VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

From Semantic IoT-Service Descriptions to Executable Test Cases -
Information Flow of an Implemented Test Framework

Daniel Kuemper, Eike Reetz,
Marten Fischer and Ralf Toenjes

Lab for RF-Technology and Mobile Communications
University of Applied Sciences Osnabrueck
Osnabrueck, Germany

Email: {d.kuemper, e.reetz,m.fischer, r.toenjes}

@hs—-osnabrueck.de

Abstract—Automated test derivation is expected to be one of the
key drivers of a rapid creation of robust Internet of Things
(IoT) applications. The paper describes a two-step approach
how concepts for semantically described IoT services can be
used to derive functional test cases to test services in a sandbox
environment. In the first step, the description of the service is
used to generate a state based model of the service behaviour
and its interfaces. Therefore, a methodology to enrich service
descriptions for (semi-) automated test derivation and the re-
quired IoT specific adaptations are discussed in detail. These
descriptions are used to generate customised test data and to
achieve full parameter combination coverage. In the second step,
the generated extended finite state machine model is analysed to
create test cases in a standardised testing notation. Utilising this
two-step automation approach enables test developers to evaluate
and influence resulting test cases. The implementation proves that
the envisaged extension can amplify the usefulness of web services
descriptions for the test derivation for IoT services by reducing
the effort to create and execute test cases.

Keywords—IoT; Model Based Testing; Test Derivation; Semantic
Annotation; RESTful; TTCN-3; WADL.

I. INTRODUCTION

Distributed IoT services are becoming increasingly com-
plex since the usage of sensors and actuators with atomic
functionalities brings along a high variety of heterogeneous
interfaces [1]. Therefore, it is crucial to employ functional
tests to evaluate faultless service interaction. Manual test
creation causes a high effort in analysing interfaces and service
behaviour to find suitable test cases. This effort can be reduced
by employing model-based test approaches [2]. This work il-
lustrates how a two-step model-driven testing approach, which
utilises explicit information representation at different abstrac-
tion levels, can be used to create test cases for semantically
described Representational State Transfer based (RESTful)
IoT services whilst regarding their stateful behaviour. A fully
automated model based testing approach needs very extensive
Input, Output, Precondition and Effect (IOPE) descriptions [3]
and deprives the control of the test developer to evaluate tests
dependent on the services usage. Therefore, this work tries
to lower the effort for the service description by enabling a
use case-based sequence description approach. Furthermore,
it aims at reducing the effort for manually enhancing service
descriptions compared to a full manual test case creation.

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

Elke Pulvermueller

Institute of Computer Science
University of Osnabrueck
Osnabrueck, Germany
Email: elke.pulvermueller@uni-osnabrueck.de

The remainder of the paper is structured as follows: After
the discussion of the current state of the art in Section II,
the overall project concept and implemented architecture is
outlined in Section III. Detailed descriptions of the utilised
annotation methods are shown in Section I'V. Section V depicts
an IoT example service, which is used in Section VI to discuss
the test derivation process and its model transformation. The
conclusion and outlook section completes the paper.

II. RELATED WORK

In recent years, a lot of research efforts have been invested
in providing efficient ways to automate the process of testing
software. Different strategies have been developed in gener-
ating test cases and providing them with adequate test data.
Basically, three approaches can be identified. First, finding
suspicious code through code analysis [4]. This approach
requires access to the source code of the System Under
Test (SUT) and is able to find unreachable code and other
violations to coding rules. The second approach tries to find
implementation faults by exploiting public interfaces with a
large number of randomly generated data [5]. This fuzzing
approach can find security relevant implementation errors (e.g.,
buffer overflow) but on the other hand it produces a very large
number of test cases of rather poor quality. The employment of
Equivalence Class Partitioning (ECP) can reduce the amount of
test data and test cases by defining valid and invalid arguments
for the interface invocation [6]. By employing more precise
semantic service descriptions, the approach proposed in this
work tries to overcome solely random generations by taking
reusable parameter range definitions into account.

The third group of approaches uses abstract behaviour
models of the application to generate meaningful test cases.
These test models are created manually, generated from source
code or derived from other models through model transforma-
tion [7]. Walkinshow et al. [8] trace the execution of software
to infer a test model. Different modelling languages including
state charts, Petri nets, message sequence charts or Finite State
Machine (FSM) can be used [9]. While executing a test case an
execution engine iterates through the elements of the model,
e.g., a transition in a FSM, to trigger the SUT and validate
its output. Since the efficiency of the test case highly depends
on the test data, a lot of research has be done in the field of

28

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

test data generation. The challenge is to find boundaries of the
valid input space. Tracey et al. [10] exploit search techniques to
automate the generation of test data. Evolutionary algorithms,
namely Genetic Algorithm (GA) are used to derive test data
from an initial data pool in [11] to have a fully automated test
data creation. Here, a new generation has close relations to the
generation before, thus focusing on relevant test data. Fischer
et al. [12] propose the use of a GA to enhance the quality
of automatically generated test data. IoT-based services are
often based on energy restricted (e.g., battery driven) sensors
and actuators that have a limited number of usage cycles. This
IoT limitation hinders GA usage in testing due to the high
amounts of test cases, which are used to optimise the test data.
To overcome this limitation the proposed approach realises
the optimisation of test data and test cases by using service
descriptions before the service is tested.

In recent years several works investigated model based
testing approaches for services. Ramollari et al. [3] create
functional conformance tests by utilising IOPE sets without
detailed interface descriptions. A semantic parameter confor-
mance validation can be found in [13] missing the abstraction
of detailed interface parameters and following a stateless ap-
proach. The commercial available solution [14] enables func-
tional test creation based on web service interface descriptions.
The approach of Schanes et al. [15] concentrates on Extensible
Markup Language (XML) as generic data format for test
execution. They both do not consider stateful service behaviour
of reactive systems by modelling conjunctions between various
methods of the service.

ITI. CONCEPT AND ARCHITECTURE

The presented concepts are part of the IoT.est [16] project,
which aims at developing an IoT service creation environment
whilst bridging the gap between various business services
and the heterogeneity of networked sensors, actuators and
objects. The approach employs semantic service descriptions
to compose [oT services and derive corresponding functional
conformance tests, semi-automatically. After the manual anno-
tation of a service the service model is generated automatically.
It can be altered manually before the automated generation of
test cases begins. A consistent service concept is specified to
enable this process.

A. IoT.est Service Concept

IoT.est utilises RESTful interfaces to encapsulate IoT ser-
vices for enhanced re-usability. It defines two types of services
to ensure direct consumption and composition of IoT services
without dealing with heterogeneous interfaces:

The Atomic Service (AS) is a RESTful web service,
accessing 0 — n IoT resources via their own individual in-
terfaces and radio technologies. It enables access to these
resources via standardised Get, Post, Put, Deletere-
quest methods, whose invocation is defined in a Web Appli-
cation Description Language (WADL) document [17]. Input
parameters as well as service responses are extensively se-
mantically described in the Knowledge Management (KM).
The implemented AS can be deployed to a Runtime (RT) for
web services and is registered in the KM.

The Composite Service (CS) enables a business process-
based composition of various AS and CS. It also provides a
RESTHful interface for service invocation and does not directly

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

connect to IoT resources using their proprietary interfaces. It
only uses AS and CS interfaces to acquire sensor information
and to control actuators. The interfaces are also described in
WADL and a semantic description is used to enable re-usability
for composition and testing.

B. Architecture

The IoT.est project architecture specifies a Test Design
Engine (TDE), which enables the generation of test data
and derivation of test cases and flows for IoT services (see
Figure 1). The derivation is driven by processing service
descriptions and utilising domain knowledge. IoT.est uses a
KM to store descriptions of IoT services. These services
can be deployed and composed via a Service Composition
Environment (SCE) in distributed RT environments of the
framework. To support testing by the Test Execution Engine
(TEE) prior to runtime deployment we employ a Sandbox
Runtime (SRT) instance of the RT. The SRT supports em-
ulation of IoT resources [18] to enable IoT service testing
without communicating with resource constrained [oT sensors
or altering IoT actuators during test execution.

Use Knowledge
Knowledge _for Composition| Service Composition
Management (KM) | Environment (SCE)

Runtime (RT)

y i
Get Service Triager Test nggerg’est Bxecute || System Under ||
Description Dsivation xecution v Tests on SUT] Test (SUT)
Test Design Test Execution Sandbox Runtime
Engine (TDE) Place Derived Engine (TEE) (SRT)

Tests

Figure 1. Simplified IoT.est Architecture.

To obtain a comprehensible test generation, the TDE
utilises an explicit information representation approach, which
can also be used to evaluate and alter the model and tests,
which are automatically derived. During the first step the ser-
vice model, which is generated from the semantic description,
is represented as an Eclipse Modeling Framework (EMF)-
model. It is editable with the Graphical Modeling Framework
(GMF). During the second step, test cases are created in the
ETSI standardised Testing and Test Control Notation Version 3
(TTCN-3) to obtain a readable and reusable representation.

IV. SERVICE INTERFACE DESCRIPTION

In this section, the different types of service descriptions
are described. These descriptions are used in Section VI
to build the EMF state machine model. The client—server
communication of RESTful services is constrained by no client
context being stored on the server between requests [19],
although services can follow a stateful behaviour. Since the
interfaces are implemented stateless there is a missing support
of behavioural descriptions in established description notations
like WADL. To enhance testability the proposed approach
extensively describes service interfaces and also the service
behaviour to get information for valid and invalid interface
calls with test parameters depending on parameter values and
current service states. The information is used to enable an
ECP-based model generation.

29

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

A. Precise Parameter Descriptions

The service model creation utilises service descriptions
to find valid and invalid equivalence classes, which are used
to model state-based transitions. The equivalence classes are
processed by a boundary value analysis and random value
generators to derive the test cases. Conventional service de-
scriptions, based on WADL, describe resource parameters
as implementation-specific technical parameters using well
known data types like string and double (shown in
Figure 2). This leads to a very simple equivalence class model,
which accepts the whole data type as valid input although the
application specific usage of the parameter can be restricted to
a small range.

| <resource path="/zoom/{id}/{value}">

2 <param xmlns:xs="http://www.w3.0rg/2001/XMLSchema" name="
id"

3 style="template" type="xs:string" />

4 <param name="value" style="template" type="xs:double" />

5 <method id="setZoom" name="POST" />

6 </resource>

Figure 2. Basic WADL Parameter Descriptions.

The following paragraphs show examples of information,
which is used to precisely define service parameters.

1) Simple Value Range Limitation: A fundamental ap-
proach of the enhanced service descriptions is to define the
precise value ranges of parameters to gain an abstracted model
of method parameters. This model is not only based on a
technical data type that is used to transfer the information. It
also specifies the defined value ranges processed by the service
logic (e.g., a valve position between —25.0 and 15.5). A simple
limitation of this parameter value in an XML-Schema is shown
in Figure 3. Numeric data types can be restricted by value
ranges and an enumeration of allowed values. Character data
types can be restricted by the number of allowed characters,
the length, an enumeration or a regular expression which
could e.g., define an email-pattern. The mapping between
a parameter of a method or resource in the WADL file is
performed by namespaces, which do not require any extension
of the existing WADL definition.

1 <?xml version="1.0"?>

2 <xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
3 <xs:element name="valve">

4 <xs:simpleType>

5 <xs:restriction base="xs:double">
6 <xs:minInclusive value="-25.0"/>
7 <xs:maxInclusive value="15.5"/>

8 </xs:restriction>

9 </xs:simpleType>

10 </xs:element>

Figure 3. Simple XML parameter restrictions.

The given example describes one valid (vP) and two
invalid equivalence classes (iF). Since division by zero and
switching between negative and positive values are typical
code weaknesses, we divide the valid class into two using
—0,+0 for boundary value analysis (see Figure 4). This
methodology results in 4 disjoint classes: 1P, v P, vPs, 1P

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

i‘PH Pt I vP2 MP‘z

-30 -20 -10 0 10 20

Figure 4. Equivalence Class Partitioning Example.

The definition of valid partitions is not only limited to a
single value range it can describe various valid and invalid par-
titions for one parameter (see XML-Schema restrictions [20]).
It also supports complex definitions of strings not only by
enumerations but also with regular expressions. This way, e.g.,
an email address can be described as parameter input. The
definition of regular expressions is then reused for the test
data generation.

2) Semantic Parameter Description: The test data genera-
tion uses semantic annotations that can be linked to upper level
ontologies like SUMO [21] for reusable test case derivation.
Reusable parameter limitations can, e.g., restrict the range of
a Celsius temperature and the possible temperature units or
define e.g., sets of countries.

Semantic Parameter Interdependency: The description
of service parameters has to take into account that they have
interdependent connections to each other. Ontology documents
take this into account by describing individuals using classes,
relations and attributes. The value range of a parameter
Cityname for example depends on the Countryname param-
eter since for example the city Bologna exists in Italy but
not in Germany. The description of linking interdependent
parameters on the predicate geographicSubregion is shown
in Figure 5. The owlType definition is declared for each
semantic parameter and linked to a class definition within the
ontology by the requestLink tag (Figure 5:3,6). The restriction
tag describes the predicate on which the interdependency is
defined (Figure 5:7). Figure 6 shows the generated SPARQL
Protocol and RDF Query Language (SPARQL) code that is
used to find the matching entities in the ontology.

1 <owlTypeDefinition>

2 <owlType name="Countryname" type="base">

3 <requestLink uri="http://www.onto.org/SUMO.owl#Nation"/>

4 </owlType>

5 <owlType name="Cityname" type="restricted">

6 <requestLink uri="http://www.onto.org/SUMO.owl#City"/>

7 <restriction uri="http://www.onto.org/SUMO.owl#
geographicSubregion" value="{Countryname}"/>

8 </owlType>

9 </owlTypeDefinition>

Figure 5. Semantic Parameter Interdependency.

I prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
2prefix sumo: <http://www.ontologyportal.org/SUMO.owl#>
3select ?city where {

4 ?city rdf:type sumo:City .

5 ?city sumo:geographicSubregion sumo:Germany .

6}

Figure 6. SPARQL-Query.

B. Geospatial Testdata Derivation

Since IoT-based sevices often cover specific areas, a
geospatial description of services is very useful to determine
functional conformance. A common description approach for
geospatial areas is to describe a bounding box (rectangle)

30

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

defining the min. and max. latitude and longitude values that
cover an area. This often leads to a very imprecise area
description. A better way is to specify the precise geospatial
coverage by defining a polygon(concatenation of a list of
coordinates, surrounding an area), which defines the covered
area. Since for a complex polygon like a city boundary it’s a
very long description it is not feasible that everybody annotates
a precise polygon for every supported area. Therefore, we
use an external knowledge base (OpenStreetMap (OSM) [22])
that can access those polygons just by annotating it with the
city/country name. The following shows an example of the
three annotation methods. You can see the resulting areas in
Figure 7.

e Bounding Box (BB):
longitude min:11.2295654 max:11.4336305,
latitude min:44.4211136 max:44.5566394

e Polygon (544 coordinates): (11.366030, 44.449526
11.363828, 44.450242 11.362467, 44.450953 11.362356,
44.451083 11.360538, 44.44932 ...)

e Country name and city name lookup in spatial data
infrastructure (OSM): Italy, Bologna

Figure 7 shows the created equivalence partitions of the
bounding box (Figure 7(a)) and the polygon (Figure 7(b)). The
precision improvement of the polygon is shown in Figure 8(a)
since after comparison it shows that the bounding box de-
scribes a false positive valid equivalence class (see Equation 1):

6]

vPBR2 v 1Ppoiy1

vPss

iPss iProly
(a) Equivalence Classes by (b) Equivalence Classes by
BB Polygon

Figure 7. Equivalence Partitioning of the Bologna Area.

1Ppoiy2 VProy

iPss

vPss2 vPss1

(a) Comparing the Equivalence Classes (b) Random Generated Test Data

Figure 8. Utilising OSM for ECP.

Figure 8(b) shows the test data generation creating 102
coordinates for randomly testing the service in the covered
area. Using boundary value analysis on the buffered polygon
it is also possible to test the service behaviour at the defined
border with valid and invalid values.

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

1

2
3
4
5
6
7

18

C. Service Behaviour Description

By featuring clearly defined interface and parameter de-
scriptions, documents such as WADL enable easy technical
integration of RESTful services. The lack of standardised state-
ful service descriptions is the main challenge for the process of
stateful testing. Therefore, a simple and easy to use description
format has been developed which can be used to define typical
use cases for the [oT service. In addition to the existing WADL
document, this description format facilitates the definition of a
sequence of resource and method executions including loops
and concurrent calls. The XML-based sequence description
document refers to method calls in the WADL document to
gain compatibility. Figure 9 illustrates the main structure of a
sequence description document.

<sequencespecification xmlns:wsl="application.wadl">
<vars><var name="cameraPan" type="double"/></vars>
<paramsets><paramset id="cameraPan">
<param name="1id">10.11.127.6</param>
<param name="value"></param>
</paramset>...</paramsets>
<results><result name="testPosition" mediatype="application
/xml">...</result>
</results>
<sequence mode="multiple" subSequenceType="A1l1l">
<subsequence mode="single" subSequenceType="
MutualExclusive">
<subsequence mode="single">
<wsuri path="wsl:/Camera/pan/{id}/{value}" paramset="
cameraPan"/>
<wsmethod name="wsl:setPan" returnCode="2xx"/>
<setvar var="cameraPan">{value}</setvar>
</subsequence>
<subsequence mode="single">...</subsequence>
</sequence>
</sequencespecification>

Figure 9. Service Sequence Description.

The sequence and subsequence elements are transformed
into a state machine to enable the model based testing process.
Each sequence and subsequence with a wsmethod and wsuri
definition represents a single state and at least one transition
to this state in the constructed state machine. The number of
transitions depends on the number of values for the parameters
and the combination of the same. The elements are structured
into groups, which will be affecting the structure of the state
machine directly (e.g., multiple paths, creation of sub state
machines). Each sequence has a definition of a called WADL-
resource (wsuri, Figure 9:16) and a method (wsmethod, Fig-
ure 9:18), which is provided by the IoT service. Furthermore,
control commands are also a part of a sequence. In case of the
control command sefvar an actual value of a parameter from
a method or a resource is saved into an internal variable. This
procedure allows the implementation of stateful knowledge
since the internal variable can be used over different transitions
at any time and can also be part of a validation process. The
content of a response message of an IoT service is mapped on a
result definition to validate the content against previous inputs.
With the sequence description, the values for each parameter
(e.g., resource and method) can be predefined for this use
case by the user. Missing values for each individual simple or
complex (e.g., structures like XML) parameter in the sequence
description are generated by the test data generation if a user
provides only a portion of parameter values for the use case.

31

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

V. EVALUATION OF EXAMPLE SERVICE

To demonstrate the algorithms and the process of the
test framework this work employs a camera control example
service. The service is used to control multiple CCTV Cameras
at different locations that are adjustable in their pan and tilt
via a RESTful interface. The following sections describe the
transformation and test derivation aligned to this service. The
sequence begins with an initialisation process of the camera
(illustrated in Figure 10).

Initialisation

setTilt

setTilt setPan setPan

getPosition

Figure 10. Camera Example Service.

Between S3 and S4, the values can be set with the
setTilt and setPan method and evaluated with the
getPosition method at the transition back to Ss.

VI. TEST CASE DERIVATION & EXECUTION

The retrieval of the outlined service behaviour description
of Section I'V-C is the starting point for the test case derivation
and execution, which is explained in this section. Whereby
the main aim is to enable a fully automated test derivation
process it also allows manual enhancements based on expert
knowledge. The approach is divided into two translation steps:
i) derive an EMF service model that represents an abstract
behaviour of the SUT from testing perspective (e.g., detectable
behaviour) and ii) derive executable test cases from this model
based on TTCN-3. While the two steps are fully automated,
the test developer can adapt the derived EMF service model
with an Eclipse GMF editor and the created TTCN-3 test
cases. For the model transformation, classical state machine
concepts of states and transitions are re-used. In addition, the
inclusion of concepts of TTCN-3 (e.g., Ports, Components,
MessageTemplates) enables an easy model transformation. The
basic model objects are shown in Figure 11 and can be
described as follows:

States represent different logical conditions of the SUT and
limit the number of correct functionality.

Events characterise the starting of an activity, which might
result in actions or a state change. Events can be either
from the type timer or input message.

Actions describe the reaction of the system to an event. An
Action can be either a response message (output) or can
result in a request sent to an IoT resource.

Transitions describe how the SUT reacts (action) to a certain
event and a specific state. A Transition connects different
states within the model.

‘ NormalState ‘ ‘ InitialState ‘ ‘ EndState ‘

State ‘ ‘ MessageModelTemplate ‘

— t
Transition evem 0.1

Figure 11. Simplified EMF Service Model.

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

The stages of the test derivation process and its information
flow are shown in Figure 12. The process is initiated via
a web interface during stage A. At this time, the required
service behaviour descriptions are retrieved from the Knowl-
edge Management. The service descriptions are analysed and
transferred into the EMF model in stage B. At stage C this
model is translated into executable test cases (TTCN-3). The
final stage D executes these test cases and evaluates the results.
The following paragraphs explain this process in more detail.

Trigger Test Evaluate Service Model

o Derivation \A/ TDE Q .
Web Interface [@_» Edlipse GUI
<
loT 3 % g_ TeDStelzl\?avtvion —| GMF Viewport
Service S = 5
(SUT) 2 5 é Test F)ata > EMF Service
ol g Generation B Model
Test“ & Evaluate Test Cases o —~
suT | CD @ /
Test TTCN-3 State
Execution Engine - Test Cases Machine Analysis

Figure 12. Information Flow.

A. Start of the Test Derivation Process

The test derivation process is triggered via a web interface,
which accepts an ID identifying the service that was registered
and has to be tested. The TDE fetches the needed service
description documents from the KM and evaluates links of
the semantic annotations to build the complete data model.

B. Building the EMF Service Model

The Test Data Generation analyses referenced data types
and their interdependencies, which are described in the service
descriptions. For the derivation of test data for each parameter
ECP is used since it has been proven to provide high effective-
ness in finding defects [23]. This technique divides the possible
input data for each parameter in at least two disjunctive
partitions (e.g., valid and invalid values). The partitions are
created by parsing the parameter restrictions (see Section IV).
The test data generation is designed to cover each partition
with at least one test case. Due to the behaviour change of an
IoT service between the boundary of two disjunctive partitions,
the test data generation uses a boundary-value analysis to fully
cover the boundaries of each partition. In this approach, valid
parameter ranges are annotated with the use of XML Schema
and with a semantic description. It generates code snippets
for parameterised method invocations for the RESTful service
and stores them in the EMF service model. Those snippets are
based on generated random parameters for the used data types
or enable code libraries based on lazy testing [24] to generate
test data during runtime.

The Test Sequence Analysis is used to build the EMF
service model based on the IoT Service WADL description
and a sequence description. The model is implemented as a
Extended Finite State Machine (EFSM), which has at least
a unique InitialState and an EndState, as well as one Nor-
malState definition. While the InitialState and the EndState(s)
are generated automatically, the NormalStates will be created
through the process shown in Table I. If a sequence has
subsequence definitions multiple Normal states are created,
followed by the creation of state transitions, which connect two

32

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

TABLE I. DOCUMENT TRANSFORMATION TO MODEL OBJECT

NORMALSTATE.

Input:

Action:

<sequence mode="single”> ...
</sequence>

Create NormalState
for each sequence
part.

<!—— WADL document ——>

<resources base="http://10.1.1.42:80/CameraService/iot/” >

<resource path="/Camera”>
<resource path="/pan/{id}/{value}”>
<param name="id" style="template”
type="xs:string”/>
<param name="value” style="template”
type="xmlschema:pan”/>
<method id="setPan” name="POST"/>
</resource>
</resource>
</resources>

Create Message-
ModelTemplate
(MMT) event for
a request to a IoT
service.

<!—— Sequence description ——>
<sequence mode="single” >
<wsuri path="ws1:/Camera/pan/{id}/{value}”
paramset="cameraPan”/>
<wsmethod name="ws1:setPan”
returnCode="2xx"/>
</sequence>

Generate test data
or use user de-
fined values from
sequence for each

<paramset id="cameraPan”>
<param name="1d">10.11.127.6</param>
<param name="value”>12</param>

</paramset>
parameter.
<vars>
<var name="cameraPan” type="double” Create variables
schema="response:PositionResponse#pan”/> which will
<[vars> represent the
<sequence mode="single” > actual used value
<wsuri path="ws1:/Camera/pan/{id}/{value}” for a parameter.
paramset="cameraPan”/> Add to MMT
...<setvar var="cameraPan” > {value } </setvar> event.
</sequence>
<method }d: getSensingData” name="GET"> Create a MMT ac-
<response>

tion for the re-
sponse of a [oT ser-
vice.

<representation mediaType="application/xml”/>
</response>
</method>

Create and add
range of expected
HTTP status code
to MMT action.

<wsmethod name="ws1:setPan”
returnCode="2xx"/>

<vars>
<var name="cameraPan” type="double”

schema="response:PositionResponse#pan”/> Add handling of

.</vars> possible return
<results> values to the
<result name="testPosition” mediatype="application/xml” MMT action (e.g.,
type="xml”>{cameraTilt,cameraPan } </result> xml structure as
<results> response). Define

variables to save
the return values.

<sequence mode="single” >
<wsmethod name="ws1:getPosition”
return="responseVar” result="testPosition”/>
</sequence>

different states. These transitions represent an interaction with
the IoT service or a timer Event. Therefore, the transaction
needs a definition for both parts of the communication (e.g.,
request and response). The request is represented by a MMT
event, which is the following step for the transformation. The
resource and method information are part of the sequence
definition and are extracted from the linked WADL document.
If the sequence does not specify user defined parameter values,
the test data generation will produce test values for each
parameter.

A sequence definition is enabled to host control commands
like the setvar tag listed in Table I/row 4. It is used to save
the current value of a parameter for future operations and

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

Resource - ~loTest P

©o @ Usten URL import Adalse q - 7 - - @ o |

B 5§ < = 8 | defautmodel dagramconn.. iy *defaultmodel diagramesm 5t = B || M defaultmodel 3 = o

25 Project Explorer 11

|5 Resourceset

M platform/resource/Camerservice/defaultmodel
satzoom_ 1.0/ N

setTit 3 0f
as
3 properties 18 (&) » v =8
2 E [
Property Value
Actions Action resp._getPosition_10_0
,,,,, % false. getposition 4.0/
Breakpoint ik getPosition_10_0/
-t as
Event 5} Message Model Template req_get?

oo =
~ [l Connectivity View
component ¢
st
L Action resp_setZoom_1_0

Target tate Normalstate 54 Defauty

© Action resp_getposiion_4_0
0 Acton resp_setzoom_7_0

L10.0

Figure 13. EMF Model Evaluation in Eclipse.

thereby allows the integration of stateful knowledge into the
state machine representing a data model of the IoT service.
The response template of the IoT service is modelled as a
MMT action storing the method and response representation,
which are defined in the WADL document that describes
the service (I/row 5). Furthermore, the sequence description
defines the expected HTTP status code for the response. The
result attribute for a wsmethod tag in a sequence description
(I/row 7) indicates another control command for the algorithm
of the test case derivation and execution. This command
produces a mechanism to compare the response of the IoT
service against previous used parameter values, which can be
used as a decision if the actual transition is valid or invalid.
The MMT action as well as the event is be linked to a single
transition in the resulting state machine model.

After creation the EMF model can be evaluated and altered
in an Eclipse GMF - Model Editor (see Figure 13).

C. Creating Test Cases From the Service Model

The EMF model is used to analyse the resulting state
machines of the previous stage. A configuration of the test case
generation allows transition coverage or transition and state-
coverage based on the W method [25]. The transition coverage
is computed by identifying the InitalState and building a test
tree based on a breadth-first visit of all transitions. Each
transition in each state is inspected and if the transitions directs
to a unvisited state a new branch path is created. Afterwards,
the new branch end states are visited and their transitions are
inspected. Each new inspected transition results in a new test
path, which represents the test cases if only transition coverage
is selected. For transition and state coverage it is further needed
to identify a characterisation set (also called W set), which is a
set of input sequences that can be utilised to distinguish every
pair of existing states in the model. The resulting test cases are
created by concatenating every sequence from the transition
coverage set with every sequence in the characterisation set
and apply them after the SUT is initiated.

The Model transformation from EMF to standardised
TTCN-3 ensures explicit representation and reproducibility of
test cases. As output of stage C test cases are derived from
the EMF Service Model. A test case is a directed graph
consisting of states and transitions and represents one possible
path from the InitialState to another defined NormalState or

33

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

EndState (e.g., S; — Sy — S3 — Sy — 53, see Figure 10).
During the model transformation each element is inspected
and the required TTCN-3 elements are created. The actual
writing of the TTCN-3 code is realised with a template
engine. This enables the separation of syntactical details of
the TTCN-3 language from the analysing logic thus reducing
the complexity and enhancing the manageability. The followed
approach uses the Java-based template engine Velocity [26].
In the following the transformation step is outlined with some
detail. Table II depicts the first step while going through the
model elements in the current test case. The model object
InitialState is used to create the general test case structure and
assures that the test case stops after a defined time by adding
a timer. Afterwards, the TTCN-3 element function is created
and added to the test case. TTCN-3 functions are utilised to
separate different steps of the test execution. These reusable
functions are used to represent the different states of the SUT.

TABLE II. TTCN-3 TRANSLATION OF MODEL OBJECT INITALSTATE.

Action: TTCN-3 Output:

Add timer to en-

X testcaseMaxExecutionTimer.start;
able timout

Create function function start_1_0() runs on ¢ { ...}

Add function to
Test Case

testcase tc_1() runs on ¢ system sys {
start_1_0(); ... }

The next element Transition consists of an Event that can
describe that an input is received by the SUT and an Action
that describes the output reaction of the SUT to this input
message. Table III sketches the transformation from the model
object event to a send operation and the storage of the sent
values for later usage. Since the EMF service model is created
from the service point of view the translator inverts certain
expressions for the purpose of testing. In this case the event
of a transition becomes a send call.

TABLE III. TTCN-3 TRANSLATION OF MODEL OBJECT EVENT.

Action: TTCN-3 Output:

template HttpRequest req_setPan_1_0 := { postRequest := {
url := "http://10.1.1.42:80/CameraService/iot/Camera/pan
/10.11.127.6/19.27”, ... } }
v_PositionResponse_pan := 19.27;
f_request(p1, req_setPan_1_0);
v_req_setPan_1_0 := req_setPan_1_0;

Create send
call and local
variable

Subsequently, the action part of the transition is utilised to
derive TTCN-3 code. Initially a new function for the next state
is created. Afterwards the defined response of the SUT is trans-
lated into TTNC-3. Then, the TTCN-3 element alt is used to
form the possibilities of the SUT behaviour. At first, the failure
case for delayed or unexpected service responses is modelled.
After that the followed approach assumes deterministic service
behaviour with only one possible valid reaction. This expected
behaviour is included in the alt element of TTCN-3 including
the jump to the next TTCN-3 function (state) created before.
Table IV shows the discussed transformation process of the
model object action.

While the link to the next function has been created during
the action transformation, in the last step the function itself is
created at the time the next element (NormalState) of the test
case is inspected. Table V reveals the resulting TTCN-3 output.

At the final stage of the test case the model, object EndState
is reached. This completes the TTCN-3 code creation by

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

TABLE IV. TTCN-3 TRANSLATION OF MODEL OBJECT ACTION.

Action: TTCN-3 Output:

Create Target Call S1_1_20);

var template GETResponse resp_setPan_1_0 := {
statusCode := (200 .. 299),

content := {rawContent := omit, plainTextContent :=?},
headers := ? }

Create expected re-
Sponse message

alt {
[1 testcaseMaxExecutionTimer.timeout {
tcMaxExecutionTimeout_1(); }
[1 any port.receive { unexcepctedStateReached_1(); }

Form alt for Mes-
sage

alt {

[ischosen(req_setPan_1_0.postRequest)] p1.getreply(
POSTreq: {req_setPan_1_0.postRequest} value
resp_setPan_1_0) —> value v_resp_setPan_1_0 {
S1_1_20;}

Create reply ele-
ment in alt

TABLE V. TRANSLATION OF MODEL OBJECT NORMALSTATE.

Action: TTCN-3 Output:

function S1_1_2() runs on ¢ {...}

Create function

setting the verdict to pass. If all functions, corresponding
requests and response messages have been transmitted during
the test case execution this final statement indicates that the
SUT has the expected behaviour for this test case. Table VI
shows the resulting TTCN-3 code.

TABLE VI. TTCN-3 TRANSLATION OF MODEL OBJECT ENDSTATE.

Action: TTCN-3 Output:

setverdict(pass, "End—state reached”);

Set verdict

D. Executing the Test Cases

After compilation of the TTCN-3 test cases the whole test
flow can be executed by a web service interface or manually
using the TTworkbench [27]. It enables a visualised logging
of test execution in a log report, which can be used to evaluate
the detailed test results (see Figure 14).

TTCN-3 Execution Management - TTworkbench Professional

K] 3 Qx| or © G B DTTCN-3D... [DTTCN-3Ex
o Man 2\ P Met| = O||5 Test Data 2 . I bump| & Console! & o ®e &0
7 || matches
8 B Expected TTCN-3 Template Data
R Test Case Name Value Name Value
> 22 v of PositionRespons¢ v ol PositionRespons¢
Executed ro ez sid B sid 10111226
Test Cases | It o pan 8298715 4 pan 52.98715
ic_25 Silt 82.98715 Sl 2.1915596
~— ©® 16:40:09.400 2.1915596 2 z00m 52.98715
@ 16:5354.114
4 \ 29 D TTCN-3 Graphical Logging £3 @ TTCN-3 Textual Logging| = Log Stack =0
Test Data / @ 12:04:37.226 100% 1S H A SO B P FE Y
. ® 12:06:10.804.
Evaluation @ 120731216
> ke 26
\), g e
R 16403
) —— v tc.29 e
T C > 16:40:09.904.
est Case | _—1 7wt Ceren
Logging :: -
-
—— > t3 164010067 JT
vt 3 R wnepec fromsenice’, (:="10.1.127.6,pan= 8238715, l=21915596,20
» o k36 Tea01008 o
Test Case 164010070 (D "unexpected responde fromsenice’,{id:="10.11.127.6, pan:= 8298715, tlt:=2.191559%,20
Evaluation BejBrjmex\ "2
PICE Y — —

Figure 14. Execution of the Test Cases.

The TTworbench provides a comprehensible graphical view
to easily identify the cause of an occurred error (e.g., protocol,
encoding or data).

34

VALID 2014 : The Sixth International Conference on Advances in System Testing and Validation Lifecycle

VII. CONCLUSION AND FUTURE WORK

The complexity to describe IoT services for testing pur-
poses in conjunction with missing domain specific knowledge
for data types has prevented the utilisation of automated
model-based testing for IoT services. The outlined frame-
work tries to lower the gap by employing a sequence based
modelling description which can be easily created, whereby
the automated state machine analysis allows a transition
and parameter combination coverage. Utilising semantically
definitions in combination with ECP provides distinct test
data pools enabling a more efficient and domain specific
test case generation. The testing framework follows a two-
step approach where the service description includes com-
mon utilisation information within a sequence description.
The combination of standardised WADL interface description,
semantic parameter descriptions and a sequence description
empowers the transformation into a service model. Afterwards
test cases can be derived and executed based on TTCN-3. This
approach enables adjustments by developers at an early stage
due to simple sequence descriptions and the standardised test
notation TTCN-3. The key principles of the test framework are
explained based on an example IoT service. The example is
directly taken from our prototypical implementation and proves
the applicability of our approach for IoT services. Although
there is a high complexity in the initial implementation of
the framework, the automated derivation allows the tester to
take a systematic model driven approach to test IoT services
though keeping possibilities to evaluate and modify the created
test cases in a standardised test notation. The implemented
sequence definition fills the gap between stateless interface
descriptions and model-based testing and can be used for a
more simplified and controllable test automation.

As a common approach I[oT service compositions are
utilising high level business modelling languages like Business
Process Model and Notation (BPMN) [28]. Therefore, future
work will include the integration of such languages and
annotate them semantically to enable automated derivation of
a service model. Besides functional behaviour, the influence
of networking and service quality characteristics needs to be
addressed for large scale IoT service testing.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Union FP7 for the IoT.est project under
grant agreement n° 257521.

REFERENCES

[11 L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer networks, vol. 54, no. 15, May 2010, pp. 2787-2805.

[2] M. Utting, A. Pretschner, and B. Legeard, “A taxonomy of model-
based testing approaches,” Software Testing, Verification and Reliabil-
ity, vol. 22, no. 5, 2012, pp. 297-312.

[3] E.Ramollari, D. Kourtesis, D. Dranidis, and A. Simons, “Leveraging se-
mantic web service descriptions for validation by automated functional
testing,” The Semantic Web: Research and Applications, Jun. 2009, pp.
593-607.

[4] D. Binkley, “Source code analysis: A road map,” in 2007 Future of
Software Engineering, ser. FOSE *07. Washington, DC, USA: IEEE
Computer Society, May 2007, pp. 104-119.

[5] A. Takanen, Fuzzing for software security testing and quality assurance,
ser. Information security and privacy series. Artech House, 2008.

[6] W.-l. Huang and J. Peleska, “Exhaustive model-based equivalence
class testing,” in Testing Software and Systems, ser. Lecture Notes in
Computer Science, H. Yenign, C. Yilmaz, and A. Ulrich, Eds. Springer
Berlin Heidelberg, 2013, vol. 8254, pp. 49-64.

Copyright (c) IARIA, 2014. ISBN: 978-1-61208-370-4

(71

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

E. G. Aydal and J. Woodcock, “Automation of model-based testing
through model transformations,” in Testing Conference - Practice and
Research Techniques, 2009. TAIC PART ’09. IEEE, Sep. 2009, pp.
63-71.

N. Walkinshaw, R. Taylor, and J. Derrick, “Inferring extended finite
state machine models from software executions,” in 2013 20th Working
Conference on Reverse Engineering (WCRE), Oct. 2013, pp. 301-310.

A. Pretschner, “Model-based testing,” in 27th International Conference
on Software Engineering, 2005. ICSE 2005. Proceedings, May 2005,
pp. 722-723.

N. Tracey, J. Clark, K. Mander, and J. McDermid, “An automated
framework for structural test-data generation,” in Automated Software
Engineering. 13th IEEE International Conference on, Oct. 1998, pp.
285-288.

M. Deng, R. Chen, and Z. Du, “Automatic test data generation model
by combining dataflow analysis with genetic algorithm,” in Pervasive
Computing (JCPC), 2009 Joint Conferences on, Dec. 2009, pp. 429—
434.

M. Fischer and R. Tonjes, “Generating test data for black-box testing
using genetic algorithms,” in 2012 IEEE 17th Conference on Emerging
Technologies Factory Automation (ETFA), Sep. 2012, pp. 1-6.

K. Belhajjame, S. Embury, and N. Paton, “Verification of semantic web
service annotations using ontology-based partitioning,” IEEE Transac-
tions on Services Computing, vol. 99, no. PrePrints, 2013, p. 1.

C. Kankanamge, Web Services Testing with SoapUI. Packt Publishing
Ltd, 2012.

C. Schanes, F. Fankhauser, S. Taber, and T. Grechenig, “Generic data
format approach for generation of security test data,” in VALID 2011,
The Third International Conference on Advances in System Testing and
Validation Lifecycle, Oct. 2011, pp. 103-108.

R. Tonjes, E. S. Reetz, K. Moessner, and P. M. Barnaghi, “A test-
driven approach for life cycle management of internet of things enabled
services,” in Future Network and Mobile Summit, Berlin, 2012, pp. 1-8.

M. J. Hadley, “Web application description language (wadl),” Sun
Microsystems, Inc., Mountain View, CA, USA, Tech. Rep., 2006.

E. Reetz, D. Kuemper, K. Moessner, and R. Tonjes, “How to test iot-
based services before deploying them into real world,” in 19th European
Wireless Conference (EW 2013), Guildford, United Kingdom, Apr.
2013, pp. 1-6.

R. T. Fielding, “Architectural styles and the design of network-based
software architectures,” Ph.D. dissertation, University of California,
2000.

P. Biron and M. Ashok, “Xml schema part 2: Datatypes,” W3C
Recommendation, vol. 2, 2001.

1. Niles and A. Pease, “Towards a standard upper ontology,” in Proceed-
ings of the International Conference on Formal Ontology in Information
Systems - Volume 2001, ser. FOIS "01. New York, NY, USA: ACM,
Oct. 2001, pp. 2-9.

A. Ballatore, M. Bertolotto, and D. C. Wilson, “Geographic knowledge
extraction and semantic similarity in openstreetmap,” Knowledge and
information systems, vol. 37, no. 1, Oct. 2013, pp. 61-81.

N. Juristo, S. Vegas, M. Solari, S. Abrahao, and I. Ramos, “Comparing
the effectiveness of equivalence partitioning, branch testing and code
reading by stepwise abstraction applied by subjects,” in Software
Testing, Verification and Validation (ICST), 2012 IEEE, Apr. 2012, pp.
330-339.

M. Lin, Y. Chen, K. Yu, and G. Wu, “Lazy symbolic execution for test
data generation,” Software, IET, vol. 5, no. 2, Apr. 2011, pp. 132-141.
A. Gargantini, “4 conformance testing,” in Model-Based Testing of
Reactive Systems. Springer, 2005, pp. 87-111.

Apache Software Foundation, “The apache velocity project,” Website,
available online at http://velocity.apache.org/ retrieved: 2014-08-30.
Testing Technologies, “TTworkbench,” Website, available online at
http://www.testingtech.com retrieved: 2014-08-30.

S. Meyer, A. Ruppen, and C. Magerkurth, “Internet of things-aware
process modeling: Integrating iot devices as business process resources,”
in Advanced Information Systems Engineering, ser. Lecture Notes in
Computer Science. Springer, 2013, vol. 7908, pp. 84-98.

35

