate model
object that is combined with the conformance model by the
test generator. If we call the conformance model C and the
robustness model R, the actual base test model T is their

union, T = C ∪ R. Example robustness rules and actions for

the model in Table I are shown in Table III.

TABLE III. ROBUSTNESS MODEL ELEMENTS.

ID Rules Action

SR_R Registered Register

SR_U Unregistered Unregister

SR_I SUT in call Invite

SR_C SUT not called Cancel

SR_O Not registered Options

SR_B No call with SUT Bye

SR_M Not registered Message

Startup-sequences are used to initiate the SUT into a state
of interest for the robustness test pattern. These can be used
to drive the initial test generation to a specific state by
making the generator take a specific set of steps before
starting its own algorithmic generation. For example, we can
define one from the model in Table II as “Register, Invite”,
which means the generator will start all test cases with this
sequence and thus the tests will start from a valid registered
state with a valid initiated call started with the SUT.

Model slicing allows us to define which parts of the
model are to be used for generation and how much they are

used. If we take the test model T = C ∪ R, the sliced model

S is then a subset of T, S ⊂ T. The slice can either remove a
step from T completely or limit the number of times it can
appear in T. The slice does not affect the startup sequence
and the startup sequence does not affect the slice, allowing
these to independently define different elements of the
robustness test scenario. For example, the slice may forbid
any invite messages but the startup sequence can still use
them as the slice only affects parts after startup.

As an example, let us show a pattern for robustness
testing registration handling for a single node during an
ongoing call. This is illustrated in Table IV. In this case our

model is T = C ∪ R as discussed, where C equals the model

shown in Table I and R equals the model shown in Table III.
Using this pattern configuration, the generator will generate
sequences that always start with valid register and invite

51Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

messages. This is then followed by any allowed messages
except bye, which is forbidden by the slice. Notice that this
pattern also includes and allows all steps in R.

TABLE IV. EXAMPLE ROBUSTNESS PATTERN.

Element Value

Startup S_R, S_I

Slice !S_B

Additionally, the output modifier patterns change the
created messages in various ways:

 Duplicate headers and message parameters

 Remove headers and message parameters

 Modify headers and message parameters
When running robustness tests, the test oracle definitions

require some special attention. We can define how each of
the invalid input producing steps should impact the SUT
operation and state. Typically this would be to ignore the
input with invalid data or sequences. In other cases we can
also define specific impacts and update state accordingly.
For example, if we consider security vulnerability scanning
as part of robustness, some specially crafted input for such
tests can be considered valid but should have no unwanted
side-effects. In these cases, we should update the state in
those steps, and evaluate the oracles accordingly.

However, due to different specification interpretations or
desire to provide flexibility in communicating with other
endpoints of varying quality, the responses to some of the
robustness input may differ, and the SUT may accept some
of them as valid. For example, duplicate headers produced
by the output modifier may be interpreted as an issue or not
in the SUT. In such cases, we can choose to disable some of
the more strict oracles for those models and tests generated
from them and focus on the more generic ones to check the
system for generic properties such as not crashing or ending
up in a bad state for any node, or consume excess resources
over time.

For such cases, the test oracles that make such assertions
can also be represented as their own model object(s). The

test model T then becomes T = C ∪ R ∪ O, where O is the

model object holding these oracles. By removing O, or parts
of it, from the equation, the oracles can be disabled as
required. In any case, as mentioned the generic test oracles
are always valid, such as pinging the SUT and checking error
codes. These can also be configured to run at specific
intervals to check for general properties in, e.g., long running
performance tests.

C. Performance Test Models

Our performance test models are combinations of
different configurations of the conformance and robustness
test models. They are intended to explore the performance
limits of the SUT under different environment and load
conditions. They represent different usage scenarios for
different types of user profiles in the system. Basically we
use our conformance test models as valid client type and the
robustness model instances as another (invalid) client types.

Similar to [7], we use different types of traffic patterns
for specific user profiles, such as traffic bursts and linear

increase in traffic. We start with our conformance test model
clients as the reference set of providing the system
performance under these different types of varying load.
Once we have this model, we apply our different types of
robustness test patterns as clients to represent invalid data,
similar to attacks discussed in [15]. Finally, we re-run the
initial reference test set with the conformance test clients for
valid data and compare the results with the initial run before
invalid data was used. We then use these results to give us a
model for the overall system performance under different
types of load.

V. DISCUSSION

While we have described a composition of model objects
as one for the conformance test model and another for the
robustness model, and using model composition and scenario
slicing to create robustness patters, it is possible to further
decompose these models as much as desired. The actual
composition we support is not limited in the number of
model objects and thus the operation can be seen as T = CN

∪ RN ∪ ON, where N refers to having any number of these

in the end result. However, in practice we have found that a
smaller number of model objects makes it much easier to
manage the overall set of patterns. For a protocol such as
SIP, where there is a relatively small set of potential
messages having one C, R, and O has worked well for us.
For more complex protocols it may be necessary to split
these further, for example, to make model composition and
slicing for different test purposes and patterns easier.

As it is, in the work presented in this paper we have so
far focused on the SIP protocol. More generally, we see the
approach applicable more widely to different protocols and
networked systems. The architecture, conformance and
robustness models, and robustness pattern definitions simply
need to be adapted to the new specifications. This means
creating suitable protocol adapters, and defining the valid
and invalid sequences to be used for test generation. That is,
the overall framework and modelling approach is intended to
be easily specialized for a variety of protocols.

So far our test execution and generation has focused on a
single host environment. For now we have found this to be
sufficient for our testing needs, as modern systems can run
numerous clients in parallel even on a single multi-core
system. However, more distributed systems are needed to
address more realistic usage scenarios as well as to scale to
very large scale testing. This would also include modelling
different concurrent users more realistically in terms of
latencies, burst traffic, occasional robustness scenarios
interleaved with conformance scenarios, and other similar
attributes. In our previous work, we have investigated
distributed model-based test generation [20]. In the future we
hope to extend also our test framework to make use of this
type of strategies, including distributed (cloud) deployments.

Another interesting point of extension for this work is to
include actual specific security related attacks to the
robustness patterns. Currently we mainly use fuzzing related
patterns, which change the inputs in different ways and
evaluate the SUT robustness. Additionally, specific inputs to
target specific vulnerabilities in underlying backend systems

52Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

could be of interest. Generally, we are also looking at
extending our work to cover more aspects as well, such as
quality of service for the call under different conditions.

When executing large scale test cases, the biggest issue
we observe is making reliable overall assertions about the
system state. For this reason we have at large scale mostly
focused on observing overall performance across large sets
of users. However, when issues are observed from such large
scale tests, debugging them for root cause analysis can be
very challenging due to large numbers of different types of
interacting clients and servers. While these issues are not
specific to our approach but to large scale testing in general,
in the future we hope to explore better solutions to these
issues as well and integrate these into our approach as easily
applicable solutions.

VI. CONCLUSIONS

In this paper, we have presented an architecture, a set of
test models and ways to compose and slice these to form a
holistic test framework for the SIP protocol. Our framework
supports conformance testing, robustness testing, and
performance testing, with each part building on top of the
previous, allowing for an effective and extensive
implementation. We are currently extending the work by
collecting a wider set of patterns building on top of the
framework presented in this paper, as well as applying these
in industry case studies. In the future, we are interested in
refining this work based on practical applications and
experiences, and extending it to more diverse set of
protocols.

VII. REFERENCES

[1] W. Grieskamp, N. Kicillof, K. Stobie and V. Braberman,

"Model-Based Quality Assurance of Protocol Documentation:

Tools and Methodology," Journal of Software Testing,

Verification and Reliability, vol. 21, no. 1, pp. 55-71, 2011.

[2] M. Sutton, A. Greene and P. Amini, Fuzzing: Brute Force

Vulnerability Discovery, Addison-Wesley, 2007.

[3] H. J. Abdelnur, R. State and O. Festor, "KiF: A Stateful SIP

Fuzzer," in Proceedings of the 1st international conference on

Principles, systems and applications of IP

telecommunications (IPTComm2007), 2007.

[4] P. Tsankov, M. T. Dashti and D. Bashin, "Semi-Valid Input

Coverage for Fuzz Testing," in International Symposium on

Software Testing and Analysis (ISSTA2013), 2013.

[5] M. Utting and B. Legeard, Practical Model-Based Testing: A

Tools Approach, Morgan Kaufman, 2006.

[6] C. Caba and J. Soler, "An IMS Testbed for SIP Applications,"

in Principles, Systems and Applications on IP

Telecommunications - IPTComm '13, 2013.

[7] L. Roly and L. Schumacher, "SIP Overload Control Testbed:

Design, Building and Validation Tests," in IEEE Consumer

Communications and Networking Conference, 2011.

[8] SailFin, "SailFin Project," [Online]. Available:

https://sailfin.java.net/. [Accessed 23 4 2014].

[9] SIPp, "SIPp," [Online]. Available: http://sipp.sourceforge.net.

[Accessed 23 4 2014].

[10] F. Lalanne and S. Maag, "A Formal Data-Centric Approach

for Passive Testing of Communication Protocols," IEEE/ACM

Transactions on Networking, vol. 21, no. 3, pp. 788-801,

2013.

[11] D. Bao, D. C. Carnì, L. D. Vito and L. Tomaciello, "Session

Initiation Protocol Automatic Debugger," IEEE Transactions

on Instrumentation and Measurement, vol. 58, no. 6, pp.

1869-1877, 2009.

[12] P. Xiong, C. Pu, X. Zhu and R. Griffith, "vPerfGuard : an

Automated Model-Driven Framework for Application

Performance Diagnosis in Consolidated Cloud

Environments," in International conference on performance

engineering (ICPE '13), 2013.

[13] M. H. Sørensen, "Use Case-Driven Performance Engineering

without "Concurrent Users"," in International Conference on

Performance Engineering (ICPE '13), 2013.

[14] S. Taber, C. Schanes, C. Hlauschek, F. Fankhauser and T.

Grechenig, "Automated Security Test Approach for SIP-

Based VoIP Softphones," in Internation Conference on

Advances in System Testing and Validation Lifecycle

(VALID2010), 2010.

[15] P. Steinbacher, F. Fankhauser, C. Schanes and T. Grechenig,

"Work in Progress : Black-Box Approach for Testing Quality

of Service in Case of Security Incidents on the Example of a

SIP-based VoIP Service," in Principles, Systems and

Applications of IP Telecommunications (IPTComm2010),

2010.

[16] "JSIP: Java API for SIP Signaling," [Online]. Available:

https://jsip.java.net/. [Accessed 24 4 2014].

[17] IETF, "RFC 3261 SIP: Session Initiation Protocol," IETF,

2005.

[18] IEEE, "IEEE Standard Glossary of Software Engineering

Terminology," IEEE Std 610.12-1990, 1990.

[19] T. Kanstrén, "OSMO Tester Home Page," April 2014.

[Online]. Available: http://code.google.com/p/osmo.

[Accessed April 2014].

[20] T. Kanstren and T. Kekkonen, "Distributed Online Test

Generation for Model-Based Testing," in Asia Pacific

Software Engineering Conference, 2013.

53Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

