
A Novel Approach for Environment Model-Based Functional Testing of Reactive

Systems

Annamária Szenkovits and Hunor Jakab
Faculty of Mathematics and Computer Science

Babes-Bolyai University
Cluj Napoca, Romania

Email: {szenkovitsa, jakabh}@cs.ubbcluj.ro

Abstract—Automating the test process of safety-critical reactive
systems is an important problem in the software testing do-
main. One of the major difficulties in achieving this is that
test sequences cannot be generated without feedback from the
environment due to the reactive nature of the system. A common
solution is to model the environment and manually fine-tune the
model to produce test cases that target specific important usage
patterns. This paper presents a novel approach to environment-
based functional testing that automatically performs the tuning
of the environment model such that the generated test cases
cover important regions of the input space. Our method is
based on evolutionary techniques with the goal of optimizing
the weights associated with choice nodes and variable bounds
in an environment model written in the Lutin language. An
experimental test-bed is proposed based on SCADE models of
the Transmission Beacon Locomotive 1 (TBL1) system to validate
our approach in a realistic environment.

Keywords–Reactive systems; Environment model-based testing;
Evolutionary testing.

I. INTRODUCTION
Reactive systems are in continuous interaction with their

environment. They control the environment, and must also
react to the stimuli of the environment within a given time
bound. Therefore, in order to be able to automatically generate
test sequences, we must also simulate the environment and the
interaction between the environment and the System Under
Test (SUT). In order to detect possible faults in the SUT, we
must drive the environment in such configurations that might
violate some safety properties of the SUT. This is however not
a simple problem, since it requires knowledge from domain
experts.

A common way to express the properties of a reactive
system is to describe the model of the system in Lustre, a
language optimized for reactive systems [1][2][3]. Lustre is
also the kernel of the Safety Critical Application Development
Environment (SCADE) [4], a widely used industrial toolset.
The models of the TBL1 system, proposed for the experimen-
tal validation of our methods, were also implemented using
SCADE. As for environment models, a convenient way to
model the environment of Lustre and SCADE models is to
use the Lutin language [5], an automatic test generator for
reactive programs that focuses on functional testing.

This paper presents a work in progress which is based on
a method that automatically fine-tunes the environment model
in order to generate test scenarios that might detect faults in
the SUT. We propose a solution to the problem of fine-tuning
the environment model based on evolutionary techniques [6].
More precisely, we are going to exploit some of the features

of the Lutin language in order to optimize the generation of
test scenarios.

The paper is structured as follows. Section I-A reviews
some of the work relevant for this topic, Section II briefly
describes the behavior of reactive systems and the difficulties
that arise in case of test input generation for reactive systems.
Parts II-A and II-B present some of the fundamental aspects of
the languages Lustre and Lutin, respectively, focusing on how
different properties of these languages will be exploited by
our method. Part II-C summarizes how evolutionary algorithms
are planed to be used for environment optimization. Finally,
Section III describes the TBL1 system.

A. Related Work
Our work is related to environment model-based testing

of reactive systems, as well as to evolutionary testing, two
important research domains that have been explored in a
number of references. We mention a few of the related articles
which emphasize the practical applicability of evolutionary
methods to real-life problems. The work in [7] discusses
the scalability, applicability, and acceptability of evolutionary
functional testing in industry. The problem is investigated
through two case studies, drawn from serial production de-
velopment environments. The methods presented by Corno et
al. [8] and Iwashita et al. [9] use an evolutionary algorithm to
automatically generate a test program for pipelined processors
by maximizing a given verification metric. Genetic Evolution-
ary Algorithms (GEA) are also used for test generation by
Cheng and Lim [10]. The problem of parameter selection is
discussed and a Markov chain based method is used to model
the test generation process and to parametrize the process
characteristics. The method is used here in particular for gen-
erating test cases to verify hardware design for semiconductor
industry. However, unlike our approach, the methods discussed
in the above mentioned papers are not optimized for reactive
systems.

There are several tools available for performing model-
based testing on reactive systems. Bousquet et al. [11][12]
present a specification-based language called Lutess, while
Marre et al. [13][14] describe Gatel, a test generation tool for
Lustre programs. Our approach is based on similar principles,
with the added benefit of being able to optimize the distribution
of the generated test cases. This can be crucial in complex
systems where exhaustive testing is infeasible and specific
usage scenarios need to be targeted.

II. FUNCTIONAL TESTING OF REACTIVE SYSTEMS
Reactive systems have cyclic behavior, meaning that at

each cycle they read the inputs coming from their environment,

36Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

1 node never (A: bool) returns (never_A: bool);
let

3 never_A = not(A) -> not(A) and pre(never_A);
tel

Figure 1. Example of Lustre code.

compute the outputs and update the internal state of the system.
Considering this, instead of generating a single test input, the
tester has to provide test sequences, i.e., sequences of input
vectors.

Another issue that arises during test input generation is that
input sequences cannot be generated offline. Because a reactive
system is in continuous interaction with its environment, the
input vector at a given reaction may depend on the previous
outputs. Thus, input sequences can only be produced on-line,
and their elaboration must be intertwined with the execution
of the SUT.

Due to the above seen properties, programming reactive
systems is not easy in conventional languages. Lustre [1][2][3],
on the other hand, is a synchronous languages, which means
that it is optimized for reactive systems. Therefore, it is more
suitable to implement the cyclic behavior of such systems.
Lustre is also the backbone of SCADE, a tool widely used in
the railway, automotive and aviation industry. The models pro-
posed for the validation of our methods were also implemented
in SCADE. In this article we are going to use Lustre for the
description of the SUT. This section provides a brief overview
of the language’s structure which are key to understanding the
rest of the paper.

A. Describing the SUT properties
Lustre is a synchronous language based on the data flow

model and designed for the description and verification of re-
active systems [1][2]. It can be used for both writing programs
and expressing program properties. It is structured on so-called
nodes, where a node represents a program or a subprogram and
it operates on streams: a finite or infinite sequence of values of
a given type. A program has a cyclic behavior, so that at the
nth execution cycle of the program, all the involved streams
take their nth value. A node defines one or several output
parameters as functions of one or several input parameters.
All these parameters are streams.

Figure 1 shows an example [3] of a Lustre node.
The node defined in this example takes as input the Boolean

stream A = (A1, A2, ..., An, ...) and defines as output another
Boolean stream never_A = (never_A1, never_A2, ...,
never_An, ...). The output is true if and only if the input has
never been true since the beginning of the program execution.

Assertions can be also included into the body of a Lustre
program. They are boolean expressions that should be always
true. Safety properties, the properties of a program’s environ-
ment can be easily specified by using the assertion mechanism.
Assertions will be exploited in our method for driving the SUT
environment as close as possible to configurations that might
reveal failures in the SUT.

B. Modeling the environment
Due to the reactive nature of the SUT it is necessary to

have a model of the environment. This way we can generate
test sequences without actually running the SUT in its real

node choice () returns(x :int) =
2 loop {

| 3 : x = 42
4 | 1 : x = 1
}

Figure 2. Lutin code, featuring a choice operator and the
weights in boldfaced font, associated with the different

choice possibilities.

environment. There are specialized tools for describing the
environment of reactive systems. Since we are testing programs
written in Lustre and SCADE, in our work, we will use Lutin
[5] (a language derived from Lustre) to model the environment.

Lutin is an automatic test generator for reactive programs
that focuses on functional testing. This means that the SUT
will be treated as a black-box, for which we want to check
some properties. Lutin enables us to perform guided random
exploration of the environment, taking into account the output
of the SUT, which is basically a Lustre program. This section
provides a brief description of the language Lutin, focusing on
the operators and non-deterministic statements of the language
used to perform the guided random exploration.

The language is based on the use of descriptions of the
environment, formulated in form of constraints. The constraints
can be both boolean and numerical [15]. In addition, the pre
operator enables to access the value of a given variable from
the previous iteration of the system. This operator can be used
in order to express temporal statements and constraints.

Lutin generates test scenarios by combining several con-
straints. Test input sequences for the SUT are generated by
solving the constraints and randomly selecting some of the
solutions.

A Lutin program is basically an automaton where each
transition is associated to a set of constraints that define the
possible outputs, weights that define the relative probability
for each transition to be taken.

Non-determinism in Lutin is mainly realized with the non-
deterministic choice operator |, as illustrated in the code
example from Figure 2.

The weights described above enable us to influence how
the environment reacts. One of the major goals of the proposed
method is to optimize the weights such that the responses of
the environment lead to test sequences which drive the SUT
as close to safety conditions as possible. These are namely
the scenarios where the malfunctioning of the SUT occurs the
most often.

Besides the choice operator, non-determinism can be ex-
pressed in Lutin with random loops, which are defined in terms
of expected number of iterations. Based on Raymond et al. [5],
there are two possibilities to express the expected number of
iterations:

1) loop[min,max]: the number of iterations should be
between the constants min and max.

2) loop ∼av : sd : the average number of iteration
should be av, with a standard deviation sd.

The parameters min,max, av, sd will be treated as sub-
jects of the optimization process together with the above
described weights of the choice operator.

37Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

C. Optimizing the environment model
In the problem of automatic test generation, the domain

of possible inputs, i.e., the possible test cases is typically too
large to be exhaustively explored, even for small programs.
The dimensions of the search space are directly related to the
number of input parameters of the SUT [7]. Since evolutionary
algorithms are able to produce effective solutions for complex
and poorly understood search spaces with multiple dimensions,
they can also be successfully applied for testing [7][8][9][10].
However, the greatest challenge remains to formulate the
testing task as an optimization problem. This will influence
the success of the test case design and test input generation.

Depending on how the fitness function is formulated,
evolutionary testing can be both applied for structural testing
(e.g., maximizing coverage) and functional testing (e.g., fault
detection).

Our approach proposed for applying an evolutionary algo-
rithm for the optimization of the parameters of an environment
model is composed of the following main steps:

1) Specifying the subject of the optimization (which
parameters are to be optimized);

2) Specifying the fitness function;
3) Specifying the operators.
As mentioned in Section II-B, the language proposed for

describing and optimizing the SUT environment is Lutin. In its
current form, Lutin performs a guided random exploration of
the SUT input state space by means of programs that describe
the usage of the system [16]. The creation of these programs
and the fine-tuning of their parameters however requires the
domain specific knowledge of experts. To eliminate this depen-
dency, our approach proposes to let an evolutionary algorithm
choose some parameters of Lutin programs, such as those
presented in Section II-B. In the first step of our approach, we
need to choose the Lutin parameters that will be the subject
of the optimization. Thus, the set of individuals or candidate
solutions to the optimization problem will be created. This
set is commonly referred to in evolutionary techniques as a
population.

In the next step, promising individuals will be selected
from the population based on a fitness function. Since we want
to perform functional testing, we need a fitness function that
measures how close the generated test cases are to violating the
safety properties of the SUT and thus to detect failures in the
SUT. Assertions used in Lustre to express the safety properties
of the SUT (described in Section II-A) will be exploited to
design the suitable fitness functions.

The third step of the optimization process is to generate a
new population based on the individuals selected in the pre-
vious steps. Classical operators of the evolutionary algorithms
like mutation and crossover will be used in this step.

As a result of the optimizing process, Lutin weights will
drive the environment into test scenarios where the SUT will
get close to violating safety properties. These scenarios will
potentially cause the malfunctioning of the SUT, therefore they
are the target of our optimization method.

III. EXPERIMENTAL VALIDATION
For evaluating the proposed method, we are carrying out

experiments using simulations of a real-world, industrial prob-
lem within the domain of railway automation. The problem
specification was proposed by our industrial partner, Siemens.

1 node emergencyBraking(speed:int; speedCheck,
bac:bool)

returns (active:bool);
3 let

active=false->
5 if (speed >= 40) and speedCheck then

true
else if (speed < 40) and (not bac and

pre(bac))
7 then false

else pre(active);
9 tel;

Figure 3. Implementation of the activation of the emergency
brake in Lustre. The variable speed stores the speed of the
train, speedCheck the state of the speed restriction check
mode (active or inactive), while bac represents the button

which can deactivate the brake.

The problem is related to the TBL1 system, a train protec-
tion system used in Belgium and on Hong Kong’s East Rail
Line. Its main role is to ensure safe operation in the case
of human failure. More precisely, the TBL1 system requires
the locomotive driver to manually acknowledge a warning
when passing a double yellow signal, as well as stopping
the train automatically if it passes a red signal. (A double
yellow signal means: Preliminary caution, the next signal is
displaying a single yellow aspect, while a Single yellow aspect
signalizes the following: Caution, be prepared to stop at the
next signal.) The system is based on a trackside beacon which
sends an electromagnetic signal to an aerial located underneath
the locomotive.

Besides the above mentioned ones, the TBL1 system has
a speed restriction checking functionality. This feature is
activated by a beacon located 300 meters up-line from a signal.
If the train travels at a speed greater than 40 km/h ahead of a
red signal, the TBL1 system triggers the emergency brake.

In order to run some initial experiments, we have imple-
mented the speed restriction check functionality of the TBL1
system in Lustre. The implementation was realised based
on the specification and the SCADE model of the system,
provided by Siemens.

Figure 3 shows the implementation of a Lustre node
responsible for the activation of the emergency brake. As
already mentioned above, the brake is activated if the TBL1
system is in speed restriction check mode, and the train has a
speed greater or equal to 40 km/h. The brake can be deactivated
after 20 seconds manually by the driver, if the train’s speed
has decreased below 40 km/h. The deactivation is done by
pressing and releasing the bac button.

To test the functionality described above, it was necessary
to implement a model of the environment for which we chose
the Lutin language. A part of the code is illustrated in Figure 4.
Here, the Lutin code simulates the pressing and releasing of
the button which can deactivate the emergency brake. It can be
observed that the weight associated with the choice operators
are currently hardcoded. Together with other parameters, these
weights will be subject of the optimization process.

Besides the bac button, the speed of the train and the shape
of its braking curve is also determined by the environment. The

38Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

1 node bacButton () returns (bac: bool) =
loop {

3 | 1 bac = true
| 4 bac = false

5 }

Figure 4. Lutin code simulating the pressing and releasing of
the bac button. The weights in boldfaced fonts are

parameters that need to be optimized.

1 node speed (emergencyBrake: bool)
returns (speed: int) =

3 exist D:int [-30; 30] in
((speed = 0) and (D = 0))

5 fby
loop (speed = pre speed + pre D)

7 and (speed>=0) and (
if not emergencyBrake

9 then ((D >= 10) and (D <= 12))
else ((D >= -20) and (D <= -10))

11)

Figure 5. Implementation of the speed function in Lutin. The
initial value of the speed is 0 km/h. If the emergency brake

is inactive, the speed increases with a value randomly chosen
between 10 and 12; else, it decreases with a value between

10 and 20.

description of these variables is a more challenging task, since
they must be calculated individually for each different train
model. In our current environment model, the speed of the
train is only influenced by the state of the emergency brake
(active or inactive). If the brake is on, the speed decreases
with a randomly selected value; otherwise it increases. Figure
5 shows the implementation of the speed function.

The SUT and environment models are connected by the
Lurette tool [17]. Lurette ensures the cyclic interaction between
the SUT and its environment. The values generated by the
Lutin code are fed in as inputs to the SUT, while the outputs
of the SUT are processed by the Lutin code. Lurette also
checks the outputs generated by the SUT for some given inputs
based on the test oracles, and decides whether the SUT has
passed or has failed a given test case. The test oracles are also
implemented in Lustre.

IV. CONCLUSION AND FUTURE WORK
This paper presented an outline of our approach to the

use of evolutionary techniques to automatically fine-tune the
environment model based on which automatic test generation
for reactive systems can be performed. In the design of the
optimization method we made use of the choice node weights
and the variable bounds from the Lutin-based environment de-
scription. In addition, we proposed to exploit Lustre assertions
for measuring how close the generated test sequences get to
violating the safety properties of the SUT. The outlined method
could minimize the need for expert knowledge in order to
model the environment and derive test cases that could find
faults in the SUT. We outlined how our proposed method
can be applied in a realistic simulation environment from the
railway automation domain. Concrete experimental results will

only be available once the implementation of the full system
model and the required environment is done, based on the
TBL1 specification. As part of our future work, we plan to
finalize the empirical evaluation of the method and extend the
proposed optimization framework to include active-learning
based algorithms.

REFERENCES

[1] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice, “Lustre: A declar-
ative language for real-time programming,” in Proceedings of the 14th
ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, ser. POPL ’87. New York, NY, USA: ACM, 1987, pp.
178–188.

[2] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The synchronous
data flow programming language lustre,” Proceedings of the IEEE,
vol. 79, no. 9, Sep 1991, pp. 1305–1320.

[3] The lustre v6 reference manual. [Online].
Available: http://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/
lustre-v6/doc/lv6-ref-man.pdf [retrieved: august, 2014]

[4] F. X. Dormoy, “Scade 6 a model based solution for safety critical
software development,” ERTS 2008, 2013.

[5] P. Raymond, Y. Roux, and E. Jahier, “Lutin: A language for specifying
and executing reactive scenarios.” EURASIP J. Emb. Sys., vol. 2008,
2008.

[6] D. E. Goldberg, Genetic Algorithms in Search, Optimization and Ma-
chine Learning, 1st ed. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1989.

[7] T. E. Vos et al., “Evolutionary functional black-box testing in an
industrial setting,” Software Quality Control, vol. 21, no. 2, Jun. 2013,
pp. 259–288.

[8] F. Corno, G. Cumani, M. S. Reorda, and G. Squillero, “Evolutionary test
program induction for microprocessor design verification,” 2012 IEEE
21st Asian Test Symposium, 2002, p. 368.

[9] H. Iwashita, S. Kowatari, T. Nakata, and F. Hirose, “Automatic test pro-
gram generation for pipelined processors,” in Computer-Aided Design,
1994., IEEE/ACM International Conference on, Nov 1994, pp. 580–583.

[10] A. Cheng and C.-C. Lim, “Markov modelling and parameterisation of
genetic evolutionary test generations,” Journal of Global Optimization,
vol. 51, 2011, pp. 743–751.

[11] L. d. Bousquet and N. Zuanon, “An overview of lutess: A specification-
based tool for testing synchronous software,” in Proceedings of the 14th
IEEE International Conference on Automated Software Engineering, ser.
ASE ’99. Washington, DC, USA: IEEE Computer Society, 1999, pp.
208–215.

[12] L. du Bousquet, F. Ouabdesselam, J.-L. Richier, and N. Zuanon, “Lutess:
A specification-driven testing environment for synchronous software,” in
Proceedings of the 21st International Conference on Software Engineer-
ing, ser. ICSE ’99. New York, NY, USA: ACM, 1999, pp. 267–276.

[13] B. Marre and A. Arnould, “Test sequences generation from lustre
descriptions: Gatel,” in Proceedings of the 15th IEEE International Con-
ference on Automated Software Engineering, ser. ASE ’00. Washington,
DC, USA: IEEE Computer Society, 2000, pp. 229–237.

[14] B. Marre and B. Blanc, “Test selection strategies for lustre descriptions
in gatel,” Electronic Notes in Theoretical Computer Science, vol. 111,
Jan 2005, pp. 93–111.

[15] P. Raymond, X. Nicollin, N. Halbwachs, and D. Weber, “Automatic
testing of reactive systems,” in Real-Time Systems Symposium, 1998.
Proceedings., The 19th IEEE, Dec 1998, pp. 200–209.

[16] E. Jahier, S. Djoko-Djoko, C. Maiza, and E. Lafont, “Environment-model
based testing of control systems: Case studies,” in Tools and Algorithms
for the Construction and Analysis of Systems, ser. Lecture Notes in
Computer Science, E. Ábrahám and K. Havelund, Eds. Springer Berlin
Heidelberg, 2014, vol. 8413, pp. 636–650.

[17] E. Jahier, P. Raymond, and P. Baufreton, “Case studies with lurette v2,”
Int. J. Softw. Tools Technol. Transf., vol. 8, no. 6, Oct. 2006, pp. 517–
530.

39Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

http://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/lustre-v6/doc/lv6-ref-man.pdf
http://www-verimag.imag.fr/DIST-TOOLS/SYNCHRONE/lustre-v6/doc/lv6-ref-man.pdf

	Introduction
	Related Work

	Functional testing of reactive systems
	Describing the SUT properties
	Modeling the environment
	Optimizing the environment model

	Experimental validation
	Conclusion and future work

