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Abstract— Testing traditionally focuses on specific aspects of a 

system separately, such as functional conformance, robustness 

and performance. In this paper, we present a protocol test 

automation framework that considers these different 

viewpoints as a whole. It starts with a common architecture for 

protocol testing at different scales. A set of test models on top 

of this architecture are presented for addressing the different 

types of testing. Each of these models builds on top of another, 

starting with conformance testing, followed by robustness 

testing and finally overall performance testing. We apply the 

framework to session initiation protocol (SIP). 
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I.  INTRODUCTION 

Testing is a multifaceted discipline. It needs to verify 
various aspects of system behavior, including performance, 
robustness, and functional conformance. Different types of 
testing further have various coverage criteria, many specific 
to the type of testing and to the domain of the system under 
test (SUT). Covering these different types of testing and their 
different coverage criteria extensively can be very expensive. 
Commonly each system is also different, and creating largely 
re-usable test automation frameworks and test suites is 
difficult. In such cases, we commonly choose the most 
critical pieces of the SUT and target most of our coverage on 
those parts. 

When systems are based on a set of standardized 
protocols, the test frameworks and test suites for those parts 
can be more extensively re-used and potential for extensive 
test automation frameworks is higher. A test framework for a 
standardized protocol can be applied on many different 
systems. In fact, protocol testing is an active field of research 
and various tools for testing different aspects of different 
protocols exist. A large scale example of this is the protocol 
conformance testing effort by Microsoft for testing more 
than 250 protocols [1]. For robustness testing, another 
example is protocol fuzzers which are a popular type of tool 
used to test robustness protocol implementations [2] and a 
popular research topic (e.g., [3, 4]). Fuzzers manipulate the 
protocol messages and the contained data to evaluate how 
the implementation can handle malformed inputs. 

However, while there exist a wide range of protocol 
testing research and tools, these traditionally target a narrow 
part of the overall quality assurance for a protocol and the 
system built using that protocol. In this paper, we present a 
holistic test automation framework for protocol testing. It is 
aimed at supporting testing the protocol implementation at 
the basic protocol stack level, testing the protocol application 
to communication between two nodes, and to testing the 

application of the protocol to the overall communication in a 
large distributed system. It is also aimed at supporting 
conformance testing, robustness testing, and performance 
testing using model-based techniques with each testing type 
building on top of the previous one. 

While some adaptation of the framework architecture is 
required in going from testing a protocol stack in isolation to 
testing the protocol use at larger scale, defining the overall 
common concepts enables us to build reusable components 
for the overall framework and to systematically build better 
quality into the different layers. With the different model-
based test approaches we gain a diverse coverage for 
different types of testing, while reducing the costs in building 
the different models as layers on top of each other. 

As our work on this has been practically performed in the 
context of the session initiation protocol (SIP), we present 
the application of the framework and its specialization for 
SIP as a running example throughout the paper. 

The rest of the paper is structured as follows. Section II 
introduces the important background concepts and related 
works. Section III presents the components of our framework 
architecture. Section IV presents the set of test models for 
different types of testing and their composition. Section V 
discusses the concepts more broadly, and finally conclusions 
end the paper.  

II. BACKGROUND AND RELATED WORKS 

In this section, we give a brief introduction to relevant 
concepts for this paper, and present related works in protocol 
testing. 

A. Session Initiation Protocol (SIP) 

Throughout the rest of this paper, we will use session 
initiation protocol (SIP) as a running example to demonstrate 
the relevant concepts. SIP is a protocol used for signaling in 
setting up communication sessions. Typical usage scenario is 
Voice over IP (VoIP), where different endpoints use SIP 
based communications to signal call control flow. Various 
other protocols can then be used for the actual call (such as 
voice and video transport). We focus here only on control 
flow signaling which is what the SIP protocol is for. Figure 1 
illustrates the basic call flow in such scenario. 

Beyond this basic call setup shown in Figure 1, there can 
be various configurations such as the call going through one 
or more proxies, changing call details in mid-call (e.g., re-
negotiating quality parameters), or several parties together 
negotiating a conference call. Figure 2 illustrates these 
different configurations from the testing perspective in four 
different cases (A-D). 
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Figure 1. Basic SIP call flow. 
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Figure 2. SIP system configurations. 

In the rest of the paper, we will refer to these different 
scenarios in Figure 2 as scenarios A, B, C and D, or more 
generally scenarios A-D. In scenario A, we test the protocol 
stack in isolation as a single unit (or module). In scenario B, 
we test two devices communicating directly with each other. 
In scenario C, we test two devices communicating with a 
server connecting them. In scenario D, we have multiple 
devices all communicating together in a single call session, 
potentially across several servers as well. Sometimes these 
clients can also move during the call between servers 
(mobile clients). We will look at testing these in more detail 
in Section III with our test framework architecture and in 
Section IV with our test models. 

B. Model-Based Testing 

Model-based testing (MBT) is a concept we use widely 
in this paper. We follow the definition of MBT given in [5] 
as “generation of test cases with oracles from a behavioral 
model”. That is, the system is described using a behavioral 
model, in our case as a set of rules and actions, and test cases 

to exercise the behavior of interest are generated from these 
models by a test generator tool. SIP conformance testing is a 
case study quite often used in the MBT literature [5]. 
However, as we discuss in Section II.C, the existing work is 
mainly limited to conformance testing and in this paper, we 
discuss this more broadly with also applications to non-
functional testing of robustness and performance.  

As mentioned, our use of MBT is based on test models 
defining a set of rules and actions. In this case, the actions 
define some functions to be executed on the SUT. In the case 
of SIP these actions are typically sending SIP request 
messages. The rules in the test model define when each of 
these actions are allowed. Following these rules, a test 
generator can then produce a set of test cases following the 
test specification (the test model). As the generator follows 
the rules, it produces valid test cases. These are valid from 
the test model perspective, and thus we can also define, for 
example, a robustness test model for producing invalid data 
and invalid sequences. In such a case, the test model will 
describe the types of invalid data we are interested in.  

In addition to the SIP requests in the test model, SIP 
responses are handled by the overall test framework as we 
will discuss in Section III. All these elements are linked to 
form the overall test framework, including test oracles at 
chosen detail level. 

Figure 3 shows some example rules and actions for 
testing a single device SIP scenario. The solid boxes are the 
actions and the attached dashed boxes are the rules for those 
actions.  

[Reg., No call]
INVITE

[Call on]
BYE

[Unregistered]
REGISTER

[Registered]
UNREGISTER

 
Figure 3. Example rules and actions. 

In this case, the names in the action boxes in Figure 3 are 
different SIP request messages. For example, invite is a 
message used in SIP to establish a call between two parties. 
However, if a SIP proxy server is used, the parties (SIP user 
agents) have to register with the SIP server to allow the call 
(the “registered” rule in Figure 3). This is only allowed if not 
yet registered, and the registration action updates the model 
state to registered. Once registered, invite is then allowed. 
After a call is established, it can be terminated using the bye 
message.  

The model in our case is a form of a model program, 
implemented to send the SIP messages for these actions and 
to maintain the state of the test client. This state is then used 
in the rules to define when actions are allowed. This is a 
common approach to MBT as described in e.g. [5, 1]. 

In addition to sending request messages, the tester needs 
to be able to handle other protocol messages as well. For 
example, the Trying, OK and ACK messages shown in 
Figure 1 cannot be expressed as actions as they are not 
actions initiated by the test client (or the test model). Instead, 
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the test framework must be able to process such received 
messages from the test target(s), update its state (e.g., call 
established) and to check that required responses are 
received correctly (such as Trying message when expected). 
That is, the basic functionality of the protocol should be a 
part of the test framework and the test model is built on top 
of this. Verification of this test framework then comes from 
its application to several test targets, each providing a 
verification of the applied test framework itself. 

C. SIP Protocol Testing 

One the largest efforts in protocol testing is the Microsoft 
protocol documentation assurance effort described in [1] for 
testing more than 250 different protocols to ensure 
documentation quality and regulatory conformance. The 
process and tools to perform this validation have been 
described in detail in [1]. Conformance testing for a protocol 
includes describing the expected normative behavior of the 
protocol, meaning the allowed and required messages, their 
sequences and the data values. In the Microsoft case, both 
model-based and manual test creation methods were used, 
which in our experience reflects the general good test 
automation practices. In such a case, a test model reflects the 
protocol behavior, and test cases can be generated with a 
MBT tool from this model. Test execution is built on top of a 
component based adapter layer, which also forms a basis for 
creating manual test cases as required. Our general test 
automation architecture adapts elements from this and 
includes addressing also larger scale distributed systems and 
different robustness and performance testing. It thus also 
enables more complex and realistic test scenarios. 

An example test automation framework for SIP 
conformance testing is presented in [6]. In this case, the 
framework provides a simulated SIP service environment 
that can be configured to provide different responses and 
services for SIP user agents. For example, an emulated user 
agent can be configured to perform call forwarding for a 
specific user, allowing the tester to focus on scenarios that 
make use of such SIP services. The work in [6] is aimed at 
conformance testing of different services built on top of SIP, 
and non-functional testing (performance) is left out of scope. 

A test automation framework for performance testing is 
presented in [7]. This framework uses existing SIP platforms 
and tools such as SailFin [8] and SIPp [9] to generate 
different types of traffic to test performance of SIP agents. 
This includes traffic bursts, linearly increasing traffic and 
other such usage profiles. Mentioned problems include 
difficulty to implement complex interactions between agents 
as well as control of generated traffic due to limitations of 
the third party tools used for generating traffic. That is, the 
external tools used do not have support for the required level 
of control in fine grained performance testing. We use 
similar traffic profiles as part of our performance models, 
and integrate these with conformance and robustness test 
models. 

A test automation approach based on passive monitoring 
of operational SIP based systems is presented in [10]. In this 
case, the idea is to describe the system expected behavior as 
a set of formalized properties, and use operational 

monitoring to assess whether the observed system behavior 
matches this expected specification. A similar approach 
taken in [11] provides a general specification of a protocol, 
creating a model of system behavior in different phases 
starting from observing network traffic to grouping it as 
transactions and dialogs. Finally, these are compared to the 
set of rules given in the specification. We do not explicitly 
do this type of passive monitoring as we also perform active 
generation of request messages. However, the part of our test 
framework related to listening for response messages and 
asserting the overall system behaviour based on those 
responses and their relation to test model state uses similar 
concepts. 

During performance testing, we have to collect various 
metrics on system performance to evaluate how the different 
actions and parameters applied affect the performance. These 
measurements are collected by deployed probes, which can 
be located on the different nodes in a distributed system, or 
measuring the connecting network. For example, [12] 
describes using numerous measures collected such as CPU 
load, network load, interrupts and context switches on SUT 
nodes as a basis for a performance model. These are 
combined to form a detailed view of how the different 
components in the system affect the system performance.  A 
high-level, specific, metric for performance testing of 
networked services is suggested in [13] as throughput. 
Throughput here means the number of requests (or 
transactions) performed on the system over a given time unit 
(such as a minute). In summary, we need both a high-level 
definition of what system overall performance means for us, 
as well as means to find the bottlenecks when relevant. In 
our case, we use the number of SIP messages processed as a 
basic metric, and focus using more detailed probes where 
necessary. 

For robustness testing, a stateful fuzzer for SIP is 
presented in [3]. This is based on two components: syntax 
fuzzer and state evaluator. Besides the traditional data 
fuzzing and checking of aliveness of SUT, this approach also 
checks that the correct responses (state transitions) are 
observed on the SUT and that the data provided in these 
responses is valid. Checks on the SUT are performed using 
basic protocol messages to verify the SUT is alive and in 
correct state. To describe the SUT behavior in [3], a state-
machine is learned from observing the protocol 
implementation. Messages are associated to different 
simulated clients and separate state-machines are upheld for 
each, to check responses and transactions against. Different 
combinations and mutations of messages are used to provide 
fuzzed messages where different field values are modified 
using protocol knowledge for invalid messages and where 
some field can be repeated or otherwise the overall structure 
fuzzed. 

A method coverage analysis for protocol fuzzing is 
presented in [4]. Constraints for message formats and 
processing are defined based on protocol specification 
analysis. The constraints are formally specified and a test 
generator is used to generate fuzz tests to cover them. 
Sometimes effectively fuzzing different parts of the protocol 
and interactions may require accessing deeper parts of the 
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protocol state-machine, requiring techniques similar to [3] in 
initiating the protocol to initial phases before fuzzing. 

A fuzzing tool for SIP softphones is presented in [14]. 
This is based on defining templates that identify specific data 
values to fuzz for different SIP messages. The SUT is then 
driven to specific states using scripts and these fuzzed 
messages are injected at these locations in the protocol flow. 
Additional generic SIP specific fuzzing algorithms are also 
used, such as re-ordering of SIP headers and defining 
patterns of specific SIP data vulnerabilities. Finally, the SUT 
is monitored to evaluate whether it crashes or produces 
invalid responses.  

In [15], performance and robustness testing are combined 
to evaluate robustness of the system under heavy load. 
Different types of attacks against SIP based systems are 
defined, a specific valid load is generated on the system, 
after which different attack types are launched. System 
performance is measured before, during, and after the attack. 
The results indicate system performance in face of attacks 
under different loads both temporarily and long term. 

III. SIP TESTER ARCHITECTURE 

To address both the need to test the different 
configurations (A-D) described in Figure 2, and the different 
types of testing we are interested in (conformance, 
performance, robustness) we have to consider both a test 
framework architecture for executing tests and a set of 
different test models for generating tests. The architecture 
needs to support both manual test creation and execution, as 
well as test generation (and execution) from test models. 
This means considering the different aspects similar to 
discussed in [1] but also considering a broader context of 
testing interacting systems and not just the protocol stack. 
The following subsections describe our test framework 
architecture, which is illustrated in Figure 4 (S illustrates the 
shared state). The test models will be described in Section 
IV. 

Test Client

Protocol Stack

Output 
Modifier

SUT

Verification 
Engine

Test
Controller

S

 

Figure 4. Component Architecture. 

A. Protocol Stack 

To be able to use the tested protocol and evaluate the 
SUT against it, the test framework also has to implement the 
basic protocol stack. This consists of parsing and creating 
messages, and delivering these across the network. 
Optimally, existing code or an available stack such as an 
open-source implementation can be re-used. However, 
sometimes this is not possible due to issues related to the test 
framework requiring high degree of control and observability 

over the protocol, which may not have been factors in 
building some of the available tools and libraries. 

In our case, we have implemented our test environment 
in Java and used the Jain-SIP protocol stack implementation 
[16]. In this case, our experience has been that using this 
type of an open-source stack can save some time initially in 
getting started, but the control and visibility over protocol 
details is limited. Also, some of the functionality is limited 
such as lack for proper SIP authentication support. Lack of 
control and visibility is due to regular user not requiring 
detailed access to protocol manipulation, and attempting to 
abstract some parts of the protocol from the user where 
possible, such as SIP dialog control. However, in order to 
build a protocol tester, we need to understand the protocol 
and be able to verify its specifications in sufficient detail. For 
this reason, as we need to know and understand the details 
anyway, we find it better to actually implement the stack, at 
least for the most parts on our own. 

As such, we conclude that to have a robust and powerful 
base for a protocol tester we need our own highly reliable, 
configurable and observable stack. In an optimal case, we 
can write one. In practice, resources for this may not be 
available especially for more complex protocols. In such 
cases, we need to look at our options with available stacks or 
with directly using an existing protocol client (such as a SIP 
softphone or SIP tester such as SIPp [9]). 

B. Test Adapter 

On top of the protocol stack, a test adapter capable of 
performing stateful transactions against a test target has to be 
implemented. The test adapter should support higher level 
functions such as initiating and terminating calls, managing 
responses from the SUT, and maintaining the protocol state 
for itself according to these actions and responses. In this 
sense, it is similar to a SIP softphone but does not have to 
implement a user interface as it is controlled by the test tool. 

There are many existing SIP softphones available (such 
as Twinkle and Linphone), and these can be used if 
programmatic control over them is available. Their 
usefulness depends largely on the extent of remote control 
supported, and the ability to observe details about the results 
and responses from the SUT. In our experience, most of the 
actual SIP clients have limited support or no support at all 
for such control. However, SIPp is a SIP performance test 
tool that does provide many such features. While it is limited 
in its support for detailed control and visibility for 
conformance or robustness testing, it can be a useful starting 
point for fast test automation prototyping for suitable parts. 

Optimally, the test adapter provides a simple and fast 
network interface to control it, create protocol messages, and 
receive notifications about SUT responses. Separating the 
adapter from the rest of the test framework as a separate 
networked service allows for using any tools available to 
implement it and to reuse the controllers and output 
modifier(s), as well as any existing tools and libraries for 
different platforms to build adapters. For example, SIPp 
provides a UDP communication and control interface, and 
similar interfaces are also used by other successful test 
frameworks, such as Selenium Webdriver for web 
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applications (which creates and sends JSON requests over 
the network). This also allows building different controllers 
on different platforms, using the same adapters, when 
required. 

To summarize, optimally the test adapter provides a 
stateless control and observation interface to the underlying 
protocol. This allows the test controller to create various 
types of protocol messages and observe the results at a 
selected level of detail. 

C. Test Controller 

To produce actual, executable test cases, a test controller 
is required. In the case of manually scripted test cases, this 
executes the given scripts using the test adapter. In the case 
of using a test generator, this generates the scripts based on a 
test model and executes them using the test adapter. In a 
distributed multi-client scenario similar to scenario D in 
Figure 2, the controller manages several adapters in parallel. 

The controller upholds the test state. When testing 
scenarios B and C, this means keeping track of the current 
state of the test client. When testing scenario D, this means 
tracking all the different test adapters and their connections. 
It shares this state with the verification engine, which makes 
assertions about the correct responses received from the SUT 
based on the controller actions. The adapters can be 
distributed across the network or on a single machine. 

D. Verification Engine 

A central part of testing is the test oracle, which is a 
component used to verify that the expected properties hold at 
the selected points of time in the testing process. For 
different types of tests, different types of verification engines 
are required. In conformance testing, the received responses 
are typically checked after specific actions (such as initiating 
a call) have been performed. In performance testing, we are 
interested in measuring the response times to the messages 
and collecting various metrics on the SUT to assess the 
impact of test load. In robustness testing, we are interested in 
observing the state of the target system and using this 
information to make assertions about how invalid inputs 
impact the SUT state and responses. 

The verification engine performs these various checks to 
evaluate test results during system operation. The checks 
performed can be split into passive and active checks. Active 
checks are performed as specific checks at specific points in 
the test execution, e.g., to establish that response messages 
such as TRYING, ACK, and OK are received when required 
and contain the correct data related to their associated 
requests. Examples of passive checks would be to track that 
messages that require a dialog should not be received outside 
dialogs, or to continuously ping the SUT to ensure it is alive.  

For active verification, the verification engine has to 
share state with the test controller to be able to make the 
required assertions. For some forms of passive verification 
such as pinging the SUT this is not required but the 
verification engine still has to communicate back to the test 
controller to notify of any failed checks. This then fails the 
executed test and reports the results back to the user. 

E. Output Modifier 

The output modifier is used by the test controller during 
robustness testing to invoke specific modifications on the 
input messages produced by the test client. Test data is 
passed through the output modifier and forwarded to the 
SUT. During robustness testing, the test controller can enable 
different types of fuzzing patterns to be applied to the data, 
while during other types of testing the output can be 
forwarded as is. 

IV. TEST MODELS 

This section discusses different types of test models we 
use for testing conformance, performance and robustness and 
how these relate to the architecture. The basis is the 
conformance test model, and the other models specialize and 
extend it in different ways. These models are also different 
depending on the type of scenario addressed. For scenario A, 
the models target the protocol stack functionality, 
performance and robustness. For scenarios B and C, the 
models target the interactions of a single client with other 
nodes in the network. For scenario D, the models target the 
overall system behaviour. In our testing, we have focused at 
the level of scenarios B-D, and assume that the stack will be 
tested sufficiently as part of these test cases and separately at 
unit and component testing level by the developers. 

While describing these as test models implies our 
preference towards model-based test generation, it is equally 
possible to use the information in the models to create test 
cases manually. The test model is used by the test controller 
as a part of the overall test framework. 

A. Conformance Test Models 

The conformance model describes the expected 
functional behavior of the SUT as described by its 
specification. In the case of scenarios B and C, this is the SIP 
RFC 3261 [17]. In scenario D, the specification describes the 
expected behaviour of the overall system and its interactions. 
Table I lists the basic rules and actions for the scenario B and 
C model. Table II lists the basic rules and actions for the 
scenario D model. 

TABLE I. SCENARIO B AND C MODEL ELEMENTS. 

ID Rules Action 

S_R Unregistered Register 

S_U Registered Unregister 

S_I Registered, No Call Invite 

S_C Registered, Calling Cancel 

S_O Registered Options 

S_B Registered, Call On Bye 

S_M Registered Message 

The actions in Table I are basically the SIP request 
messages as described in [17]. For scenario B and C, the test 
model is focused on generating requests to interact with the 
SUT. In addition to this, the test framework must handle the 
responses from the SUT, such as failures, errors, and 
successes. It must also provide its own responses to such 
messages when required, such as the ACK message to the 
OK for INVITE. In our test framework architecture, the test 
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controller executes the tests and maintains the relevant state 
information to manage the responses. The state information 
describes the protocol interaction state including registration 
status, call invite status, and ongoing call status.  

Additionally, the model has to define the valid data 
values in order to properly evaluate the conformance of the 
system and to expect the correct responses.  

TABLE II. SCENARIO D MODEL ELEMENTS. 

ID Rules Action 

SD_R Phones < MAX_P Register Phone 

SD_U Phones > 0 Unregister Phone 

SD_I Free Phones >= 2 Initiate Call 

SD_T Busy Phones > 0 Terminate Call 

SD_S Servers < MAX_S Start Server 

SD_X Servers > 0 Stop Server 

For scenario D, our model is focused on testing high-
level interactions of different communicating entities in the 
overall system. As illustrated in Figure 2-D, there may be 
several servers and phones or other SIP user agents in the 
system, connected in various ways. The actions shown in 
Table II allow dynamic creation of such configurations and 
to establish and terminate connections between the nodes. 
Test framework/model state in this case consists of the nodes 
and their status. The state for SIP clients is the same as for 
scenario B and C, including the connected nodes in a call. 
The SUT in this case is the overall system interactions. The 
model of a SIP phone described in Table I can be used to 
represent a phone, which is controlled by an overall system 
test model. 

The test oracles for the verification engine in the 
conformance model are checks of the test model state against 
the SUT state. This means we will check that when the SUT 
should accept a call, the invite message passes and the call is 
established. Similarly, when registration should succeed, the 
response is expected to be a success. After an invite has been 
performed but before the call is started, a cancel message 
should stop the call from starting. Once a call is started, a bye 
message should stop the call and allow re-starting a new call 
with another invite. Similar checks are performed at every 
point during the execution of a generated test case with 
regards to every request message performed, and every 
response message received. As the test controller maintains 
the system state according to performed actions, it can 
automatically verify all these properties with minimal effort. 

B. Robustness Test Models 

We define robustness according to the IEEE glossary as 
“The degree to which a system or component can function 
correctly in the presence of invalid inputs or stressful 
environmental conditions.” [18]. In our robustness models, 
we consider both invalid interaction sequences as well as 
invalid input data. We represent the interaction sequences 
with similar models to the conformance model, and the input 
data using the output modifier configured with message 
modification patterns. 

Defining invalid inputs and their expected responses 
explicitly can be challenging as many protocol definitions 

have required parts (must) and optional parts (may). In many 
cases, also ambiguities exist and different implementations 
have taken different interpretations of these. Due to this, we 
classify any issues observed either as warnings or errors. 
Warnings are issues related to potential issues, while errors 
indicate clear problems in the implementation. 

Our robustness models specialize the conformance 
models by changing specific parts of the models to produce 
invalid interaction sequences and data. We call these 
specializations robustness model patterns. To do this, several 
mechanisms of our MBT tool [19] are used. These are model 
composition, startup-sequences, and model slicing. 

Model composition refers to combining several separate 
model objects together. The normative model elements are 
expressed using the conformance models as shown in Table I 
and Table II. The invalid sequences are in a separate model 
object that is combined with the conformance model by the 
test generator. If we call the conformance model C and the 
robustness model R, the actual base test model T is their 

union, T = C ∪ R. Example robustness rules and actions for 

the model in Table I are shown in Table III. 

TABLE III. ROBUSTNESS MODEL ELEMENTS. 

ID Rules Action 

SR_R Registered Register 

SR_U Unregistered Unregister 

SR_I SUT in call Invite 

SR_C SUT not called Cancel 

SR_O Not registered Options 

SR_B No call with SUT Bye 

SR_M Not registered Message 

Startup-sequences are used to initiate the SUT into a state 
of interest for the robustness test pattern. These can be used 
to drive the initial test generation to a specific state by 
making the generator take a specific set of steps before 
starting its own algorithmic generation. For example, we can 
define one from the model in Table II as “Register, Invite”, 
which means the generator will start all test cases with this 
sequence and thus the tests will start from a valid registered 
state with a valid initiated call started with the SUT. 

Model slicing allows us to define which parts of the 
model are to be used for generation and how much they are 

used. If we take the test model T = C ∪ R, the sliced model 

S is then a subset of T, S ⊂ T. The slice can either remove a 
step from T completely or limit the number of times it can 
appear in T. The slice does not affect the startup sequence 
and the startup sequence does not affect the slice, allowing 
these to independently define different elements of the 
robustness test scenario. For example, the slice may forbid 
any invite messages but the startup sequence can still use 
them as the slice only affects parts after startup. 

As an example, let us show a pattern for robustness 
testing registration handling for a single node during an 
ongoing call. This is illustrated in Table IV. In this case our 

model is T = C ∪ R as discussed, where C equals the model 

shown in Table I and R equals the model shown in Table III. 
Using this pattern configuration, the generator will generate 
sequences that always start with valid register and invite 
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messages. This is then followed by any allowed messages 
except bye, which is forbidden by the slice. Notice that this 
pattern also includes and allows all steps in R. 

TABLE IV. EXAMPLE ROBUSTNESS PATTERN. 

Element Value 

Startup S_R, S_I 

Slice !S_B 

Additionally, the output modifier patterns change the 
created messages in various ways: 

 Duplicate headers and message parameters 

 Remove headers and message parameters 

 Modify headers and message parameters 
When running robustness tests, the test oracle definitions 

require some special attention. We can define how each of 
the invalid input producing steps should impact the SUT 
operation and state. Typically this would be to ignore the 
input with invalid data or sequences. In other cases we can 
also define specific impacts and update state accordingly. 
For example, if we consider security vulnerability scanning 
as part of robustness, some specially crafted input for such 
tests can be considered valid but should have no unwanted 
side-effects. In these cases, we should update the state in 
those steps, and evaluate the oracles accordingly. 

However, due to different specification interpretations or 
desire to provide flexibility in communicating with other 
endpoints of varying quality, the responses to some of the 
robustness input may differ, and the SUT may accept some 
of them as valid. For example, duplicate headers produced 
by the output modifier may be interpreted as an issue or not 
in the SUT. In such cases, we can choose to disable some of 
the more strict oracles for those models and tests generated 
from them and focus on the more generic ones to check the 
system for generic properties such as not crashing or ending 
up in a bad state for any node, or consume excess resources 
over time. 

For such cases, the test oracles that make such assertions 
can also be represented as their own model object(s). The 

test model T then becomes T = C ∪ R ∪ O, where O is the 

model object holding these oracles. By removing O, or parts 
of it, from the equation, the oracles can be disabled as 
required. In any case, as mentioned the generic test oracles 
are always valid, such as pinging the SUT and checking error 
codes. These can also be configured to run at specific 
intervals to check for general properties in, e.g., long running 
performance tests. 

C. Performance Test Models 

Our performance test models are combinations of 
different configurations of the conformance and robustness 
test models. They are intended to explore the performance 
limits of the SUT under different environment and load 
conditions. They represent different usage scenarios for 
different types of user profiles in the system. Basically we 
use our conformance test models as valid client type and the 
robustness model instances as another (invalid) client types.  

Similar to [7], we use different types of traffic patterns 
for specific user profiles, such as traffic bursts and linear 

increase in traffic. We start with our conformance test model 
clients as the reference set of providing the system 
performance under these different types of varying load. 
Once we have this model, we apply our different types of 
robustness test patterns as clients to represent invalid data, 
similar to attacks discussed in [15]. Finally, we re-run the 
initial reference test set with the conformance test clients for 
valid data and compare the results with the initial run before 
invalid data was used. We then use these results to give us a 
model for the overall system performance under different 
types of load. 

V. DISCUSSION 

While we have described a composition of model objects 
as one for the conformance test model and another for the 
robustness model, and using model composition and scenario 
slicing to create robustness patters, it is possible to further 
decompose these models as much as desired. The actual 
composition we support is not limited in the number of 
model objects and thus the operation can be seen as T = CN 

∪ RN ∪ ON, where N refers to having any number of these 

in the end result. However, in practice we have found that a 
smaller number of model objects makes it much easier to 
manage the overall set of patterns. For a protocol such as 
SIP, where there is a relatively small set of potential 
messages having one C, R, and O has worked well for us. 
For more complex protocols it may be necessary to split 
these further, for example, to make model composition and 
slicing for different test purposes and patterns easier. 

As it is, in the work presented in this paper we have so 
far focused on the SIP protocol. More generally, we see the 
approach applicable more widely to different protocols and 
networked systems. The architecture, conformance and 
robustness models, and robustness pattern definitions simply 
need to be adapted to the new specifications. This means 
creating suitable protocol adapters, and defining the valid 
and invalid sequences to be used for test generation. That is, 
the overall framework and modelling approach is intended to 
be easily specialized for a variety of protocols. 

So far our test execution and generation has focused on a 
single host environment. For now we have found this to be 
sufficient for our testing needs, as modern systems can run 
numerous clients in parallel even on a single multi-core 
system. However, more distributed systems are needed to 
address more realistic usage scenarios as well as to scale to 
very large scale testing. This would also include modelling 
different concurrent users more realistically in terms of 
latencies, burst traffic, occasional robustness scenarios 
interleaved with conformance scenarios, and other similar 
attributes. In our previous work, we have investigated 
distributed model-based test generation [20]. In the future we 
hope to extend also our test framework to make use of this 
type of strategies, including distributed (cloud) deployments. 

Another interesting point of extension for this work is to 
include actual specific security related attacks to the 
robustness patterns. Currently we mainly use fuzzing related 
patterns, which change the inputs in different ways and 
evaluate the SUT robustness. Additionally, specific inputs to 
target specific vulnerabilities in underlying backend systems 
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could be of interest. Generally, we are also looking at 
extending our work to cover more aspects as well, such as 
quality of service for the call under different conditions. 

When executing large scale test cases, the biggest issue 
we observe is making reliable overall assertions about the 
system state. For this reason we have at large scale mostly 
focused on observing overall performance across large sets 
of users. However, when issues are observed from such large 
scale tests, debugging them for root cause analysis can be 
very challenging due to large numbers of different types of 
interacting clients and servers. While these issues are not 
specific to our approach but to large scale testing in general, 
in the future we hope to explore better solutions to these 
issues as well and integrate these into our approach as easily 
applicable solutions. 

VI. CONCLUSIONS 

In this paper, we have presented an architecture, a set of 
test models and ways to compose and slice these to form a 
holistic test framework for the SIP protocol. Our framework 
supports conformance testing, robustness testing, and 
performance testing, with each part building on top of the 
previous, allowing for an effective and extensive 
implementation. We are currently extending the work by 
collecting a wider set of patterns building on top of the 
framework presented in this paper, as well as applying these 
in industry case studies. In the future, we are interested in 
refining this work based on practical applications and 
experiences, and extending it to more diverse set of 
protocols. 
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