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Abstract—Dynamic reconfiguration is viewed as a promising
solution for today’s large scale and heterogeneous comput-
ing environments. However, considering the critical missions
networked systems support, dynamic reconfiguration cannot
be achieved unless the accuracy of its behaviors is guar-
anteed. For that reason, dynamic reconfiguration solutions
should provide validation capabilities to ensure the correctness
and the safety of reconfiguration activities. Current solutions
mainly address use-case specific configuration validation or
fail to handle the additional operational validity requirements
induced by dynamic reconfiguration. In this paper, we describe
a model-based approach for validating configuration changes
at runtime. The approach is based on MeCSV, a metamodel
that allows a platform and vendor-independent specification
of a reference model, that is, the configuration schema of the
managed system as well as constraints that should be respected
for structural consistency and operational compliance. We
provide an overview of the MeCSV language and demonstrate
the feasibility of this approach using a messaging platform case
study.
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I. INTRODUCTION

The self-management vision has gained a lot of mo-
mentum in networked systems management where it is
viewed as a promising solution for today’s large scale and
heterogeneous computing environments management. This
vision consists mainly in endowing managed systems with
self-adaptation capabilities to maximize their usability [1].

Regardless of the management functional domains (e.g.,
fault, performance, security), dynamic reconfiguration activi-
ties are the principal means through which self-management
is carried out. However, dynamic reconfiguration capabili-
ties should not endanger the system’s operation, otherwise
they would nullify the expected benefits: reconfiguration
validation is one of the fundamental issues that conditions
dynamic reconfiguration effectiveness [2]. Consequently,
management systems should support online validation to
guarantee the correctness and the safety of reconfiguration
activities.

This paper complements previous work on defining a
framework for dynamic reconfiguration validation. In [3],
we argued that runtime reconfiguration validation should go
beyond traditional structural sanity checks to further assess
the safety of candidate configurations regarding operational
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conditions at hand. For example, when a max request size is
erroneously set smaller than the current number of requests
sent to a process, it can introduce some inconsistencies thus
compromise the system’s operation. In other words, in the
matter of self-configurable systems, prevailing operational
states can invalidate the suitability of a runtime produced
configuration no matter its structural correctness. Conse-
quently dynamic reconfiguration validation should consider
an operational applicability validation which consists of
validating proposed configuration changes against the cur-
rent system’s operational state to test the suitability of its
deployment.

In this paper, we present a model-based approach for con-
figuration specification that enables a platform-independent
validation of configuration modifications at runtime.

The approach is based on a metamodel we develop named
MeCSV (Metamodel for Configuration Specification and
Validation). MeCSV implements appropriate constructs that
allow vendors or operators to define their own reference
model that every valid configuration instance should con-
form to, independently from management platforms and
configuration protocols in use.

Indeed, MeCSV provides an intermediate high-level lan-
guage that resolves the heterogeneity of configuration in-
formation and semantics. It also includes rule specification
features to define different types of constraints to be val-
idated dynamically on specific configurations produced at
runtime. Finally, MeCSV incorporates constructs to repre-
sent monitored data of interest that will serve to assess the
operational compliance of a given configuration instance.

In particular, one novelty of the metamodel is to include
the capability to express both offline and online constraints.
The former allows operators to define structural integrity
rules while the latter allows them to define rules to be en-
forced regarding operational conditions, necessary to ensure
the operational validity of produced configurations.

The remainder of the paper is structured as follows:
Section II presents related work and Section III includes
a case study that will be used throughout the article to
illustrate usage examples of the MeCSV metamodel. Section
IV introduces the validation approach we propose, built upon
the MeCSV metamodel whose core constructs are described
in Section V. Finally, Section VI describes implementation
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details of a prototype experiment and Section VII concludes
the paper and identifies future work.

II. RELATED WORK

The need for configuration representation standards and
configuration automation are growing concerns regarding
the complexity of the configuration management of today’s
large-scale and heterogeneous systems [4], [5]. Our work is
at the junction of these two topics as the MeCSV metamodel
enables a generic and vendor-independent configuration
specification and runtime validation which is a prerequisite
for configuration automation as well as self-configuration.

Most related work proposes platform-dependent data
models that principally provide structural integrity checks
of functional configuration parameters [2], [6], [7], [8] and
consider to a lower extent the validation of non-functional
configuration parameters whose values depend on ongoing
operational conditions (e.g., QoS, resources utilization). The
novelty of our approach is to provide a language that is
designed specifically for dynamic validation, it addresses
both structural and operational validity.

The DMTF Common Information Model (CIM) [9] and
the YANG data modeling language [10] include construc-
tions to model configuration data. CIM provides partic-
ularly SettingData and the OCL qualifier constructs that
can be used to indicate configurations and constraints to
be respected, however, these elements are close to manual
configuration, thus not flexible for a runtime reconfiguration
environment. YANG provides a flexible data modeling lan-
guage with means to specify structural constraints that will
be enforced at runtime. However, YANG is specific to the
Network Configuration Protocol (NETCONF) [11].

Our work also relates to PoDIM, a high-level language
that allows to describe configurations as well as express
the structural constraints that should be respected during
managed objects creation and modification [7]. Even though
they also define a high-level language for configuration
specification, the two approaches are different since PoDIM
is used to generate valid configurations (from rules defined
by an administrator) whereas we validate configurations
produced by existing management systems. In contrast to
PoDIM, we also addresses the operational compliance issue.

Configuration validation is also addressed as a Constraint
Satisfaction Problem [12], [13]. Nevertheless, the considered
constraints are structural and static and their satisfaction
does not consider the operational environment that can
condition the applicability of generated configurations. A
runtime validation is still required to assert the operational
compliance of generated configurations regarding runtime
conditions variations.

III. USE CASE

This section introduces a Message-oriented Middleware
(MOM) use case on which the examples given throughout
the following sections will be based.
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MOM systems are profitable to integrate heterogeneous
and distributed applications seamlessly by making use of
messaging servers to mediate communications between
them. One other advantage is that by adding a management
interface, an operator can monitor and manage the sys-
tem’s performance, reliability and scalability without losing
function. Validating a MOM system’s runtime evolving
configurations is a suitable scenario for the evaluation of
the approach we propose. The formalisms we will rely on
respect the JORAM MOM configuration description [14].

A JORAM platform provides the following configurable
features: message servers that route and deliver messages,
destinations that are physical storages supporting either a
point to point messaging (queue) or a ‘“publish/suscribe”
messaging (topic), connection factories used to enable client
connections to the message servers according to used con-
nection protocols (e.g., TCP).

Figure 1 presents the distributed JORAM platform confi-
guration example that will be used in Section VI (recon-
figurations scenarios). It consists of three servers SO, SI,
S2 respectively providing queue-type destination (Qa, Qb,
Qc, Qd and Qe) and TCP connection services to client
applications.

Configuring this example platform consists in configuring
each server, that is setting servers’ local parameters (e.g.,
identifier, name, hostname) and the configuration parameters
of the hosted elements (services, connection factories and
destinations).

e
= F
( Server SO \‘\
o | @D =
. II \/\
Server S2
Server $1

Figure 1. Use case system architecture

The following requirements are considered for the purpose
of the case study:

« Configuration structure: It should respect the platform’s
architecture and the relationships between the configu-
ration parameters. (Reql)

« Naming service: Connection factories and destinations
should be accessible via a naming service i.e., the plat-
form should provide an accessible JNDI service where
the administered objects should be stored. (Req2)

e« Memory optimization: The queue memory should not
run low in memory, i.e., the queue should not be loaded
at more than 80% of its maximum capacity. (Req3)
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IV. CONFIGURATION VALIDATION APPROACH

The goal of our work is to provide means to enable
an automatic configuration validation in self-configurable
systems. Concretely, we want to build a validation system
capable of automatically asserting the correctness and safety
of configuration data at runtime, that is checking that con-
figuration values remain within authorized bounds and do
not compromise intended service behavior. To meet this
objective, we follow a model-based approach in which we
define a lightweight, yet consistent metamodel that provides
constructs for a vendor neutral configuration data description
and a constraint-based validity enforcement.
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Figure 2. Proposed model-based configuration validation approach
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The aim of this metamodel is first, to allow operators
to specify their system’s configurations thanks to appropri-
ate constructs and rules; second, to enable the automatic
validation of runtime proposed configurations against this
model independently of both management platforms and
configuration protocols.

As depicted in the upper part of Figure 2, the metamodel
we propose is used to specify a Reference Model that
every possible configuration of the target system should con-
form to. This reference model includes the configuration’s
structure (configuration parameters) as well as the different
constraints every valid configuration should respect. The
novel aspect of these constraints is to cover both structural
integrity and operational applicability validation:

« Structural integrity validation checks the correct struc-
ture and composition of configuration parameters
in terms of authorized values and consistent cross-
components dependencies. For example, checking that
a host-address configuration parameter exists and is
well formed according to the IPv4 or IPv6 format.

o Operational applicability validation checks if the con-
figuration fulfills the runtime operational conditions.
For instance, assessing that Req3 still holds after a
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configuration modification. This type of validation re-
quires the knowledge of the current runtime context.
The reference model thus includes the concept of state
parameters for the acquisition of necessary monitored
data.

Note that the reference model is to be defined by the hu-
man operator according to system and management require-
ments. Then, it will be used at each dynamic reconfiguration
decision to verify produced configuration instances.

The reference model can also be modified, for example
with the addition, removal or modification of constraints or
configuration elements at any time during the management
system’s life cycle if needed.

The process for validating proposed configurations at
runtime will work as follows: the reconfiguration decision
function of the management system (the Plan block in the
lower part of Figure 2) will interact with the runtime con-
figuration validation. Every produced configuration instance
will be dynamically checked against the reference model
and be consequently validated structurally and operationally
before deployment.

V. MECSV OVERVIEW

This section presents the salient features of the metamodel
depicted in Figure. 3. MeCSV has been formally specified
as a UML profile [15] to ease the usage of the MeCSV
language and benefit from the abundance of UML modelers.

A. Configuration Data Description

Configuration data are generally described in some confi-
guration files where their structure is specified through the
setting of some configuration properties with appropriate
values and options. Additionnally, bindings between sys-
tem’s elements need to be reflected in their configurations,
for example, the coordination of the server’s hostname
value with the machine’s hostname value. This part of the
metamodel represents subsequents concepts to do so.

1) Configuration Parameter: represents quantifiable con-
figuration parameters of managed elements; their expression
defines the configuration data structure. For example, a
message server’s identifier or hostname information.

2) Configuration: acts as a container for configuration
parameters allowing to coordinate them and to group them in
categories. For example, a configuration file can be modeled
as a single Configuration, or for more flexibility, divided into
multiple Configurations.

3) Configuration Dependency: represents bindings be-
tween two configuration elements meaning a configuration
parameter of one configuration references a whole or a part
of the other configuration. Typically, a server’s hostname
references its host machine’s name information.
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Figure 3.

4) Configuration Composition: allows to divide a main
configuration into partial configurations. For example, a
message server’s configuration is split into message services,
connection factories and destinations sub-configurations. It
means that the complete server’s configuration is the collec-
tion of its local configuration parameters and its associated
sub-configurations.

5) Configuration Metadata: allows to specify metadata
for configuration lifecycle management. For instance, one
could want to tag specific configurations as default or initial.
Another example is the visited metadata used in the
JorAM platform to mark deployed configurations.

B. Connection to the Monitoring Framework

As our work targets a global management environment
where the managed system is both observable and recon-
figurable, we provide constructs to represent information
about managed elements as well as their monitored state.
A knowledge of the monitored state is required to guide
reconfigurations and to assert the operational compliance of
proposed configurations.

1) Managed element: represents the notion of managed
element commonly defined in several management informa-
tion models. A common pattern is to separate managed ele-
ments representation from configuration modeling, managed
elements containing monitoring-oriented information.

2) State Parameter: models the traditional operational
state attributes like operational status, statistical data, in
sum, any monitored information. Enabling the access to their
values is required to process online constraints. The number
of pending messages or current active TCP connections are
examples of state parameters.

In our approach, Managed Element and State Parameter
are the necessary management building blocks for confi-
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Core of the UML profile for the MeCSV metamodel

gurations and runtime constraints definition. Their values
are supposed to be provided by an existing monitoring
framework. They are considered as read-only elements.

C. Configuration Validity Enforcement

Defining a configuration data structure does not suffice to
guarantee the validity of formulated configuration instances;
the following elements allow to define the constraints that
configuration instances should respect.

1) Constraint: represents the restrictions that must be
satisfied by a correct specification of configurations accord-
ing to the system’s architecture and management strategies.
Reql, Req2 and Req3 are examples of high-level level
constraints limiting the range of allowable configuration
parameters values. They will be translated into low-level
constraints that can be enforced at runtime.

The Constraint element is subtyped into offline and online
constraints to support the specificities of the two types of
configuration validation.

2) Offline Constraint: represents structural integrity,
that is rules for architectural compliance. They can be
checked either beforehand at design time or during runtime
and do not involve any check against monitored data.
The following OCL expressions are examples of offline
constraints derived from Reql: self.jndiName <>null,
serverId—>include(parent.serverId)= true. The
first expression ensures that a queue has a registered name
and the second guarantees that a queue is associated with a
valid server.

3) Online Constraint: defines rules for the operational
applicability enforcement. Online constraints use state
parameters values to assess the operational compliance of
configuration data. They are necessarily checked at runtime.
self.nbMaxMsg>80% * self.arrivalsCounter,
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JNDIServer —>include(operationalStatus= ON)
are examples of online constraints expressed in OCL.
The former is a translation of Req3, the latter is derived
from Req2 and ensures that the configuration of the system
includes a running JNDI service. They can only be evaluated
against the current value of a queue’s message load and the
operational status of the naming service respectively.
Constraints also have a “constraint level” attribute to
modulate their strictness together with an “active” attribute
to activate or deactivate them depending on the operational
context and management strategies (e.g., critical vs non-
critical).

D. Usage Example

Figure 4 illustrates an application of the MeCSV UML
profile to the modeling of a message queue according to
specified Reql, Req2 and Req3 in Section III.
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Figure 4. Excerpt of the reference model for a message queue

This reference model contains the configuration structure
of a message queue, the offline and online constraints that
should be respected and depending state parameters.

VI. EXPERIMENT

This section presents a prototype implementation of the
approach applied to the MOM system configuration in Sec-
tion III. The underlying objective is to evaluate the ability of
MeCSV to serve as a formal specification notation, namely
whether a MeCSV reference model can suffice to enable a
runtime configuration validation.

Configuration Constraint
*| Generator Checker

Constraint

Base
Monltonng T T
— con \gura on validation
Module — data acqmsmon

reference model artefacts|

Configuration
Datastore

’ Managed System

Figure 5. Architecture of a prototype implementation
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A. Methodology

The prototype is constituted of three components that
interact automatically as shown in Figure 5:

1) Architecture:

« A configuration generator: it outputs configuration in-
stances according to defined reconfiguration scenarios.

« A monitoring module: it updates operational state met-
rics according to given monitoring scenarios.

e A constraint checker: it checks related configuration
elements against the reference model. This constraint
checker is specifically designed to interpret MeCSV
constructs. It can thus process any given configuration
data defined with the MeCSV language.

2) Implementation Details: The prototype was developed
in Java:

o« Each MOM system’s element (i.e., servers, destina-
tions,...) has two corresponding Java class represen-
tations for its monitoring and its configuration view.
For instance, a message server is implemented through
a Server class containing its state attributes and a
ServerConfig class for its configuration attributes.

o The code of the configuration view is generated from
the defined reference model thanks to MeCSV UML
profile.

o Constraints are implemented as test functions. Their
evaluations consist in appropriate method calls on re-
lated constrained elements.

3) Scenarios:

Reconfigurations scenarios: they covered typical per-
formance tuning activities: the addition and removal of
servers, the platform is scaled up and down (from a cen-
tralized configuration of a single server to a distributed
one made of three servers: Figure 1) and the modification
of queues’s configuration parameters to adjust the memory
usage, especially the variation of its maximum capacity.

Common structural flaws (missing mandatory values,
omitted dependencies) are introduced programmatically into
generated configurations to test the constraint-checking.

Monitoring scenarios: they covered operational sta-
tuses variations as generally observed in case of service fail-
ure or communication lost as well as performance decrease
through message load variations than can possibly impact
the platform’s memory usage.

4) Execution: The runtime configuration generator perio-
dically produces a new configuration instance and sends it
to the constraint checker for validation while the monitoring
module arbitrarily updates operational state values according
to monitoring scenarios. The constraint checker evaluates
input configurations by calling appropriate test functions.
The constraint checker returns an OK message (no found
errors) or a list of violation errors.
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B. Discussion

Thanks to the metamodel, we described a MeCSV re-
ference model of the use case system that comprised the
system configuration schema, state data of interest and
offline and online constraints that should be respected.
A provided configuration generator produced configuration
instances that were evaluated by a prototype constraint-
checker. Since those configuration data are expressed using
the MeCSV language, the constraint-checker seamlessly
processed them and tested them against the available set
of constraints. Violations were detected and reported during
the execution of the different scenarios.

This preliminary experiment shows that the approach we
propose is feasible. As long as there is a defined MeCSV
reference model of the managed system, and that its runtime
candidate configurations as well as its monitored data can be
exported using the MeCSV format, our constraint-checker
can be plugged in the related management system and
perform an automatic and platform-neutral configuration
validation.

Yet several points remain to clarify before practical usage:

o The design of the constraint checker: we are currently
studying runtime OCL formats and compilers [16], [17]
and their performance on scalable architectures.

o The interpretation of violation errors: one issue is the
expressiveness of violation errors in order to guide the
re-formulation of a new candidate configuration. This
aspect can be included in the definition of a protocol
between the reconfiguration decision and the validator.

VII. CONCLUSION AND FUTURE WORK

Dynamic reconfiguration is an important issue if we are
to build large, complex and heterogenous systems with an
acceptable level of reliability. However, dynamic reconfigu-
ration decisions should be validated before their application
in order to guarantee the system’s accurate operation.

This paper presented a model-based approach that aims
to enforce the validity of runtime configuration changes. We
have shown that configuration validation at runtime goes
beyond structural correction checks to further verify the
operational consistency of configuration modifications.

We proposed a metamodel (MeCSV) that provides plat-
form and vendor neutral constructs for the specification of a
system’s reference model that is the system’s configuration
schema including structural and runtime constraints that
should be respected. A dedicated constraint-checker can
then consume the defined reference model and automatically
validate output configurations against it.

MeCSV has been implemented as a UML profile and a
preliminary experiment validates the feasibility of its usage
to enable online configuration validation.

Future work intend to carry on our experiments on com-
mon systems to consolidate the genericity of our approach.
Moreover, we are working on a complete framework to
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support the metamodel with an adequate runtime constraint
checker.
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