
Using Filtering to Improve Value-Level Debugging of Verilog Designs

Bernhard Peischl

Softnet Austria

Graz, Austria

bernhard.peischl@soft-net.at

Franz Wotawa

 Institute for Software Technology, TU Graz

 Graz, Austria

franz.wotawa@ist.tuGraz.at

Naveed Riaz

Shaheed Zulfikar Ali Bhutto Institute

Islamabad, Pakistan

n.r.ansari@szabist-isb.edu.pk

Abstract— In this article, we report on novel insights in model-

based software debugging of hardware description languages

(HDLs). Our debugging model allows one for exploiting failing

and passing test cases by incorporating Ackermann constraints.

This article reports on an empirical evaluation of the introduced

models. The evaluation of our approach on the well-known

ISCAS 89 benchmarks concerning single and dual-fault diagno-

ses clearly indicates that incorporating passing test cases into

fault localization improves considerably the accuracy of the ob-

tained diagnosis candidates.

Keywords – hardware/software debugging, model-based

debugging, source-level debugging, fault localisation

I. INTRODUCTION

This article reports on the most recent results in software
debugging of Verilog designs. It is a major extension to pre-
vious research work that primarily reports on fault localization
in Very High Speed Integrated Hardware Description Lan-
guage (VHDL) [1]. Verilog [2], has a formal semantics and
thus, it is amendable to research in verification and debugging,
e.g., its synthesis semantics is formally specified in Gordon
[3].

Most of the research in verification deals with the detec-
tion of faults and does not address the fact that debugging in-
volves locating and correcting the fault. In detecting faults
(software/hardware testing), we make use of numerous test
cases for more than two decades. In the recent past, numerous
test cases have been employed for localizing faults, e.g., in
terms of employing spectrum-based diagnosis [4, 5, 6, 7, 8].

Spectrum-based techniques, however, allow one for logi-
cal reasoning at the level of dependencies and do not consider
the semantics of the language in terms of value-level models.
Consequently, there is a lack of research dealing with multiple
test cases in conjunction with value-level models taking into
account language semantics. This is noteworthy as we do have
well-founded techniques that allow for considering whole test
suites and – as shown in this article – there is solid empirical
evidence that taking into account test suites improves the fault
localization capabilities considerably.

Over the last 25 years, the Artificial Intelligence commu-
nity has developed a framework for system diagnosis called
model-based diagnosis (MBD). This framework is extremely
general and covers a broad range of capabilities, including the
isolation of faulty components and the handling of multiple
fault locations [9, 10]. Harnessing these techniques in soft-
ware engineering tools, may help considerably to master the
development of complex circuits and software-enabled sys-
tems.

Since its well-founded theory, we rely on MBD, and em-
ploy the ISCAS 89 benchmark suite [11] to demonstrate the
practical applicability of our novel models. Relying on an ex-
haustive evaluation, our insights clearly indicate that the in-
corporation of test suites (rather than only single test cases as
for example in [12]) considerably contributes to locate accu-
rately the root cause for detected misbehavior. According to
our empirical evaluation using the ISCAS 89 benchmarks,
with a couple of failing test cases (up to 5), we can exclude
almost 94 percent of the statements and expressions of being
faulty. By leveraging passing test cases, we can further rule
out around half of the remaining 6% of the potentially errone-
ous code. In this article, we show how to incorporate passing
test cases. In contrast to previous articles addressing this issue,
we report on our most recent empirical evaluation on the
ISCAS 89 benchmarks regarding the proposed filtering algo-
rithm.

The next section gives a brief introduction to simulation,
test and debugging of HDLs and afterwards (Section III), we
discuss the debugging of sequential circuits. In Section IV, we
show how to exploit passing test cases. Section V reports on
practical experiences and the evaluation of the approach and
Section VI concludes this article.

II. SIMULATION, TEST AND DEBUGGING

In designing circuits, a designer starts with an initial spec-
ification that primarily captures the functional requirements
for the circuit being designed. Usually, this is followed by a
detailed design on the register transfer level (RTL). Both de-
signs are executable and thus are amendable to automated ver-

49Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

ification. In general, the RTL design is verified very thor-
oughly in terms of testing and various other analysis tech-
niques, e.g., hazard analysis. Since there is a fixed window for
start of production, these verification steps are typically con-
ducted under time pressure and thus, the time for debugging –
detecting, localizing, and repairing the misbehavior – is a crit-
ical process measure.

Typically, the design process iterates through several
steps: Design and programming is followed by a simulation of
the circuit. The outcome of the simulation is compared to the
specification, that is, it is checked whether the waveform
traces on a higher abstraction level (the specification) deviate
from the waveforms obtained from the test run on the RTL
level. Previous research work, carried out in the VHDL do-
main, gives an intuitive understanding on how to leverage
MBD for fault localization in HDL designs1.

According to a study conducted at IBM Haifa, 50 to 80
percent of the overall development is attributed to verification
activities, and localization and correction amounts to 35 per-
cent of the design cycle [13]. Thus, particularly under local or
temporal separation of the design and the test team, the auto-
mation of fault localization (and correction) is a sustainable
topic for ongoing and future R&D work as it contributes to
make the development process more efficient.

III. DEBUGGING SEQUENITAL VERILOG DESIGNS

The semantics of Verilog has been analyzed rigorously,
and thus provides the necessary theoretical underpinning in
language semantics and circuit synthesis. Gordon [3] provides
a formal description of various semantic interpretations of
Verilog like event-semantics and trace-semantics. In event-se-
mantics (which is the semantics employed for fine-grained
simulations), the change of a variable necessitates the recalcu-
lation of depending procedures.

In contrast to that, the trace semantics of Verilog computes
solely the quiescent states at the end of a simulation cycle. For
computing these quiescent values, each procedure is evaluated
only once per cycle [3]. Procedures are evaluated in an order
such that a procedure is not evaluated until all its driving pro-
cedures have been evaluated. In other words, the outputs of a
procedure are computed only when all its inputs are known (or
already computed). So, we build up our representation of the
design by starting with processes solely dependent on known
inputs and variables (e.g., the primary inputs, including
clock). Afterwards, the outputs of these processes are attached
to the list of already known inputs and variables. This process
continues until all the procedures in the design are levelized
[12]. In this way, we build up a chain of procedures and their
inputs and outputs, thus allowing for an evaluation of all the
variables used in the design at the end of the simulation cycle.

Synchronous sequential circuits change their states and
output values at discrete instants of time, which are specified
by the rising and falling edge of a clock signal. In other words,
synchronous sequential circuits consist of multiple cycles. In
electrical engineering, sequential circuits are often viewed as
a sequence of connected combinational circuits. This can be
done by selecting some connections and splitting them in two

separated connections. One is the input and one the output.
The output of a stage of a specific cycle is connected to the
corresponding input of the next cycle.

We have adopted the same idea for providing an appropri-
ate debugging model for sequential designs. Our representa-
tion can be broken into two phases, one in which latches
change state, and one in which all the combinational blocks
are evaluated. We effectively break the design at latches by
treating the outputs of the latches as they were inputs and in-
puts of the latches as they were outputs.

In our representation, we first identify variables that we
have to synthesize into latches. By splitting these variables
and treating them as additional inputs and outputs, we ensure
that our representation remains acyclic. Then, we levelize the
graph according to the levelization strategy discussed above.
Thus, we receive a sequence of procedures depicting the data
flow from the given primary inputs to the primary outputs.
Our next step is to unroll the sequential circuits to incorporate
multiple cycles (input sequence length). We assume that we
know the number of unrollings to be performed in advance.
After the levelization of all the procedures, we create the com-
ponent-connection model. This component-connection model
[9, 10] represents our model at level 1 (cycle no. 1). For every
component C, we attach a timestamp i during the creation of
the model to ensure a unique identification. Thus Ci represents
the instance of component C at cycle i. Thus, we make n cop-
ies of every component involved, where n is the total number
of cycles or unrollings. So we create n instances for each com-
ponent.

Diagnosis problem: A diagnosis problem considering circuit

unrolling over n cycles is a triple (SD, COMP,OBS) where


ni

iSDSD
..1

 where SDi is the system descry. for cycle i (1)


ni

iCCOMP
..1

 where Ci are the components in cycle i (2)

and


ni

iOBSOBS
..1

 and OBSi denote the obs. in cycle i. (3)

The above given definition captures a diagnosis model for
a single test case (of length n). Given this definition, the diag-
nosis problem considering a test suite is given as follows:

Diagnosis problem, test suite: Given a test suite comprising

the test cases TC1, TC2, …, TCk. Let the system description

SDj be the system description considering test case TCj and

let
j

iC be the instance of component C at cycle i in test case

number j. Correspondingly, the sets j

iOBS denote the obser-

vations in cycle i of test case TCj. The diagnosis problem

(SD*, COMP*, OBS*) considering this test suite is given as

follows:

50Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle




kj
j

n

j

jj

j

CABCAB

CABCABSD
SD

..1 2

10*

)}(.......)(

)()({

 





nikj

j

iCCOMP
..0,..1

*






nikj

j

iOBSOBS
..1,..1

*





As passing testcases do not cause a logical contradiction,
we do not obtain conflicts from passing testcases considering
the diagnosis model for a test suite (SD*, COMP*, OBS*).

IV. EXPLOITING PASSING TESTCASES

To illustrate the potential of using passing test cases to lo-
cate the root cause for detected misbehavior we continue with
a simple example.

assumption in1 in2 out inter verdict

AB(not), AB(xor) 1 0 1 0 fail

AB(not), AB(xor) 0 0 1 1 pass

Figure 1 illustrates a part of a circuit an exclusive or and a
NOT gate together with a passing and failing test case. We
further assume that the circuit is faulty, that is, our test suite
has identified misbehavior and we obtain both components
(the exclusive OR and the NOT gate) as possible diagnosis
candidates.

Suppose we have the test cases given in Figure 1. Consid-
ering the first (failing) test case in the first line, and assuming
the NOT gate to be abnormal but the exclusive OR gate to be
correct, we can deduce that signal inter becomes 0. However,
under the same assumption, the passing test case in line 2,
forces the value of inter to become 1. We immediately see that
the NOT gate is required to map the signal inter to 0 and to 1
for the same input value in2=0. Obviously, no deterministic
component can fulfill this requirement. Thus, the NOT gate
can no longer be considered as a valid diagnosis candidate. To
our best knowledge, the authors of [14] were the first who
used this idea for discriminating diagnosis candidates. Unfor-
tunately, the article gives no further insights whether the tech-
nique can be employed in practice as the authors do not pro-
vide an empirical evaluation to evaluate scalability and the im-
provement with respect to accuracy.

In the following, we propose an extension to that which,
under absence of structural faults, allows one for taking ad-
vantage of passing test cases. As passing test cases does not
yield to additional conflicts, we capture the specific infor-
mation about diagnoses in terms of Ackermann constraints
[22, 23]. By adding these consistency constraints we incorpo-
rate the fact that the same combination of input values applied
to a deterministic component C produces the same output for

every instance of C. This allows for exploiting the many test
cases that typically do not reveal a fault. The system descrip-
tion with Ackermann constraints SDA is given as follows:

System description with Ackermann constraints: Let TCp

be a set of passing test cases form a test suite TC, let in(Ci)

={
1

Cii , …,
m

Cii } denote the inputs of component Ci, let

out(Ci)={
1

Cio ,…,
n

Cio } denote the outputs and let SD* denote

the system description of a diagnosis problem considering a

test suite. The system description with Ackermann con-

straints SDA is given by,

where, i≠j and i,j denote indices of the passing test cases.

As we will show in the next section, Ackermann constraints

increase the complexity of the model considerably.

Therefore, we used a post processing technique proposed by

the authors of [21]. As shown at the end of this section, fil-

tering allows one for iteratively applying the Ackermann con-

straints to the obtained diagnoses. Instead of compiling the

constraints into the debugging model, we apply the con-

straints in terms of a dedicated post-processing phase.

Filtering refers to discarding certain diagnoses by taking ad-

vantage of further test cases TCi. A diagnosis Δ states that

}\|)({  COMPCCABTCSD i
is con-

sistent. This implies that there is a replacement, that is, there

exists a function replace(C) for every component C
that allows for repairing the program for the given test case.

The function replace(C) allows for producing the correct out-

put values for the considered test case. However, considering

a test suite such a replacement does not exist for all test cases

in the test suite TC necessarily.

Since all components COMP \ Δ are assumed to behave cor-

rectly, we can compute the input values in(C) and out(C) for

every component C from Δ (employing forward propaga-

tion). According to this computed input/output relation, the

component C may be required to map the same input- to dif-

ferent output values. This corresponds to an inconsistency

and the specific diagnoses AB(C) is not repairable wrt. the

specific test case. As there is no function replace(C) as stated

previously, the component C can be removed from the set of

diagnosis candidates. In this vein, we evaluate the Acker-

mann constraints in an iterative way by checking for different

input values for a certain output value.

Figure 1: Passing and failing testcases and part of a circuit.

(4)

(5)

(6)

p

cj

p

ci

n

p

l

cj

l

ci

m

liA

AA

ooiiCABCON

CONSDSD





 11

*

)(

, (7)

(8)

51Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

Algorithm 1 (Filtering): Let Δ denote a set of diagnosis can-

didates and let TS be a test suite.

1. For all D  Δ do

2. For all test cases TCi  TC do

a. Let iDi denote the input values and let oDj

denote the output values of component D by assum-

ing }\|)({)(DCOMPCCABDAB 

b. If there exits i,j, i≠j, such that

then remove D from Δ

3. return Δ

Claim: Algorithm 1 applies the Ackermann constraints

CONA to a set of single-diagnosis candidates.

After applying Algorithm 1 to the set of single-fault diagnosis

candidates, there is no component D at which we obtain dif-

ferent input values for a certain output value. Thus, we con-

clude that

Algorithm 1 (Figure 2) thus imposes the Ackermann con-

straints on the set of single-fault diagnosis candidates. There-
fore, for our approach evaluation we therefore took advantage
of the filtering algorithm presented previously.

V. PRACTICAL EXPERIENCES AND EVALUATION

With a series of our most recent experiments we pursue
the goal to evaluate the discriminating capabilities of several
test cases on sequential circuits, the response time (and thus
the computational complexity on a technical level) and the ef-
fect of the filtering technique.

We conducted our experiments on a Dell Power Edge
1950 II - 2x Quad Core with 2.0 GHz and 10GB of RAM. For
computing diagnoses, we relied on the extension of Reiter’s
algorithm described in [15]. Note that, for the efficient com-
putation of diagnoses, we convert the rules capturing the lan-
guage semantics (discussed in [16]) into a specific Horn-like
encoding [17]. As the computation of conflict sets is a time
critical issue, the (minimal) conflict sets are computed accord-
ing to the procedure explained in [17].The diagnosis engine
and the proposed extension are implemented in the Java pro-
gramming language.

Our debugging tool parses the Verilog code, builds up the
model as described in this article and converts a test suite to
the logical representation [16]. Afterwards, the tool computes
diagnosis candidates in increasing order of cardinality and vis-
ualizes the results by highlighting the corresponding state-
ments, expressions or operators.

A. Time Complexity of Computing Diagnosis

For our empirical evaluation, we use a Horn-like encoding
of the rules presented herein. By relying on this encoding we

make use of an efficient procedure to compute all minimal
conflicts [17]. From the obtained conflicts, we retrieve diag-
noses by computing the minimal hitting sets in increasing or-
der, where for practical purposes, primarily single- and dou-
ble-fault diagnoses are of interest. In general, searching for all
diagnoses has a worst time complexity of the order
O(|MODES|*|COMP|s), where |MODES| is the number of
fault modes, |COMP| is the number of components and s is the
maximal size of the diagnoses [18]. Since we use two fault
modes (AB(C) and AB(C)) and search for single and dou-
ble fault diagnoses, our worst time complexity is of the order
O(|COMP|2). Note that we consider the components in every
cycle as independent and thus the number of components in-
creases with the length of the test case. However, the average
running time complexity is much better because diagnoses
with smaller size (particularly single-fault diagnoses) are
more likely than diagnoses with bigger size. For example,
finding all single diagnoses is of order O(|COMP|) assuming
the decision procedure can be executed in unit time.

B. Test Suite Generation

We obtained the test suite by injecting a single-fault (re-
spectively a dual-fault for the second series of experiments)
into the RTL design. Afterwards, we identified the faults in
terms of running a simulation until we obtained five test cases
revealing the introduced fault. In some (rare) cases, for exam-
ple for the circuit s444, we were not able to find five test cases
and stopped this process earlier (see Figure 3). The faults are
introduced in a random way by picking a statement from every
circuit and replacing this statement by another statement. That
is, for every circuit, we replaced an arbitrary statement with a
structurally equivalent statement (same no. of input parame-
ters). For example, in a specific circuit we randomly selected
a NOR statement and replaced it by an AND statement. Fur-
thermore, we implicitly removed/added negations as we sub-
stituted a logical statement by the negated counterpart (e.g.,
NAND by AND vice versa). These error types are not neces-
sarily complete wrt. functional errors, but as they are believed
to be common in the design process, we capture the most com-

)()(,, 11

p

Dj

p

Di

n

p

l

Dj

l

Di

m

l ooiijiji  

)()(,, 11

p

Dj

p

Di

n

p

l

Dj

l

Di

m

l ooiijiji  

)()(,, 11

p

Dj

p

Di

n

p

l

Dj

l

Di

m

l ooiijiji  

DjDiDjDi ooii 

Figure 3: No. of obtained single-fault diagnoses for the ISCAS 89

benchmark (4 cycles).

Figure 2: Exploiting passing testcases via filtering.

(9)

(10)

(11)

52Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

mon scenarios [20]: (1) Mistakenly replacing one gate by an-
other gate with the same number of inputs and (2) incorrectly
adding or removing a gate.

All empirical evaluations are conducted on the Verilog
RTL version of the ISCAS 89 benchmark suite [11]. Further,
the gate-level representations of the ISCAS 89 benchmarks
have been used to obtain the correct waveform traces since our
simulator allowed only for simulation of gate-level circuits. A
detailed analysis including the results for the specific circuits
can be found in [16]. In the following, we summarize the ma-
jor results. In this article, we summarize the work presented in
[16] and present novel results regarding the incorporation of
passing tests alongside with first empirical results.

C. Empirical Evaluation and Discussion

 In our experimental setting, we assumed that an engineer
only knows the correct values of the primary inputs for every
simulation cycle and the outputs at the end of the final simu-
lation cycle. That is, the traced variables correspond to the pri-
mary inputs vin for every instant of time (vin, valin, t), t=1..n,
together with the primary outputs (vout, valout, n) at time n
and thus, the observations are given in terms of the primary
input variables for every cycle and the primary output varia-
bles at the end of the simulation cycle (i.e., at time point n,
where n is the length of the test case). To evaluate the impact
of the temporal unfolding of the circuit, we conducted exper-
iments with four and eight simulation cycles relying on the
well-known ISCAS 89 benchmark suite.
 First, the figures underpin the findings discussed in previ-
ous research papers [19]. The number of single diagnoses be-
ing obtained depends from both, the concrete test case being
applied and the structural complexity of the program being
considered. Second, as Figures 3 and 4 illustrate – even with
only a couple of test cases (in our case up to 5) – the number
of obtained diagnoses can be reduced significantly when com-

pared to the experiment with solely a single test case. Re-
markably, the random fault introduced in circuit s510 yields
to a significant number of diagnoses and thus higher response
times when compared to the remaining circuits. It appears that

(1) the structural complexity, (2) the specific error being in-
troduced and the (3) specific test cases identifying the intro-
duced faults result in a (at least in relation to the other circuits)
computationally expensive problem. On average, we obtained
74(123) single-fault diagnoses and 44(70) faulty lines in the
source code when unfolding the circuit for 4(8) instances of
time. Remarkably, a designer can exclude over 90 percent of
the source code from being faulty (93,6 percent for 4 cycles
and 92,5 percent for 8 cycles of unfolding).

 Figure 5 outlines further empirical results. We obtained
these results from the ISCAS 89 benchmark suite considering
dual-fault diagnoses as well. When considering dual-fault di-
agnoses, the no. of diagnosis candidates does not necessarily
decrease monotonically with the increasing set of test cases.

However, our experiments revealed that for most of the
circuits, the obtained number of fault candidates decreases
monotonically with an increase in the size of the test suite.
Together with the results for single-fault diagnoses, this gives
empirical evidence that the additional cost in the running
time, pays off in terms of a higher accuracy in the obtained

diagnosis candidates. In [15], we present novel algorithms and
an analysis on scalability and the corresponding running
times.

Figure 4: No. of obtained single-fault diagnoses (ISCAS 89, 8 cycles).

Figure 5: No. of obtained dual-fault diagnosis (ISCAS 89, 4 cycles).

Figure 6: No. single-fault diagnoses when using the filtering algorithm

(4 cycles).

53Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

Figure 6 summarizes the results on a further series of ex-
periments incorporating the filtering algorithm. To our best
knowledge, the filtering approach has never been subject to an
empirical evaluation. When compared to Figure 3, one can see
that exploitation of passing test cases contributes to accurately
isolate the real cause of misbehavior.

VI. CONCLUSION

In this article, we briefly discuss the simulation-driven de-
sign process with hardware description languages (HDLs) and
point out the importance of fault localization techniques. Af-
terwards, we introduce a model extension that allows one for
exploiting failing and passing testcases. Failing testcases re-
sults in conflicts, and thus it contributes to locate the fault in
an accurate manner. To exploit the numerous passing test
cases, we introduce Ackermann constraints and establish a re-
lationship to the filtering technique proposed earlier. Our em-
pirical evaluation on the ISCAS 89 benchmark suite demon-
strates that the proposed technique is practically feasible and
considerably contributes to locate the real cause of misbehav-
ior. According to our experiments using the ISCAS 89 bench-
marks, on average, we can exclude almost 94 per cent of the
statements and expressions from being faulty making use of
up to 5 failing test cases per circuit. By leveraging passing test
cases, we are able to rule out around half of the remaining 6
per cent of the potentially erroneous code. These results moti-
vate research on value-level models for debugging HDL de-
signs. Future research should apply the proposed techniques
to even bigger circuits (e.g., using more recent benchmarks,
etc.) and investigate the relationship between filtering and
Ackermann constraints under presence of multiple-fault diag-
noses.

REFERENCES

[1] Z. Navabi, VHDL Analysis and Modeling of Digital Systems,
McGraw-Hill, New York, 1993.

[2] IEEE Standard Verilog Language Reference Manual LRM Std
11364-1995, Institute of Electrical and Electronics Engineers,
Inc. IEEE, 1995.

[3] M. J. C. Gordon, “Relating event and trace semantics of
hardware description languages”, The Computer Journal,
45(1), 2002, pp. 27–36.

[4] R. Abreu, P. Zoetewei, van A. J. C. van Gemund, “On the
Accuracy of Spectrum-based Fault Localization”, Testing:
Academic and Industrial Conference Practice and Research
Techniques - MUTATION, 2007, TAICPART-MUTATION
2007, vol., no., 10-14 Sept. 2007, pp. 89-98.

[5] B. Baudry, F. Fleurey, Y. Le Traon, “Improving test suites for
efficient fault localization”, In Proceedings of the 28th
international conference on Software engineering (ICSE '06),
ACM, New York, NY, USA, 2006, , pp. 82-91.

[6] D. Hao, L. Zhang, T. Xie, H. Mei, and Jia-Su Sun, 2009,
“Interactive fault localization using test information”, J.
Comput. Sci. Technol. 24, 5, September 2009, pp. 962-974.

[7] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, M. I. Jordan,
“Scalable statistical bug isolation”, In Proceedings of the 2005
ACM SIGPLAN conference on Programming language design
and implementation (PLDI '05), ACM, New York, NY, USA,
2005, pp. 15-26.

[8] Y. Yu, James, A. Jones, M. J. Harrold, “An empirical study of
the effects of test-suite reduction on fault localization”, In
Proceedings of the 30th international conference on Software
engineering (ICSE '08). ACM, New York, NY, USA, 2008, pp.
201-210.

[9] R Reiter, A theory of diagnosis from first principles, Artif.
Intell. 32, April 1987, pp. 57-95.

[10] J. de Kleer, A. K. Mackworth, R. Reiter, “Characterizing
diagnoses”, In Proceedings of the National Conference on
Artificial, Intelligence (AAAI), Boston, Aug. 1990, pp. 324–
330.

[11] F. Brglez, D. Bryan, K. Kozminski, “Combinational Profiles of
Sequential Benchmark Circuits”, IEEE International
Symposium on Circuits and Systems, 1989, pp. 1926-1934.

[12] B. Peischl and F. Wotawa, “Automated Source-Level Error
Localization in Hardware Designs”, IEEE Design and Test of
Computers, January/February, 2006, pp. 8-19.

[13] G. Auerbach, M. Moulinn, B. Jobstmann, R. Bloem, A.
Cimatti, M. Roveri, PROSYD: Property-Based System Design,
Deliverable 2.1/1, May 2005, PROSYD Technical Report,
FP6-IST-507219.

[14] O. Raiman, J. de Kleer, V. Saraswat, and M. Shirley,
“Characterizing non-intermittent faults”, In Proceedings
AAAI, Anaheim, Morgan Kaufmann, July 1991, pp. 849–854.

[15] B. Peischl, N. Riaz, F. Wotawa, “Advancements in Automated
Debugging of Verilog Designs”, Submission to the Applied
Artificial Intelligence Journal in preparation.

[16] B. Peischl, N. Riaz, F. Wotawa, “Automated Debugging of
Verilog Designs”, International Journal of Software
Engineering and Knowledge Engineering (IJSEKE), Sept.
2012, Vol. 22, No. 5, World Scientific, pp. 695-724.

[17] B. Peischl and F. Wotawa, “Computing Diagnosis Efficiently:
A Fast Theorem Prover for Propositional Horn Theories”, In
Proceedings of the 14th International Workshop on Principles
of Diagnosis (DX-03), Washington DC, June 2003, pp. 175-
180.

[18] F. Wotawa, Applying Model-Based Diagnosis to Software
Debugging of Concurrent and Sequential Imperative
Programming Languages, PhD thesis, Technische Universität
Wien, 1996.

[19] G. Friedrich, M. Stumptner, F. Wotawa, “Model-based
diagnosis of hardware designs”, Artif. Intell. 111(1-2), 1999,
pp. 3-39.

[20] D. Nayak, D. M. H. Walker; “Simulation-based design error
diagnosis and correction in combinational digital circuits”,
VLSI Test Symposium, Proceedings of the 17th IEEE Test
Symposium (VIS 99), 1999, pp. 70-79.

[21] F. Wotawa, “Debugging hardware designs using a value-based
Model”, Applied Intelligence, 16(1), 2002, pp. 71–92.

[22] W. Ackermann, Solvable Cases of Decision Problems, North
Holland, 1954.

[23] S. Staber, G. Fey, R. Bloem, and R. Drechsler, “Automatic
fault localization for property checking”, In E. Bin, A. Ziv., and
S. Ur, editors, Second International Haifa Verification
Conference (HVC 2006), Haifa, Israel, October 2006,
Springer-Verlag, LNCS 4383, pp. 50-64.

54Copyright (c) IARIA, 2013. ISBN: 978-1-61208-307-0

VALID 2013 : The Fifth International Conference on Advances in System Testing and Validation Lifecycle

