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Abstract—This paper introduces a new method for auto-
matic test parameter generation that has been named adaptive
knowledge-supported testing. The approach uses a combination
of random testing for test parameter generation and machine
learning and data mining techniques to optimize these test
parameters based on the results from previous tests. The goal is to
enable efficient testing of complex systems which cannot be tested
exhaustively anymore due to the huge number of possible input
combinations. The paper provides a description of the method
and also results from the evaluation of a first proof-of-concept
demonstrator that has been implemented to validate the method.
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I. INTRODUCTION

Increasing system complexity results in an increase in
complexity of the test engineers’ task to ensure that systems
are correct. In recent industry practice, the verification phase
is commonly the longest phase in system development and is
the most critical to completing a product on time [1].

This raises the need for the development of new techniques
and methodologies that can provide the test engineers with
the means to achieve their goals quickly and with limited
resources. These solutions succeed in removing much of the
manual labour traditionally involved in the verification process.
Tasks such as test execution and test report generation are
now typically automated to a high degree. Model-based testing
(MBT) is a new trend in industry that focuses on automatic test
case generation [2] [3]. However, test parameter generation is
often still a manual task [4].

Adaptive knowledge-supported testing is a new method for
automatic test parameter generation. It combines methods from
the area of machine learning and artificial intelligence, e.g.,
neural networks and methods from the area of data mining,
e.g., data clustering and existing methods for test parameter
generation, e.g., random testing.

Under the assumption that critical test points, i.e., stimulus
combinations that lead to errors, typically occur in groups in
the whole test parameter space, adaptive knowledge-supported
testing allows to generate optimized test parameters from
previously executed tests and their results.

This paper is structured as follows: Section 2 provides
some background regarding testing and machine learning.
Section 3 deals with related and prior work. Section 4 intro-
duces the adaptive knowledge-supported testing method using
a running example and, finally, Section 5 concludes the paper.

II. BACKGROUND

A. Testing

”Testing is the process of executing a program with the
intent of finding errors” [5]. Testing is a well-known discipline
in the software and system engineering fields, and in recent
decades many testing strategies have been developed, such as
stress testing, fault injection, coverage-based testing, black-
box, and white-box testing, or combinations of these.

However, it has been pointed out that ”[in] general, it
is impractical, often impossible, to find all the errors in a
program” [5] and ”every testing method (save exhaustive
testing [..]) is less than perfect” [6]. Testing cannot guarantee
the absence of errors, but it can help to discover their presence.
The economics of testing, i.e., the balance between the testing
effort and project time or resource constraints, depends on the
selected testing strategy and the way test cases are designed,
as well as the experience of the testers [5].

Half of all embedded systems development projects are
way behind schedule and less than half of the designs meet
20% of the expectations in terms of functionality and perfor-
mance according to the study in [7]. This is despite the fact
that around half of the total development effort is spent on
testing [7], [8]. These numbers underline the importance and
desirability of reducing test effort by advances in the testing
methodologies, especially considering the trend for ”increase
in software complexity [and] shorter innovation cycle times”
[9].

B. Machine learning

According to a standard definition, ”Machine learning is
programming computers to optimize a performance criterion
using example data or past experience.” [10]. And more
formally: ”a computer program is said to learn from experience
E with respect to some class of tasks T and performance
measure P, if its performance at tasks in T, as measured by
P, improves with experience E” [11].

Transferred to our application this translates as follows:
The adaptive knowledge-supported testing learns from past test
results (experience E) with respect to the task test parameter
generation (task t) and performance measure effectiveness of
the generated test parameter sets in detecting errors (perfor-
mance measure p). So, the test parameter generation, mea-
sured by the effectiveness of the generated test parameter sets
improves with the number of past test results.

There are different machine learning techniques, such as
supervised, unsupervised or reinforcement learning, as well
as classification methods, such as decision trees, naive Bayes
classifier, support vector machines, neural networks, etc. The
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methods differ in learning complexity, classification accuracy
and robustness, the possibility to interpret the generated results,
and performance. Each of the classification methods has advan-
tages and disadvantages. For example, decision trees may be
computationally expensive because of the number of distinct
nodes to be created. Support vector machines require more
effort in setting up the learning and may also be computational
expensive. The advantage of using naive Bayes models is the
simplicity of learning. However, the underlying assumption is
that all input values are independent, which is not always
applicable to our setting, in which test parameters values
may be interrelated. In turn, artificial neural networks are an
alternative to dynamic and non-linear problems because they
are not restricted in terms of normality, independence of input
data etc.

Artificial Neural Networks (ANN) mimic the biological
neural networks in their learning function. ANN are com-
posed of connected neuron models. Each connection has a
different weight that is adjusted throughout learning. A special
type of artificial neural networks is the Probabilistic Neural
Network (PNN). It is a four layers feed-forward network
proposed by Specht [12]. When using the Dynamic Decay
Adjustment (DDA) algorithm [13] it is possible to build the
network dynamically based on the numerical training data. The
output of the trained network are inferred rules that enable to
predict the probability that new test data belongs to a certain
target category. We used PNN (DDA) for our case study for
learning from previous test runs and producing new test sets
by predicting (i.e., selecting new test data based on the their
highest probability).

III. RELATED WORK

Random testing, i.e., random selection of test cases, is
generally regarded as not only a simple but also an ”intuitively
appealing” [14] technique amongst the black box techniques
for test case generation. In random testing, test cases may be
randomly chosen based on a uniform distribution or according
to other distributions that are inferred from the operational
profile of a unit under test (UuT). Hamlet [6] points out that
the main benefits of random testing include the availability of
efficient algorithms to generate test cases, and also its ability
to provide reliability and statistical estimates. Using random
test inputs allows many design requirements to be verified
very quickly with minimal manual effort. Random tests also
have the additional possible benefit of generating test cases
that human test engineers would not necessarily think of [15].
Studies have shown that systematic testing methods are not
much better at finding failures than random testing [16] and
more recent research ”further support[s] the use of random
testing in real-world software”[17].

However, random testing also has weaknesses, e.g., ”a vast
number of test points are required” [6] and knowledge of the
operational profile of a UuT are required to infer suitable
distributions for the random number generators. Also, random
testing usually does not produce all test cases that are needed
to verify a design. The test engineer must evaluate the coverage
results of the executed tests and determine, which cases remain
to be tested, which can then either be written manually or
generated by adjusting the random number generator in an

attempt to steer the random test generation into the untested
scenarios.

Several new approaches try to combine random testing with
a more systematic approach to get the best of both worlds:
automatic and quick test case generation coupled with a system
to steer the test case generation.

Adaptive Random Testing (ART) is a method based on
random testing that seeks to distribute test cases more evenly
within the input space [18]. It uses two separate sets of test
cases, the executed set and the candidate set, which is a set
of randomly generated test points. At each iteration one or
more test points are selected from the candidate set and used
for a test. The criterion for selection is maximum distance
from previously executed tests, which results in a more even
spread of test cases in the test space. The distance function
needs to be defined for each type of test. The example in
the paper uses the Euclidean distance. Adaptive knowledge-
supported testing also distinguishes between the executed set
of tests and the candidate set of tests, which is generated using
random methods. Instead of maximising the distance between
test cases to evenly spread the tests we use machine learning
to focus testing.

Coverage Directed Test Generation (CDG) uses coverage
measurement together with a random test generator in order to
assess the progress of the testing process [15]. The coverage
analysis allows to modify the directives for the test generators
and thereby to target areas of the UuT that are not covered
well.

More recently, effort has been made to couple CDG with
machine learning techniques to close the manual feedback loop
from coverage analysis to test parameter generation. Machine
learning, i.e., a Bayesian network, is used to observe the impact
of input stimulus changes on coverage goals and a subsequent
automatic steering of the input generation parameters so that
the coverage is maximised [15]. It has been shown that this
kind of CDG can successfully generate test directives from an
analysis of observed test coverage gaps to guide the testing to
completion more quickly [19][20].

CDG requires a detailed insight into the UuT to allow
measuring the coverage achieved by testing, which is not easily
possible in blackbox testing. In contrast to CDG, which tries to
optimize coverage of the UuT, adaptive knowledge-supported
testing aims at optimizing the chance to discover errors in the
UuT while minimizing the required number of test runs.

IV. ADAPTIVE KNOWLEDGE-SUPPORTED TESTING

A. Running example

The adaptive knowledge-supported testing method was
developed using representative example data provided by a
simulation model. The test considered was a power interrupt
test, which tests the robustness of the unit under test by
applying a number of power interrupts. The test parameters
that typically characterize the power interrupt test and their
value ranges (positive integers) are provided by Table I:

These test parameters are defined by a test engineer based
on his knowledge of the UuT and the goal of the test.
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Test parameter Min value Max value Smallest step size
Number of interrupts 1 10 1
Interrupt duration (/10ms) 1 20 1
On time duration (s) 1 20 1

TABLE I: TEST PARAMETERS FOR POWER INTERRUPT TEST

Combinatorics dictates that there exist 4000 possible test
points using full factorial parameter combination. We use a
monitor-based testing approach described in [21] for evaluating
a test run. Other automated test verdict generation approaches
could be used as well. The test verdict returned by running
one set of test parameters can take three distinct values:

• 0: test passed successfully

• 1: warning point, e.g., some values are anomalous but
are still within the allowed value range

• 2: error point, a requirement has been violated

Fig. 1: Running example error distribution

For testing the adaptive knowledge-supported testing
method, four error zones have been included in the total test
space of 4000 test points, with 6 error points and 96 warning
points as Figure 1 shows.

B. Assumptions

One general assumptions is underlying the adaptive
knowledge-supported testing approach:

• Warnings and errors occur in groups in the test space:
This stems from the observation that errors and warn-
ings do not occur in an isolated fashion in the test
space but, since moving from one test point to a
neighbouring one represents only a very slight change
of inputs, they are found in groups.

Another assumption has been made that is motivated by
the running example and is depending on the test evaluation
criteria and the possible values of the test verdict.

• Errors are surrounded by warnings: This represents
the knowledge from past testing campaigns that testers
do not stumble upon errors out of the blue but that,
when the stimuli are closing in on an error then a
system starts to behave anomalously but still within

the bounds of the allowed, e.g., a variable value that
has an upper limit starts moving towards this threshold
or a variable that should be steady starts to flutter
slightly but does not violate the fixed boundaries yet.

Both of these assumptions are based on lessons learnt from
past test campaigns and have been confirmed internally by test
experts.

C. Process

The starting point for adaptive knowledge-supported testing
is always the definition of a test case that is parametrized and
of all possible stimuli for the system under test for the given
test case. This is done by the test engineer.

For our running example, the abstract parametrized test
case can be informally described as follows:

1) Turn on the UuT.
2) After $OnTimeDuration start the first power in-

terrupt by turning off the power supply and turning
it back on after $InterruptDuration*10 ms.

3) If $NumberOfInterrupts is greater 1, after
$InterruptDuration*10 ms initiate the next
power interrupt until $NumberOfInterrupts in-
terrupts have been executed.

4) Five seconds after the last power interrupt check if
the UuT is in the normal operating mode and has
successfully passed the initialisation.

The unique benefits of adaptive knowledge-supported test-
ing come to fruition when existing test results are available. If
this is not the case then adaptive testing largely corresponds
to the underlying test method that is used for the test data
generation, i.e., without existing rest results adaptive testing
using random data generators becomes random testing.

Fig. 2: Adaptive knowledge-supported testing process

Figure 2 provides an overview of the general process for
the adaptive knowledge-supported testing.

1) Analyse test results The goal is to find starting points
for the generation of new test parameter values. This
may be achieved using different methods:
• Clustering: test results are grouped into clus-

ters. A possible starting point can then be the
center of a cluster.

• Error point: new starting points are all the
discovered error points
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2) Generate new test parameters Based on the results
of the test results analysis and the derived starting
points, new potential test parameters are generated to
form the candidate set. Various methods can be used
for that:
• Random: new values are generated randomly
• Stochastics: new values are generated based

on stochastic distributions (e.g., Gaussian dis-
tribution)

• Fixed step sizes: new values are generated
using steps with predefined step sizes from
the starting point(s)

Other methods for test parameter generation, such as
the Category-Partition Method [22] or other struc-
tured parameter generation methods could be used
as well here.

3) Learn and predict Test results from previously
executed tests are put into a neural network to derive
a decision function. This function can then be used
to automatically classify new input data into the three
classes that are relevant for our need: test passed suc-
cessfully, warning and error. New input data means
test data that has not been used for learning before.
Simply put, the trained neural network is used to
predict which of the newly generated test input com-
binations from the candidate set are highly likely to
produce an error or a warning. This information is
used in the next step to select a desired set of new
test stimuli.

4) Select test parameters based on prediction results
Usually, test parameter generation results in a very
large number of new test parameter combinations,
especially when the new individual test parameter
values are combined using the Cartesian product
to generate new test points. Since it is not always
possible to run thousands of tests, this process steps
allows reducing the final number of new test points.
In this step, some of the test points from the candidate
set are selected for the next test execution. This can
be done using different selection criteria:
• Only test points with high error probability

(according to the prediction)
• Mix of test points with high and low error

probability
• Absolute limit for number of test points

5) Execute test One by one all the newly selected test
points are used to drive one test and obtain a test
result. Ideally, this task is automated but depending
on the type of task it may also be conducted com-
pletely manually. Test execution is not in the focus
of this work but has a strong impact on the number
of tests that can be conveniently executed. A manual
test that lasts one or two hours cannot be conducted
a 1000 times with different parameters while a fully
automatic test that executes in a couple of seconds
can.

Note, that the process is iterative. In each iteration loop,
the focus of the test effort is adapted and shifted according
to the knowledge gained from the accumulated past results,
hence the name of the approach.

Past test results are not necessarily limited to tests on the
same version of or indeed the very same type of UuT. The
power interrupt test is a very general test, that is applicable to
all kinds of components. Different components with a similar
start-up routine might exhibit similar failures especially if there
are other influencing factors, e.g., in our case two different
components might be from the same supplier and therefore
use the same kind of power converters, which have a heavy
influence on the behaviour reacting to power interrupts or two
components might have the same kind of interface, e.g., a CAN
bus interface, that is implemented using the same commercial-
of-the-shelf interface controller.

Deciding if past test results from another test campaign are
suitable for the current UuT is a task left to the test engineer
but might, in the future, be supported by a classification of
different components, e.g., using an ontology database.

D. Implementation

The adaptive knowledge-supported testing approach has
been implemented in a proof-of-concept demonstrator. This
demonstrator is based on the Konstanz Information Miner
(KNIME) [23] tool, which is available under the GPL GNU
Public License, Version 3, an open source license. KNIME is a
data analytics platform for data access, transformation, mining
and visualisation. It provides a basic set of data processing
operations, called nodes, that can be combined graphically in
a so-called workflow to achieve complex information manip-
ulation processes.

The test bench and the UuT were implemented as a
single simulation, basically a lookup table that accepts a test
parameter set at a time and provides the ”test result” as a
three-valued integer output as explained before. This allowed
us to define the errors zones so that we could benchmark
the performance of the adaptive knowledge-supported testing
approach. Comma Separated Values (CSV) was chosen as the
data exchange format between KNIME and the simulated test
bench because it is natively supported by KNIME and an easily
adaptable format that can be read in a standard editor, which
eases debugging. The complete demonstrator setup is shown
by Figure 3.

Fig. 3: Adaptive knowledge-supported testing demonstrator

E. Evaluation results

Table II shows the result from the application of the
adaptive knowledge-supported testing approach to the power
interrupt test. Four iterations of 100 test sets each where
conducted. For comparison, we included a brute-force ap-
proach, which simple runs all 4000 possible test points and
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unsurprisingly discovers all warnings and errors but also has a
high cost attached to it, i.e., the number of tests per uncovered
error or warning is significantly higher than using the adaptive
testing approach.

Method
Metric Brute-force Adaptive testing I Adaptive testing II
Tested points 4000 400 400
Warnings found 96 22 67
Errors found 6 0 2
Tests/Warnings 41,7 18,2 6
Tests/Errors 666,7 n/a 200

TABLE II: COMPARISON BETWEEN BRUTE-FORCE AND ADAPTIVE TESTING

As already discussed in Section IV-C, the process step
”Select test parameters based on prediction results” permits
different options for the selection of the new test parameter
sets from the pool of generated test parameters. To understand
these options, it is important to understand the output of the
predictor. For each test set the predictor has four different
outputs:

• 0: The predicted likelihood between 0 and 1 that this
test set will return a 0 result (test passed successfully)

• 1: The predicted likelihood between 0 and 1 that this
test set will return a 1 result (warning)

• 2: The predicted likelihood between 0 and 1 that this
test set will return a 2 result (error)

• Winner: Either 0, 1 or 2; the most likely, i.e., the
one with the highest likelihood, of the three possible
results.

We use the Winner value, as well as the 0 likelihood value
for selecting test parameters for the next iteration of testing
from the candidate set of test parameter values that were
created in the ”Generate new test parameters” process step.

As can be seen from Table II two different options of
the adaptive knowledge-supported testing approach have been
evaluated:

• Adaptive testing I: All the test parameters, for which
the predictor predicts a warning or error result (Winner
is 1 or 2) are included in the new test set. Additionally,
to fill the set up to 100 new test sets per generation it-
eration, the test points, for which the predictor predicts
a 0 test result with the lowest likelihood are included
as well.

• Adaptive testing II: All the test parameters, for which
the predictor predicts a warning or error result (Winner
is 1 or 2) are included in the new test set. Additionally,
to fill the set up to 100 new test sets per generation
iteration, a mix of 50 percent test points, for which
the predictor predicts a 0 test result with the lowest
likelihood and 50 percent random test points from the
remaining points are included.

As we can see from the results, the second run, which
includes randomly chosen test points fares better at detecting
error and warnings than the run, which focuses on the most
likely negative test results. The reason for that is that by

focusing only on likely error producing test points the chance
to uncover new error zones in the test space is increased.
Ultimately, this means that a combination of random testing
and focused testing delivers the most promising results.

Table III illustrates the iterative approach of adaptive
testing. The results show that adaptive testing is able to
exhaustively check an error zone once it is discovered. Using
the random element in the ”Select test parameters based on
prediction results” process step allows to uncover further error
zones.

Iteration
Metric 1 2 3 4 5
Tested points 100 200 300 400 500
Warnings found 2 24 42 67 70
Errors found 0 2 2 2 2
Tests/Warnings 50 8,3 7,1 6 7,1
Tests/Errors n/a 100 150 200 250

TABLE III: INCREMENTAL USAGE OF ADAPTIVE TESTING

A further evaluation was done comparing the results from
the adaptive testing to pure random testing. To establish a
mean value for the effectiveness of random testing, Monte
Carlo simulations with 10000 runs each were conducted for
different numbers of randomly (uniform distribution) selected
tested points. Table IV contains the results.

Metric Number of tested points
Tested points 100 200 300 400 1000
Warnings found (mean) 2,4 4,83 7,19 9,59 24
Errors found (mean) 0,15 0,29 0,45 0,60 1,5
Tests/Warnings 41,7 41,4 41,72 41,71 41,7
Tests/Errors 666,7 689,7 666,7 666,67 666,7

TABLE IV: RANDOM TESTING RESULTS

The first evaluation results look promising. The first it-
eration of adaptive testing corresponds to random testing as
no test results where available to optimise the test parameter
generation. After the first iteration, adaptive testing proved
to be more effective in detecting warnings and errors than
pure random testing. It should be noted, however, that a more
thorough evaluation is called for, where especially different
error distributions will be evaluated and more runs of the
adaptive testing approach need to be conducted to form a more
substantiated statement about the overall effectiveness of the
adaptive testing approach. One outcome of this work will also
be a guideline for the user which supports the selection of the
various possible options that our method has. Furthermore, it
is planned to evaluate the approach using a real unit under test
to show its usefulness in an industrial context.

V. CONCLUSION

In this paper, we present a new approach for testing models
or systems. The approach leverages knowledge captured in
previous tests in order to minimise the number of required
tests for detecting errors. Our first case study shows that this
approach is promising because of its ability to locate errors
by using a fraction of the number of tests compared to a
brute force or random testing approach. This is achieved by
a mixture of random samples, which enable discovering new
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error zones and test points that focus on zones as soon as first
error indicators are found.

Our case study shows the first promising results. However,
the validity of the approach beyond the presented results is still
an open question. It is subject to our future work to experiment
with other classification methods, such as support vector
machines or naive Bayes classifiers, as well as, evaluating the
approach using different sets of randomly generated training
data. Moreover, we plan to automate the workflows in KNIME
in order to minimize the manual effort for setting up and
running the tests.

In addition to that, we plan to run a more thorough evalua-
tion campaign. In this we will use a larger example case with a
higher number of possible test input combinations to compare
our approach to a number of systematic testing approaches in
terms of complexity, runtime and testing efficiency.
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