
Inconsistencies-based Multi-Region Protocol
Verification

Tukaram Muske, Amey Zare
TRDDC, Tata Consultancy Services,

54 B, Hadapsar I.E., Pune, India
{t.muske, amey.zare}@tcs.com

Abstract—Software in complex systems like embedded systems
usually include protocols (Sleep Wakeup, Controller Area Net-
work Communication, and so on) implemented in multiple code-
regions, and these protocols are crucial for the system correctness.
For such protocol implementations, code review and testing often
fail to detect some of the critical bugs. Many of these bugs are
traced back to inconsistencies in the implemented code-regions.
We present a new verification technique that identifies likely
coding inconsistencies by computing and comparing protocol-
critical information over given protocol code-regions. These
inconsistencies are then manually validated. In our experiments,
the presented technique detected critical bugs that were missed
during code reviews and testing.

Index Terms—Embedded Systems; Validation and Verification;
Protocols Verification; Coding Inconsistencies

I. INTRODUCTION

Complex systems such as embedded systems usually im-
plement various protocols like as Security, Controller Area
Network (CAN) communication and Sleep Wakeup in cer-
tain patterns. In one pattern, actions of these protocols are
implemented over several parts of the system. For example,
actions in CAN communication protocol [1] include data en-
coding/decoding, message and acknowledgments sending/re-
ceiving, error checking, and so on. These actions are often
complementary to each other and are implemented in different
parts of the code. Further, the actions in a protocol may
be required and implemented by multiple components of the
embedded system, leading to several similar implementations
of the protocol. Henceforth in the paper, a part of code
that implements protocol action(s) separately is referred to
as a region. Thus, such an implemented protocol consists of
multiple code regions, and functionality wise, they can be
similar or opposite.

Verification of an embedded system is of utmost importance
[2]–[4], and it includes proving correctness of intended system
functionalities and making sure unintended behaviors are
absent [5]. In order to do this, it has become necessary to
ensure the included protocols are correctly implemented, as
they are crucial for correctness of the system functionality.
We describe this by using a Sleep Wakeup protocol that is
usually implemented in three regions - Startup, Sleep and
Wakeup [6]. This protocol is typically used in battery-powered
systems to minimize power consumed by a microcontroller
(also referred to as Electronic Control Unit (ECU)). Such
power minimization is achieved by toggling the ECU between

low power consumption mode (Sleep state) and high power
consumption mode (Run state).

Figure 1 presents a sample implementation of Sleep Wakeup
protocol. In this implementation, the Sleep region starts at line
41 and ends at line 45. This region performs certain actions
to reduce power consumption before an ECU enters the Sleep
state. These actions include configuring registers (hardware
ports), disabling hardware such as timers, CAN communica-
tion channels, and ADC (Analog to Digital Converter). The
Startup region (lines 11 to 18) and Wakeup region (lines 83
to 90) perform similar actions before the ECU enters the Run
state. These actions are opposite to the actions performed in
the Sleep region and often include reconfiguring the registers,
enabling hardware that were disabled before entering the Sleep
state.

When a protocol is implemented in multiple regions, possi-
bility of defect introduction increases. This is explained below
with respect to the sample implementation.

1) Let us assume that the system functionality (implemented
by perform Job function) requires register TRISA (Port
A) to be configured with 0x00 value. The Startup region
performs the expected register configuration, however the
Wakeup region misses to do so. This mismatch can lead
to unexpected system behaviors.

2) The CAN communication channel (CANCHNL0) and
timer (Timer0) are always enabled in the Startup and
Wakeup regions, however their disabling is missed in the
Sleep region. Having them enabled during the ECU Sleep
state can result in more power consumption, and this may
lead to battery drain.

3) The hardware HWx is always turned off in the Sleep
region, but it is missed to turn on in the Wakeup region.
Due to this, it remains off during execution of the system
functionality code, and a read or write access to such
hardware can result in unexpected watch dog timer reset
[7].

4) The analog-to-digital converter (ADC) is always disabled
in the Sleep region, whereas it is possibly enabled in the
Wakeup region. When the Wakeup region fails to enable
the ADC, accessing the ADC in the system functionality
code can lead to unexpected behaviors.

The above described defects are introduced due to coding
inconsistencies, and detecting all such defects in practice

40Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

1. int main()
2. {

...
11. // Startup region begin
12. TRISA = 0x00; //Port A configuration
13. CANCHNL0=0x0010; //Enable CAN channel
14. Timer0 &= 0x80; //Enable Timer 0
15. HWx = 0x0000; //Switch-on hardware X
16. ADC = 0x0010; //Enable ADC
17. var1 = 10;
18. // Startup region end
19. ...
20. while(1)
21. {
22. perform_Job();//System functionality
23. sleep_Wakeup_sequence();
24. }
25. }

31. void sleep_Wakeup_sequence(){
...

41. // Sleep region begin
42. TRISA = 0xff; //Port A configuration
43. HWx = 0xffff; //Switch-off hardware X
44. ADC = 0x0001; //Disable ADC
45. // Sleep region end
46. SYS_REG = 0x7fff;//ECU in Sleep state
47. ...
48. while(!wakeup_condition);

...
81. SYS_REG = 0x8fff; //ECU in Run state
82. ...
83. // Wakeup region begin
84. TRISA = 0xff; //Port A configuration
85. CANCHNL0=0x0010;//Enable CAN channel
86. Timer0 &= 0x80; //Enable Timer 0
87. if(...){
88. ADC = 0x0010; //Enable ADC
89. }
90. // Wakeup region end
91. }

Fig. 1. Sample implementation of a Sleep Wakeup protocol

through code reviews may not be possible. This is because, the
protocol regions can start and end anywhere in the application
and may span over thousands of lines of code that configures
(initializes) hundreds of registers (variables). Further, it is not
always guaranteed that all such defects will be detected during
system testing. For example, the defect (2), due to miss of
disabling of CAN channels and timers in the Sleep region,
can not be observed via system output parameters. Hence,
detecting this defect using testing is difficult as it requires use
of sophisticated power consumption monitoring techniques.
Due to these issues, a verification technique that helps in
automatic and early detection of such defects is always useful.

This paper presents a verification technique that accepts
the protocol regions to be verified as inputs and detects
possible defects by checking consistency over these regions.
This technique is based on computing certain protocol-critical
information over each of these regions (referred to as Regional
Information), comparing the regional information, and raising
an inconsistency so found as a possible defect. Further, this
paper shortly describes a framework to compute the required
regional information over the input regions. The described
framework, first identifies program points that lie inside a
given region and later computes the regional information as
an effect of the identified program points. This technique to
compute regional information is referred as regional analysis.

We applied the proposed inconsistencies detection technique
to verify Sleep Wakeup protocols in two C applications from
automotive industry. The empirical results indicate - a) the
presented verification technique detects defects in protocol
implementations, which are missed by the other defect finding
techniques such as testing and manual code reviews, and b)
like for any other static analysis technique, generation of false
alarms is a concern for our technique.

The key contributions of this paper are - a) an idea to break
a complex protocol implementation into similar or opposite

regions for the protocol verification, b) a framework for the
regional information computation, and c) an approach to detect
likely inconsistencies by comparing regional information and
viewing them as possible defects.

Paper outline: Section II describes the inconsistencies-based
verification technique, and Section III provides details of
the regional analysis framework. The experiments and their
results are described in Section IV. Section V and Section VI,
respectively, present related work and conclusion.

II. MULTI-REGION PROTOCOL VERIFICATION

This section describes an inconsistencies-based approach to
verify a multi-region protocol implementation by using exam-
ples of Sleep Wakeup and CAN communication protocols.

A. Protocol Region: Definition

We define a region starting at PS and ending at PE as
the part of code having program points that appear on a
path originating at PS and terminating at PE . The program
points in a given region, thus identified, are referred to as in-
region points, and they include assignment and conditional
statements, calls to functions, return statements, etc. Table
I provides a few sample regions for a code snippet shown
in Figure 2 and their in-region points excluding the region
boundaries. It uses line numbers to denote the program points.

As there exists a variety of protocols and each protocol
can be implemented in different ways, automatic identification
of regions is difficult and may not be generic. Hence, we
accept them as inputs specified by their start and end points. In
practice, the start and end points of a given region can appear
anywhere in the application, and only the code belonging to
the given region needs to be analyzed for computation of
the intended regional information. For example, in Figure 1,
variable ADC is possibly modified over the Wakeup region
(lines 83 to 90), but computing this modification type over

41Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

1. void main()
2. {
3. gVar1 = 1;
4. while(c1)
5. {
6. gVar2 = 2;
7. func();
8. gVar3 = 3;
9. gVar4 = 4;
10. }
11.}

21. void func()
22. {
23. var1 = 1;
24. if (c2)
25. var2 = 2;
26. else
27. var3 = 3;
28. var4 = 4;
29. if (c3)
30. var5 = 5;
31. }

Fig. 2. Code snippet for sample regions

TABLE I
SAMPLE REGIONS

Sample
Region

Start
Point

End
Point

In-Region Points

I 6 8 7, [23-30]
II 6 28 7, [23-27]
III 28 6 29, 30, 8, 9, 4
IV 28 23 29, 30, 8, 9, 4, 6, 7
V 25 9 [28-30], 8
VI 25 30 [27-29], [4-9], 23, 24
VII 30 25 [4-9], 23, 24, [27-29]

the complete function (sleep Wakeup sequence) would find it
as definite.

B. Sleep Wakeup Protocol Verification

As discussed earlier in Section I, the defects in the sample
protocol implementation in Figure 1 arise due to either wrong
or miss of a register/variable initialization in one of the re-
gions. In order to detect these defects, a systematic approach is
required to select, compute, and compare suitable information
over the protocol regions.

1) Regional information computation: We select and com-
pute below regional information to verify a Sleep Wakeup
protocol implementation.

i. Regional Modification Type: Modification type of a regis-
ter/variable over the protocol regions is suitable to check
if these regions consistently modify the involved regis-
ter/variable. An inconsistency found this way represents
a miss of a register/variable initialization in one of the
regions. Computation of such regional modification type
of a variable v over an input region starting at RS and
ending at RE points is described below.

a) Definite (D): The regional modification type of v is
definite if each path originating at RS and ending at
RE modifies v.

b) Possible (P): The regional modification type of v is
possible only if v is modified along at least one path
and not by all the paths that originate at RS and end
at RE .

c) No (N): v has no modification type when no path
originating at RS and ending at RE modifies v.

ii. Regional Values: Values assigned to a variable/register
over each of the input regions (regional values) are
suitable to detect mismatch in the initialization values
of the register/variable. Such a mismatch in the regional

values over two expected similar regions represents a
wrong initialization of the register/variable in any one of
the regions.

2) Regional inconsistencies detection: In order to detect
the possible defects, the regional information computed over
each of the Sleep Wakeup protocol regions is compared as
described below.

Comparing Regional Modification Types: Regional modifi-
cation types of a register/variable are compared in below com-
binations to detect miss of a register configuration (variable
initialization).

a) Startup Vs Wakeup, because a register configuration (vari-
able initialization) in the Startup region should have its
corresponding configuration (initialization) in the Wakeup
region.

b) Sleep Vs Wakeup, because a register configuration in Sleep
region should have its opposite configuration in the Wakeup
region. It is to note that, only registers are considered in this
combination, and the hardware ports, timers, ADC, other
hardware, etc are to be treated as the registers.

Given the comparisons in the aforementioned combinations, it
is intuitive that such comparisons are not required for Startup
Vs Sleep. In these comparisons, consistency is reported only
if both the modification types being compared are definite, and
all other comparison scenarios are treated as inconsistencies.
To be conservative, comparison of two possible modification
types is treated as an inconsistency, since in this setting, a
configuration in one region can not be guaranteed to have
its corresponding configuration in the other region. Such a
conservative approach may lead to an increased number of
inconsistencies and thus a high rate of false alarms.

Comparing Regional Values: Regional values of a register/-
variable are compared to detect a wrong configuration/initial-
ization. When the regional values over one region differ with
the values from some other similar region, such a scenario is
reported as an inconsistency. Also, when the regional values of
a register/variable can not be computed statically or are found
as interval of values, to be conservative, their comparisons are
reported as inconsistencies. Such regional value comparisons
are performed only for the Startup Vs Wakeup combination.
The Sleep Vs Wakeup combination is considered since the
variable/register values are not expected to be same over these
regions.

Table II presents results of the consistency checks performed
for the protocol implementation in Figure 1. All the defects in
the implementation (as described in Section I) are represented
by the inconsistencies shown in this table.

The regional information used to detect likely inconsisten-
cies is not limited to modification type and values. One can
use other Sleep Wakeup protocol-critical information such as
call type (definite, possible and no) of instructions that en-
able/disable the interrupts, and other system calls that acquire
and release the locks. Comparing such regional information
can help to identify miss on a call of these system calls or
instructions.

42Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

TABLE II
CONSISTENCY CHECKS OVER SAMPLE REGIONS

Variable Regional Modification Type Regional Values Regional Modification Type
/Register Startup Wakeup Consistency? Startup Wakeup Consistency? Sleep Wakeup Consistency?
TRISA D D

√
0x00 0xff X D D

√

CANCHNL0 D D
√

0x0010 0x0010
√

N D X
Timer0 D D

√
0x80 0x80

√
N D X

HWx D N X 0x0000 - NA D N X
ADC D P X 0x0010 0x0010

√
D P X

var1 D N X 10 - X N N NA

C. CAN Communication Protocol Verification
Selection of the regional information for inconsistencies

detection varies as per the protocol. For example, the regional
information used to verify an implementation of CAN com-
munication protocol may not be same as it is used in the
Sleep Wakeup protocol verification. This is because, a CAN
protocol is usually implemented by several components of an
automobile embedded system such as wiper, flasher, and body
control unit. Thus, there are repeatative implementations of
the same CAN protocol and they ought to be consistent with
each other.

The regional information that can be used to verify such
implementations may include - a) call type (definite, possible
and no) of the communication services/APIs [1], b) calling
sequence of above services/APIs, c) modification type of
parameters of the services/APIs related to message sending, d)
read type of parameters of the services/APIs related to message
receiving.

It is to note that the presented protocols verification tech-
nique is not limited to Sleep Wakeup and CAN communication
protocols. Through suitable regional information identified,
this technique can be applied to other protocols whose im-
plementation is distributed over multiple similar or opposite
regions.

III. REGIONAL ANALYSIS FRAMEWORK

This section briefly describes a framework to compute
regional information over a region specified by its start and end
points. This computation is achieved in two steps. In the first
step, in-region points for a given region are marked (referred
to as region marking), and in the next step, the in-region points
are analyzed to obtain the required regional information.

A. Region Marking
As discussed earlier (in Section II-A), identification and

analysis of in-region points is essential to compute the in-
tended regional information. Although, we have defined the
in-region points by referring to paths between the region
boundaries, computing them this way may not be feasible
in practice since the number of paths grows exponentially
to number of the conditions. Thus, we use may and must
reachabilities of a program point from region boundaries, in
forward and backward direction, to identify if the program
point is an in-region point.

Definition: In-region point- A program point P is an in-
region point with respect to a region having RS and RE as its

start and end points respectively only if both of the following
hold true.

1) In forward flow, P is may reachable from RS and it is
not must reachable from RE .

2) In backward flow, P is may reachable from RE and it is
not must reachable from RS .

Here, the may reachability subsumes the must reachability.
Due to space constraints we avoid detailing the region marking
step further.

B. Regional Information Computation

The regional information used in inconsistencies detection
can be of several types and varies as per the protocols being
verified. The regional modification types and values of the
variables are applicable to most of the protocols. Thus, we
describe their computation as a representative example of the
regional information computation.

1) Computation of regional modification types: Data flow
analysis [8] is suitable to compute the must and may modified
variables, and their corresponding data flow formalizations are
shown in Table III. For simplicity of the shown formalizations,
we have assumed the region code is free of pointers and the
region boundaries lie in the same function. These formaliza-
tions use results of the region marking to compute the required
regional information over the in-region points only. In these
formalizations, Inn represents the information flowing in at
the start of a node n, while Outn represents the information
flowing out of the exit of the node n. The Genn corresponds
to the information generated as an effect of the node n.

Using must and may modified variables over a given re-
gion, the regional modification types of the variables can
be obtained. The must modified variables have the Definite
modification type. The variables which are may but not must
modified, have Possible modification type. A variable that is
not may modified, has No modification type.

2) Computation of regional values: A data flow formaliza-
tion similar to the formalizations shown in Table III can be
used to compute the regional values. Due to space constraints,
we avoid providing a separate formalization for regional values
computation.

IV. EXPERIMENTAL RESULTS

This section describes various experiments performed to
verify the Sleep Wakeup protocols and observations from the
results.

43Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

TABLE III
DFA FORMALIZATIONS FOR REGIONAL MODIFICATION TYPES

Parameter Must Modified Variables May Modified Variables
Initialization (Top) Set of all variables in the application ∅
Meet/Join Intersection Union

Inn =

 ∅ n is start of a function⋂
pεpred(n)

Outp Otherwise

 ∅ n is start of a function⋃
pεpred(n)

Outp Otherwise

Outn = Inn + Genn Inn + Genn

Genn =


Top n is an out-region point
v n is an in-region point and defines v

∅ Otherwise

{
v n is an in-region point and defines v

∅ Otherwise

We implemented the described Sleep Wakeup protocol
verification technique in TCS Embedded Code Analyzer (TCS
ECA) [9]. TCS ECA is a static analysis tool to verify C
source code. We selected two C applications from automotive
industry, one of 56 KLOC representing automobile Body Con-
trol Module (BDCM) and another of 40 KLOC representing
automobile Battery Control Module (BTCM). The boundaries
of the Startup, Sleep, and Wakeup regions from both the
applications were provided as inputs to TCS ECA during
verification of the protocols. Table IV presents information
about each of the regions from the selected protocols. This
information includes size of the region, number of variables
with the Definite modification types (DMTVs), and number of
variables with the Possible modification type (PMTVs).

TABLE IV
REGIONAL ANALYSIS RESULTS

Application Region LOC DMTVs PMTVs

BDCM
Startup 3168 302 283
Sleep 838 32 65

Wakeup 3193 299 288

BTCM
Startup 2246 59 150
Sleep 1150 62 18

Wakeup 2246 59 150

TABLE V
COUNTS OF REGIONAL (IN)CONSISTENCIES

Appli- Startup Vs Wakeup Sleep Vs Wakeup
cation RMTIs RMTCs RVIs RVCs Register

RMTIs
Register
RMTCs

BDCM 413 186 143 544 66 33
BTCM 150 59 48 161 48 32

A. Observations from protocols verification

Table V presents the summary of the verification results of
the selected Sleep Wakeup protocols. In this table, RMTCs
(RMTIs) denotes count of the regional modification type
consistencies (inconsistencies), and the RVCs (RVIs) denotes
count of the regional values consistencies (inconsistencies).

BDCM Application: Large number of inconsistencies were
reported for this application due to possible modification types,
and its reason was traced to the conditional calls of the

functions that initialized the registers/variables in the Wakeup
region. Manual review of all the reported inconsistencies,
performed by the system developers, took around two hours
of manual efforts. Few observations from this activity are
mentioned below.

• The review of the RMTIs in Startup Vs Wakeup com-
bination revealed possible miss of configuration of four
hardware pins in the Startup region. This was due to
conditional call of the function that configured the hard-
ware pins. Also, review of these inconsistencies indicated
that initializations to two global variables were definitely
missed in the Wakeup region, and each miss was found
to be a coding defect.

• One inconsistency among the reported 86 register RMTIs
in Sleep Vs Wakeup combination indicated presence of
critical defect, which was due to miss of disabling of the
DMA controller in the Sleep region.

• None of the regional values inconsistency in Startup Vs
Wakeup represented a coding defect.

BTCM Application: The Startup and Wakeup regions in
BTCM were found to be overlapping, hence the inconsisten-
cies reported for this combination were not manually reviewed.
On manual review, none of the register modification inconsis-
tency in Sleep Vs Wakeup represented a coding defect. This
manual review took around 20 minutes.

B. Other Observations

Inconsistencies-based verification Vs Manual Code Review:
We performed an experiment to check effectiveness of the
presented verification technique against the manual code re-
view. In this experiment, a developer manually reviewed the
protocol code in BDCM application to identify the defects.
After six hours of reviewing efforts, the developer was able
to identify only one defect related to the miss of disabling of
DMA controller, and the other defects were not found during
the review. This experiment indicated the presented technique
is useful in detecting more bugs which are usually missed
during code reviews.

Inconsistencies-based verification Vs Testing: Both the se-
lected applications were after their testing at unit and sys-
tem levels. The testing of the selected BDCM application
was unable to detect the defects that were detected by the

44Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

inconsistencies-based verification approach. It indicated the ef-
fectiveness of the presented verification technique in detecting
defects which are hard to find during testing.

Impact of conservative approach: We performed few exper-
iments to observe impact of the conservative approach taken
during the computation of inconsistencies. These experiments
indicated that around 55% of the reported inconsistencies were
due to treating a comparison of two possible modification
types as an inconsistency. In our experiments, although the
inconsistencies due to conservative approach did not contribute
in defects identification, we believe such an approach may
benefit on some other applications. Further, these experiments
indicate that the conservative approach can be avoided in order
to generate fewer false alarms at the cost of miss of detection
some defects.

V. RELATED WORK

Coding inconsistencies have been used earlier for bugs
detection. Engler et al. [10] used automated rule extraction
to get the programmer beliefs, and one of the contradictory
beliefs are treated as an error. Lu et al. [11] have used
an inconsistency in updates to the correlated variables for
semantic bugs detection. To the best of our knowledge, such
coding inconsistencies detection has not been used in the
verification of protocol implementations. In our presented
technique, the information with which the inconsistencies are
computed is critical to the protocol functionality, and it is
based on the (dis)similarity of the actions implemented by
protocol regions. This regional information is different from
the information used by the existing techniques [10][11].

There are a number of protocols corresponding to security,
communications, cryptography (data encryption), routing in
networks, etc, and many approaches have been proposed to
verify their implementations. These approaches use a variety
of techniques such as predicate abstraction [12], patterns-based
verification [13], model checking, heuristic search, or their
combinations [14]. The approaches used and categories of the
bugs detected by these techniques are protocol-specific. None
of these techniques break a complex protocol implementation
into the similar or opposite functionality regions and achieve
the protocol verification.

Regional analysis has been used mostly earlier for effective
memory management [15][16] and efficient solving of the data
flow analysis [17], but it has been rarely used in protocol
verifications. In these existing techniques, the regions to be
analyzed are automatically identified, where the region bound-
aries belonged to the same function. Our presented regional
analysis framework analyzes a given region whose boundaries
can appear anywhere in the application.

VI. CONCLUSION AND FUTURE WORK

An idea to break a complex implementation of a protocol
into similar or opposite regions and an approach for their
verification was presented in this paper. Detecting inconsis-
tencies over the multiple regions of a protocol is an effective
verification technique, since there could be a mismatch in

their implementations due to coding by multiple developers
and its multi-place distribution. Further, discovering such an
inconsistency and its associated defect may not be easy using
manual reviews and/or conventional testing techniques. Similar
have been our observations during the experiments, which
indicated usefulness of the presented technique in detection
of the critical defects.

The thorough manual review of the reported inconsistencies
increased our confidence about correctness of the protocol
implementation. This process acted as a systematic review
of the implementations, which would have not been possible
otherwise. Although the experiments are performed on Sleep
Wakeup protocols in embedded domain applications coded
in C, we expect similar benefits on other domain/language
protocols too, due to common coding practices.

Like any other static analysis technique, our experiments
depicted a very high rate of false alarms (around 98%) for
the presented verification technique. We plan to work on
minimizing falsely reported inconsistencies in the near future.

REFERENCES

[1] AUTOSAR, “Autosar specification of communication v2.0.1,” Jun. 2006.
[2] J. C. Knight, “Safety critical systems: challenges and directions,” in

Software Engineering, 2002. ICSE 2002. Proceedings of the 24rd
International Conference on. IEEE, 2002, pp. 547–550.

[3] D. R. Wallace and R. U. Fujii, “Software verification and validation: an
overview,” Software, IEEE, no. 3, pp. 10–17, 1989.

[4] J. Yoo, E. Jee, and S. Cha, “Formal modeling and verification of safety-
critical software,” Software, IEEE, no. 3, pp. 42–49, 2009.

[5] P. Cousot and R. Cousot, “Verification of embedded software: Problems
and perspectives,” in Embedded Software. Springer, 2001, pp. 97–113.

[6] AUTOSAR, “Autosar specification of ecu state manager v3.0.0 r4.0 rev
3,” Nov. 2011.

[7] J. Santic, “Watchdog timer techniques,” Embedded Systems Program-
ming, vol. 8, no. 4, pp. 58–69, 1995.

[8] U. Khedker, A. Sanyal, and B. Sathe, Data Flow Analysis: Theory and
Practice. Taylor & Francis, 2009.

[9] TCS Embedded Code Analyzer (TCS ECA), http://www.tcs.com/
offerings/engineering services/Pages/TCS-Embedded-Code-Analyzer.
aspx, [Online; accessed 25-Aug-2014].

[10] D. Engler, D. Y. Chen, S. Hallem, A. Chou, and B. Chelf, “Bugs as
deviant behavior: a general approach to inferring errors in systems code,”
SIGOPS Oper. Syst. Rev., vol. 35, no. 5, pp. 57–72, Oct. 2001.

[11] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. A. Popa, and Y. Zhou,
“Muvi: automatically inferring multi-variable access correlations and
detecting related semantic and concurrency bugs,” SIGOPS Oper. Syst.
Rev., vol. 41, no. 6, pp. 103–116, Oct. 2007.

[12] E. Pek and N. Bogunovic, “Predicate abstraction in protocol verifica-
tion,” in Telecommunications, 2005. ConTEL 2005. Proceedings of the
8th International Conference on, vol. 2. IEEE, 2005, pp. 627–632.

[13] L. Bozga, Y. Lakhnech, and M. Périn, “Pattern-based abstraction for
verifying secrecy in protocols,” in Tools and Algorithms for the Con-
struction and Analysis of Systems. Springer, 2003, pp. 299–314.

[14] S. Edelkamp, A. L. Lafuente, and S. Leue, Protocol verification with
heuristic search. Bibliothek der Universität Konstanz, 2001.

[15] S. Cherem and R. Rugina, “Region analysis and transformation for
java programs,” in Proceedings of the 4th international symposium on
Memory management. ACM, 2004, pp. 85–96.

[16] R. Rugina, “Region analysis for imperative languages,” Cornell Univer-
sity, Tech. Rep., 2003.

[17] Y.-F. Lee, B. G. Ryder, and M. E. Fiuczynski, “Region analysis: A par-
allel elimination method for data flow analysis,” Software Engineering,
IEEE Transactions on, vol. 21, no. 11, pp. 913–926, 1995.

45Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

